Grid middleware for engineering design search and
optimisation

G. E. Pound, M. H. Eres, M. J. Fairman, G. Xue, A. J. Keane and S. J. Cox

e-Science Centre,

School of Engineering Sciences,
University of Southampton,
Highfield, Southampton, S017 1BJ, UK
{gep, eres, mjf, gx, ajk, sjc}@soton.ac.uk

Abstract

Design search and optimisation algorithms can be used by engineers to yield improved
designs. Design search involving the analysis of the aerodynamic properties of a design,
using Computational Fluid Dynamics, is both computationally and data intensive, making
this problem well matched to Grid computing. Evaluation of the quality of a design (the ob-
jective function) may require commercial and user supplied software packages to be called
in sequence, data transferred to and from suitable compute resources, in addition to pre-
and post-processing. To allow engineers to express these necessarily complex workflows
we expose a suite of Grid-enabled tools to a high-level scripting language. These tools
include client functionality to Globus compute resources, and to a job submission Web
service which exposes a cycle-scavenging Condor pool. These tools are exposed as func-
tions to the Matlab environment that can be used directly by the engineer, or intergrated
into higher level functions for design search and optimisation. Here the benefits of the
scripting approach are discussed, together with details of the Grid middleware used and the
implementation of the client functionality.

Introduction

(CFD) methods. CFD analysis concerns the

The aim of the Geodise project [1] is to deliver
a Grid-enabled Problem Solving Environment
(PSE) to assist engineers to improve the aero-
dynamic characteristics of their designs. PSEs
are software environments designed to assist
the user to solve a target class of problems,
whilst concealing the complexities of interact-
ing with the underlying systems [2].

To investigate the aerodynamic properties
of interest engineers may analyse a suitable
model using Computational Fluid Dynamics

behaviour of fluids around objects, for exam-
ple the lift produced by the flow of air over the
wing of an aircraft.

Given a suitable model, design search and
optimisation algorithms automate the evalua-
tion of the qualities of a design that are of
interest to the engineer. Common optimisa-
tion techniques, such as Genetic Algorithms,
are used to determine improved combination
of design parameters by minimizing (or max-
imizing) some measure of the quality of a de-
sign - called the objective function.



The size and complexity of industrial aero-
dynamic designs means that large scale design
search and optimisation is only viable with the
performance available from distributed com-
puting. The Grid offers a framework to share
and utilise resources [3] such as the large-scale
compute and data resource required for engi-
neering design search. In the context of in-
dustrial engineering the Grid has the potential
to facilitate project oriented collaboration be-
tween individuals distributed between indus-
trial partners and contractors.

We faced a number of challenges in the de-
velopment of a tool to aid engineering design
search and optimisation. User must be assisted
to couple all of the packages required to eval-
uate the quality of their design. These include
commercial packages, legacy and user-defined
codes; these applications may all require spe-
cific platforms or have restrictive licensing re-
quirements.

The dynamic integration of the compute
and data resources required for numerous and
detailed CFD calculations must be supported.
Because of the cost of lengthy CFD calcula-
tions it is also valuable to archive and re-use
data wherever possible [4].

Of course, efficient optimisation methods
are also required, but the user should also be
aided to select algorithms suitable for their
problem [5]. All of this functionality must be
exposed in a flexible design environment that
will facilitate engineers in exploring and un-
derstanding their designs.

In this paper we outline an interface be-
tween the user and the Grid middleware used
to support Grid-enabled CFD analysis. It is
upon this generic interface which the tools re-
quired by the domain specific PSE for design
search and optimisation can be built.

In section 2 we describe the use of script-
ing within the Geodise project to support the
complex and multilayered user-defined work-
flows required for engineering design search

and optimisation. We then describe the mid-
dleware used to expose computational re-
sources to the engineer. These include Globus
resources (section 3) and a Condor pool ex-
posed via a job submission Web service (sec-
tion 4).

2 Scripting the Grid

The engineer applying design search and op-
timisation -methods to improve the aerody-
namic performance of a design must automate
the evaluation of the properties of the design.
Analysis using CFD typically requires that a
parameterised geometry be rendered from the
design variables, this geometry is then used
to produce a computational mesh, followed by
the CFD analysis itself. Therefore each anal-
ysis may require several software packages or
user-defined codes to be called in sequence.

Additionally pre- or post-processing of
data may be required at several points during
this workflow. The engineer may wish to place
constraints upon validity of design points, for
example concerning the structural integrity of
a design. Each constraint may therefore re-
quire calls to additional software packages at
each design point. The workflows required
for the evaluation of constraints and objec-
tive functions are therefore often peculiar to a
user’s problem.

In the development of a PSE for engi-
neering design search and optimisation we re-
quire a medium to capture and execute these
complex workflows. A common solution to
the workflow problem that has been adopted
when building Grid computing environments
has been to use an XML workflow language
(such as WSFL or BPEL4WS) to invoke com-
ponents in sequence [6].

This approach is sufficient for simple
workflows. However for the diverse and com-
plex workflows involved in design search and



optimisation we needed a more expressive
representation than is possible with current
XML workflow languages. Rather we use a
high-level scripting language to express user-
defined workflows.

Scripting languages are typically inter-
preted, and often use a grammar and syntax
similar to a human language (so-called fourth-
generation languages). They are frequently
used to support the rapid development of appli-
cations, allowing user’s to g/ue components to-
gether [7]. In addition scripting languages typ-
ically support a great deal of high-level func-
tionality which increases the ease of develop-
ment of scripts that encapsulate the logic of the
user’s workflow.

By adopting scripting languages we have
taken a pragmatic approach which delivers the
greatest flexibility. Potentially, scripts could
be generated automatically by a GUI, with
support from Geodise knowledge services, but
these scripts could also be edited and reused
by expert-users. We consider this flexibility to
be important since ideally the engineer should
not be limited by the tools with which they are
provided. =

Scripting languages occupy a point in a
trade-off between quick application develop-
ment, and the capture and reuse of the valuable
logic contained within the script.

By using the constructs available within
modern scripting languages, such as exception
handling, the user is easily able to cater for a
wide range of conditions, including the failures
that are unfortunately often a feature of both
CFD and Grid computing. The top-level PSE
becomes as flexible as the scripting language
that it supports.

We support the Matlab scripting language
[8] which is widely used within the engineer-
ing community, and therefore familiar to many
of our users. The language is accessible, but is
sufficiently expressive to describe these work-
flows. The Matlab environment for technical

computing provides a large number of tool-
boxes, including those for visualisation and
data analysis. Matlab also integrates seam-
lessly with Java classes that contain the client
functionality to our Grid-services.

In this way we supply the basic build-
ing blocks required by the engineer for design
search and optimisation on the Grid. The ba-
sic functionality required to utilise computa-
tional and data resources on the Grid is sup-
plied though several Matlab toolboxes.

3 Computational Toolbox

The Geodise computational toolbox provides
certificate management, job submission and
file transfer functionality as a collection of
Matlab functions. These functions are de-
signed to be consistent with the look and feel
of the Matlab environment. They provide ac-
cess to Globus v2.x resources, and are built
upon the Java CoG that provides a Globus
client API. This toolbox allows us to ex-
ploit the ubiquitous Globus compute resources
which at present are the backbone of most
computational Grids, for example the UK e-
Science Grid [10].

The Globus toolkit v2.x [9] provides mid-
dleware that allow the composition of compu-
tational grids through the agglomeration of re-
sources which are exposed as Grid services.
This middleware provides much of the func-
tionality required by our toolbox including au-
thentication and authorisation, job submission,
data transfer and resource monitoring and dis-
covery.

Client software to Globus Grid services ex-
ists natively on a number of platforms, and
also via a number of Commodity Grid (CoG)
kits that expose Grid services to commodity
technologies [11]; including Java [12], Python
[13], CORBA and Perl. By using client soft-
ware to Grid services written for these com-



gd_createproxy
gd_destroyproxy
gd_certinfo
gd_proxyinfo
gd_proxyquery

Creates a Globus proxy certificate for the user’s credentials
Destroys the local copy of the user’s Globus proxy certificate
Returns information about the user’s certificate

Returns information about the user’s proxy certificate
Queries whether a valid proxy certificate exists

gd_jobsubmit
gd_jobstatus

Submits a compute job to a Globus GRAM jobmanager
Gets the status of a Globus GRAM job

gd_jobpoll Queries the status of a Globus GRAM job until complete
gd_jobkill Kills the Globus GRAM job specified by a job handle
gd putfile Puts a remote file using GridFtp

gd_getfile Retrieves a remote file using GridFtp

gd_rmfile Deletes a remote file using GridFtp

gd _makedir Creates a remote directory using GridFtp

gd_rmdir Deletes a remote directory using GridFtp

Table 1: Functions of the computational toolbox.

modity technologies the developer of a PSE
is able to remain independent of platform and
OS. This independence motivated us to de-
velop the Geodise toolbox over the Grid ser-
vice client APIs of the Java CoG kit.

To expose the functionality available from
the Java CoG to the Matlab user it was im-
portant to present functions which are consis-
tent with the behaviour and syntax of the Mat-
lab environment. This low level functionality
may be used interactively by the user, but these
functions are also incorporated programmati-
cally into the higher level components of the
toolbox.

The set of compute functions in Table 1 de-
scribes the minimum functionality required to
allow the user to run jobs on Globus compute
resources. The functions may be loosely cat-
egorised into those concerned with the user’s
credentials, job submission to the Globus Re-
source Allocation Manager (GRAM), and file
transfer.

The Grid Security Infrastructure (GSI)
[14] used by the Globus toolkit is based upon
the Public Key Infrastructure (PKI) [15]. Un-
der the PKI an individuals identity is asserted
by a certificate that is digitally signed by a Cer-

tificate Authority within a hierarchy of trust. In
an extension to this standard the GSI allows a
user to delegate their identity to remote pro-
cesses using a temporally limited proxy cer-
tificate signed by the user’s certificate. The
toolbox command gd_createproxy allows
users to create a Globus proxy certificate
within the Matlab environment, essentially
creating a point of single sign-on to the Grid
resources that the user is entitled to use.

The gd_jobsubmit command allows
users to submit compute jobs to a GRAM
job manager described by a Resource Spec-
ification Language (RSL) string [16]. The
gd_jobsubmit command returns a unique
job handle which identifies the job. The job
handle may be used to terminate or query
the status of the user’s job. In addition the
gd listjobs command may be used to
query a Monitoring and Discovery Service
(MDS) to return all the job handles associated
with the user’s certificate.

File transfer commands are provided to al-
low Matlab users to transfer files to and from
Grid-enabled compute resources. These com-
mands support the high performance file trans-
fer protocol GridFTP [17]. The GridFTP pro-



tocol defines a number of extensions to the
FTP protocol to enable transfer of high vol-
umes of data. Functions are also provided to
allow users to create and delete remote files
and directories from within the Matlab envi-
ronment.

4 Job Submission Service

In addition to support for Globus compute re-
sources we provide client functionality to a job
submission service [18].

The job submission service offers an XML
Web service interface to the Condor high
throughput resource management system [19].
A cycle scavenging Condor pool can utilize the
computational power of idle UNIX and Win-
dows NT workstations. Through the Web ser-
vice interface we are able to offer remote ac-
cess to this compute resource that is both plat-
form and language neutral.

The service interface maps between XML
messages representing compute operations and
the ClassAds language of Condor. The user
must be able to specify compute resources
with the capabilities to meet the require-
ments, i.e., memory, processor, disk capaci-
ties, database/archive facilities, and also spe-
cialist software environments or licensed ap-
plications.

The service interface to Condor provides
the solution to this problem combining fea-
tures of Condor and inspection technology for
Web services. The Condor system provides
a convenient method for the discovery of re-
sources with special capabilities in the Con-
dor pool. When a computer joins the Con-
dor pool, it declares its capabilities by adding
corresponding attributes to its Condor system
configuration file. These attributes will then
be reflected in the information generated by
the resource status query performed by Con-
dor, which is passed on to the Web service.

4.1 Web Service Enhancements

A number of enhancements to standard Web
service technologies have been applied to the
job submission Web service.

The standard Web services technology col-
lection, which includes XML, SOAP, WSDL
and UDDI, has not supplied a solution to the
management of service security. To address
this problem, the WS-Security specification
has been employed in the Condor service im-
plementation. WS-Security [20] is a maturing
technology for Web service security manage-
ment. It extends the simple structure of SOAP
to establish a standard security mechanism on
the message level, which is independent of the
underlying transportation methods. Since WS-
Security focuses mainly on the infrastructure,
rather than detailed security techniques such as
authentication and encryption, it allows estab-
lished security solutions, including Kerberos
[21], PKI, and GSI [14] to be integrated so that
they can be applied to Web services in a stan-
dard and consistent manner.

In the Condor service, we have deployed
PKI based asymmetric encryption in order to
ensure message confidentiality and perform
user authentication. The exchanges of creden-
tial information, i.e., the X.509 certificates that
contain public keys, are carried out follow-
ing the WS-Security definition. In addition,
we will also apply XML digital signature [22]
to the service messages, as proposed by WS-
Security, so as to achieve message integrity.

Another problem with interfacing Condor
with Web services is the degraded performance
in the data transfer required to transport the
input and output files required by the com-
putational job. Traditionally, data transfer
with SOAP is based on the Base64 encoding,
which imposes heavy costs due to the seri-
alisation/deserialisation of the Base64 strings.
We address this problem in the Condor service



by exploiting a recently proposed data transfer
format named Direct Internet Message Encap-
sulation (DIME) [28].

DIME defines a MIME-like message for-
mat in which variously typed data that does not
fit expediently or efficiently into XML can be
directly contained and transmitted along with
the standard SOAP messages. Significant im-
provement to the performance on data transfer
can be achieved by using DIME, as overheads
for data conversion are avoided. Test results
for this have been demonstrated in [23].

These enhancements to the Condor ser-
vice have been implemented with the help of
Microsofts Web Services Enhancements [24],
which provides support for several emerging
Web service technologies based on the .NET
framework. Corresponding to the service en-
hancements, message filters for the client tools
have also been constructed using related Java
technologies [25,26].

4.2 Job Submission Client

The client to the job submission Web service
provides a number of functions which are im-
plemented both in the form of a low-level Java
class library, and a set of high-level commands
for the Matlab environment. These functions
cnable users to submit, query and retrieve the
results of computational jobs.

The client is designed to provide trans-
parency to the underlying computational re-
sources. In this manner the user interface has
been separated from the underlying message
processor which interacts with different com-
pute resources, of which the Condor job sub-
mission service is an example.

The characteristics of the user’s job and of
the required resources are specified in the Mat-
lab environment according to an API that rep-
resents the generic semantics of compute op-
erations. The job specification is then mapped
into input arguments to the selected resource

by the message processor. The message pro-
cessor is configured to use a chain of filters,
each responsible for processing a specific part
of the message, to build input messages appro-
priate for the resource.

This is illustrated by Figure 1 which de-
picts the implementation of the file upload
functionality when accessing the Condor job
submission service. The interaction is primar-
ily based on the SOAP protocol {27], and needs
to conform to the security regulation set by the
service. For data transmission, the service uses
DIME. HTTP is used as the underlying com-
munication protocol. Accordingly, a SOAP
output filter, a security handler and a DIME
builder are loaded in turn to the output chain.
Since the response is expected in plain SOAP
format, only a SOAP input filter is loaded to
the input chain. And at the end of the chains,
an HTTP handler is loaded to handle the actual
message exchanges.

Fuserfiace APLin Javiy

"grig semd files™ commang

Figure 1: Message filter chains.

5 Conclusions

High-level scripting languages can provide an
accessible representation of complex work-
flows, that are highly flexible, yet allow the
rapid development of applications. When pro-
viding scriptable components that interfaces
with Grid middleware, it is important to be
consistent with the syntax of the language, thus



making access to the Grid as transparent as
possible.

By adopting middleware technologies that
depend upon open standards users are able
to plug and play resources as required [18].
Future work in this area includes exploiting
the opportunities for collaborative engineering
created by emerging Grid technologies, such
as the Open Grid Services Architecture [29].

Acknowledgements

This work is supported by the GEODISE
e-Science pilot project (UK EPSRC
GR/R67705/01). We thank Fluent, Microsoft
and Intel for ongoing support.

References

[1] G.E. Pound, M.H. Eres, J.L. Wason, Z. Jiao,
AJ. Keane & S.J. Cox. A Grid-Enabled
Problem Solving Environment (PSE) for De-
sign Optimisation within Matlab, Proceed-
ings of the IPDPS 2003, 50-57, 2003.

[2] E.N. Houstis, E. Gallopoulos, R. Bramley
& J.R. Rice. Problem-Solving Environments
for Computational Science. JEEE Computa-
tional Science and Engineering, 4(3): 18-21,
1997.

[3] 1. Foster, C. Kesselman & S. Tuecke. The
Anatomy of the Grid: Enabling Scalable
Virtual Organisation. International Journal
of Supercomputer Applications, 15(3): 200-
222,2001.

[4] J.L. Wason, M. Molinari, Z. Jiao & S.J. Cox.
Delivering Data Management for Engineers
on the Grid. EuroPar-2003, Klagenfurt, 26-
29 August, 2003. (accepted)

[5] L. Chen, S.J. Cox, C. Goble, A.J. Keane,
A. Roberts, N.R. Shadbolt, P. Smart &
F. Tao, Engineering Knowledge for Engi-
neering Grid Applications. Proceedings of
the Euroweb 2002, 12-24, 2002.

[6] G.Fox, M. Pierce, D. Gannon & M. Thomas.
Overview of Grid Computing Environments.
Grid Computing Environments - RG, Global
Grid Forum, 2002.

[71 D.W. Baron. The world of scripting lan-
guages. John Wiley & Sons, Chichester,
2000.

[8] Matlab 6.5.
http://www.mathworks.com/

[9] Globus toolkit.
http://www.globus.org/

[10] R.J. Allan & D.R.S. Boyd. The UK e-Science
Grid: Level 2 Deployment Plan. The Grid
Engineering Task Force.2002.

[11] Commodity Grid Kits.
http://www.globus.org/cog/

[12] G. von Laszewski, 1. Foster, J. Gawor &
P. Lane. A Java commodity Grid kit. Concur-
rency and Computation: Practice and Expe-

rience, 13(8): 643-662, 2001.

[13] K.R. Jackson. PyGlobus: a Python inter-
face to the Globus Toolkit. Concurrency and
Computation: Practice and Experience, 1

4(13/15): 1075-1083, 2002.

[14] 1. Foster, C. Kesselman, G. Tsudik &
S. Tuecke. A security architecture for compu-
tational grids. 5th ACM Conference on Com-
puters and Communications Security, San

Francisco, California, 1998.

[15] R. Housley, W. Ford, W. Polk, & D. Solo.
RFC2459: Internet X.509 Public Key Infras-
tructure Certificate and CRL Profile. PKLX

IETF Working Group, 1999.

[16] Resource Specification Language RSL v1.0.

http://www.globus.org/gram/rsl_spec1.html

[17] B. Allcock, J. Bester, J. Bresnahan, A. Cher-
venak, 1. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, & S. Tuecke. Se-
cure, Efficient Data Transport and Replica
Management for High-Performance Data-
Intensive Computing. I[EEE Mass Storage

Conference, 2001.

[



(18]

(19]

[20]

[21]

(22]

[23]

G. Xue, M. Fairman, G.E. Pound &
S.J. Cox. Implementation of a Grid Compu-
tation Toolkit for Design Optimisation with
Matlab and Condor. EuroPar 2003, Klagen-
furt, 26-29 August, 2003. (accepted)

D. Thain, T. Tannenbaum & M. Livny. Con-
dor and the Grid. in: F. Berman, G. Fox &
T. Hey (eds), Grid Computing: Making the
Global Infrastructure a Reality. John Wiley
& Sons Inc, 2002.

The WS-Security Specification.
http://www.ibm.com/developerworks/library/
ws-secure/

Kerberos: The Network Authentication Pro-
tocol.
http://web.mit.edu/kerberos/www/

The IETF/W3C XML Signature WG.
http://www.w3.org/Signature/

G. Xue, G.E. Pound & S.J. Cox. Performing
Grid Computation with Enhanced Web Ser-

(24]

[25]

[26]

[27]

[28]

[29]

vice and Service Invocation Technologies.
Proceedings of the ICCS 2003, Melbourne,
Australia, 2003

Web Services Enhancements 1.0 for Mi-
crosoft .NET.
http://msdn.microsoft.com/

Java DIME Library v1.0.2.
http://onionnetworks.com/dime/javadoc/

Java Cryptography Extension (JCE).
http://java.sun.com/products/jce/

Simple Object Access Protocol.
http://www.w3.0rg/2000/xp/Group/

DIME.
http://www.ietf.org/internet-drafts/draft-
nielsen-dime-02.txt

1. Foster, C. Kesselman, J. Nick & S. Tuecke.
The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Sys-
tems Integration. Globus Project, 2002.



