
Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 74

���������� ���� ����	

� 	��� �
� ���� ����������� �������
������������������������������
���������������
�	������������
��	�
�� ����	�	����� 	�	
 ���� �
� ���� ������������ ����
��� �

�����
���
	�� ����
	������� !�� �	�����
	�� ����� �	���� ��������
���� ���
�����	����� �
� ���� �������� �����������"��� #���	
�
���� ����	
� �	�� 	� �$%� ��������� $�������� %������������

�	�����&����
���������
	 ����
�$��%��$�����������������
%�������������	���$��%'(%!��$������������������%�����������
(�	�%������	���!�����	����������
��	��������#���	
)����	�
���������
��������	

���*%(��*	����%��
��	�����(���
�������
�
�����	
�	��
��	���������������	
�	
���������	����#+!��#��
��
+� � !�
�	����������� 	��� ��������� ����
���
�� �
� �����������
��$������
�������$���������������
��	��'�	������$�
�������
������� ,�	�������-�	��������	������$�
����	���	
�

�����
�� �

Keywords: Biomolecular simulation, Open Grid Service Architecture,

grid portal, BioSimGrid

Reviewed and accepted: 31 Mar. 2004

1. Background

Biomolecular simulations enable us to explore the conformational
dynamics of complex molecules such as proteins, membranes and
nucleic acids (Figure. 1). Molecular simulations with atom-level
resolution have now entered the mainstream of biological research
[1]. In particular, molecular dynamics (MD) is widely used to investigate
nanosecond to microsecond dynamics for a wide range of
biomolecules. Currently, a typical such simulation generates large
amount of digital data.

Figure 1. Comparison of protein simulations contribute to biomedical
knowledge. Mouse acetylcholinesterase (left) and bacterial outer-membrane
phospholipase A (OMPLA; right) are different in structure and biological
environment (top) but similar in their active site (bottom) and catalytic
function

MD has benefited considerably from improvements in computer
technology. As computers become faster, biologists have become able
to explore larger molecules for longer timescales. Currently, a typical
simulation may have a system size of ~100,000 particles (atoms),

A Web / Grid Portal Implementation of BioSimGrid: A Biomolecular Simulation Database

Bing Wu1,2,*, Matthew Dovey2, Muan Hong Ng4, Kaihsu Tai1, Stuart Murdock3,4, Hans Fangohr4,
Steven Johnston4, Paul Jeffreys2, Simon Cox4, Jonathan W. Essex3 and Mark S.P. Sansom1

1Department of Biochemistry, 2e-Science Centre, University of Oxford,
 3Department of Chemistry, 4e-Science Centre, University of Southampton
*to whom correspondence should be addressed: bing@biop.ox.ac.uk

and a nanosecond timescale simulation may require ~1,000,000
timesteps (i.e. iterations of integrating the equations of motion). Such
a simulation would take a few weeks on between ~8 and ~64
processors (depending upon the efficiency of the simulation code and
protocols employed) and could generate gigabytes of data for
subsequent analysis and visualisation.

The status quo for the archiving of these data is far from optimal.
Typically, data is archived in an ad hoc fashion at the level of individual
laboratories. Furthermore, the reporting of the simulation metadata
in journal articles is prone to omission of potentially important technical
details. Consequently, even medium-scale comparisons between
multiple simulations are not possible unless the simulations are
performed within a single research group. This excludes simulation
results from the domain of structural bioinformatics, where new
information and knowledge is derived by comparisons between the
results of individual research endeavors.

As protein structure determination becomes more automated, and as
advances are made in structural bioinformatics [2] and computational
biology, it will become increasingly important that biomolecular
simulations do not exist as standalone analyses of single systems,
but rather that they become embedded in a matrix of computational
and experimental studies of proteins. However, at present there are
considerable problems in comparing the results of multiple simulations
[3], and in integrating simulation results with other (experimentally-
derived) sources of data. This problem will become more pressing if

simulation studies are to match up to post-genomic approaches
such as high throughput protein crystallography. Furthermore, it
will be essential to provide data retrieval and analysis tools that are
accessible to a wide community of structural and cell biologists,
not just to simulation specialists. It is in this context that the
BioSimGrid [4] project is being developed.

2. Grid enabling database

The Grid [6, 7, 8] is a combination of network infrastructure and
software framework delivering computing services based on
distributed hardware and software resources. Using the power of
the Grid the developers hope to solve the above problems, thus
enabling them to take a comparative BioSimGrid approach to
analysis of simulation data.

A major impediment to making various simulations available to
biologists has been the absence of a database of simulation results.
In an ideal world, all simulation data would be available to all
interested parties. However, at present simulation data reside in
the home laboratory and are not accessible to other research
groups. One solution to this problem would be to deposit all
simulation results in a centralised database, but in reality the vast
quantities of data mean that rapid access would become impossible.
The Grid provides the opportunity to draw together distributed
collections of simulation data in disparate formats, whilst maintaining
a centrally accessible federated database.

The BioSimGrid project will establish a formal database for
biomolecular simulations within the UK, increasing collaboration via
a distributed computing environment. There are three levels of data
existing in the database (see Figure. 2):

• Raw data: generated by biomolecular simulations;

• 1st level metadata: describing the generic properties of raw
simulation data;

• 2nd level metadata: describing the results of generic analyses of
simulation data.

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 75

The core database has been implemented using IBM DB2 Database
Version 8.1 Enterprise [5]. Current datasets contain 6 trajectories (two
of which are trajectories of the nervous-system protein AChE; the
others are of the bacterial outer-membrane protein OMPLA), 217
thousand atoms, 50 thousand frames at 1 picosecond apart, and about
1.7 billion coordinates. The data size is about 60 GB. These large
amount of datasets need to be easily accessed by the community. To
deliver this, we have designed and implemented a web portal.

A current direction of development focuses on the exploitation of Grid
technologies such as OGSA-DAI [9] to enable interrogation of data
through distributed queries. An application can send to BioSimGrid a
query as if it were to be executed at one instance of a database, and
BioSimGrid will process it to be distributed on several instances for
execution.

3. Portal architectures

3.1. SOA - Service Oriented Architecture

The current methodology in developing distributed systems is Service
Oriented Architecture (SOA), building upon methodologies such as
Object Oriented programming, Components and Distributed Object
Request Brokers. Within a SOA, systems are composed of multiple
individual services located and maintained on different heterogeneous
machines administered by different organizations. The key in SOA is
that the component services should be loosely coupled to allow the
orchestration of systems built up from component services, which
should be robust against implementation changes in the underlying
services [10]. To achieve this SOAs strive towards a number of goals:

1. The services should implement a small set of simple, ubiquitous
and well known interfaces which only encode generic semantics.

2. The interfaces should deliver messages constrained by extensible
schema for efficiency. This allows both services and consumers
to work with well defined message structures, but allowing new
versions of the services to be introduced without breaking existing
systems.

3. The messages should be descriptive not instructive and the
interfaces should not define system behaviour. This allows
internals of a service can be viewed as a “black box”. You can
send a service the details of the problem to be solved and
preferences, but need not dictate how the service should solve
the problem.

4. Service Oriented Architectures must have mechanisms for the
discovery of services matching the consumers’ requirements.

There are a number of emergent technologies which can underpin
SOA: REST Web Services; SOAP Web Services; and Grid Services.

3.2. REST, SOAP and Grid Services

Representational State Transfer (REST) works on the basic of
“resources” which can be references by URIs [11]. A REST web service
is limited to using HTTP interfaces (GET to obtain a representation of
the resource; DELETE to remove a representation of a resource;
POST to update or create a representation of a resource; PUT to
create a representation of a resource). REST messages are in XML,
constrained by schema definitions in XML Schema [12] or Relax
NG[13].

SOAP Web Services use messages encapsulated in a structure
defined by the SOAP specification [14]. This adds additional

information in the form of headers for message routing scenarios and
mechanisms for reporting errors using faults (a style similar to
exceptions in various programming languages). SOAP Web Services
use Web Service Description Language (WSDL) [15] to define both
the structures (again using schema languages such as XML Schema)
but also messaging semantics such as whether the message is
initiated by the client or the server, and what messages can be used
as a response to a particular message.

Grid Services are based on Web Services but provide additional
semantics. In particular they add some object-oriented and REST
concepts. The object-oriented concepts are the ability to inherit service
definitions (portTypes in WSDL terminology) and add new messages
using a multiple inheritance model and the ability to add properties
(or service data elements) to Web Services. The REST concept
introduced is that of creating a new representation of resource. In the
Grid Services model this uses a factory model whereby a new instance
of a Grid Service can be created by its corresponding factory Grid
Service. Grid Services also offer an extensibility model whereby part
of the structure of the message can be left undefined, but the allowed
structures can be determined dynamically by querying the appropriate
service data elements.

3.3. OGSI and OGSA infrastructure

As Grid Services offer an object-oriented inheritance model, the need
for well known interfaces with an SOA can be met by defining base
Grid Services which all Grid Services inherit. These foundation
services form part of OGSI (Open Grid Services Infrastructure) and.
OGSA (Open Grid Services Architecture), in addition to defining the
extensions to WSDL needed for inheritance and service data elements
and the semantics for the factory and extensibility models, also define
a core set of foundation services and their behaviour. OGSA builds
on top of OGSI to define various common service definitions for
essential middleware components such as logging, account
management, workflow management and data access [16].

The key middleware for BioSimGrid are the services defined within
OGSA-DAI (Open Grid Services Architecture Data Access and
Integration). This defines a set of services for accessing
heterogeneous databases but with an abstraction layer so that the
client can manage a table spread across multiple remote databases
as if it was a table on a single local database [9].

3.4. Portal infrastructure

The key concept behind portals is content syndication. Portal channel
producers publish raw content (with minimal presentation information),
and it is the role of the portal to aggregate content and handle the
presentation and rendering of content into a form suitable for the user.
In this sense portals fit well into an SOA philosophy and provide a
configurable and versatile user interface allowing the integration and
management of loosely coupled services.

At present there are a number of emerging standards for
communication between portal channels providers and consumers –
JSR-168 defining Java interfaces [17] and WSRP (Web Services for
Remote Portlets) defining a Web Service interface [18]. There is
activity within the Global Grid Forum for an OGSA interface for portals.
JST-168 and WSRP only finalized their specifications late 2003 and
any OGSA based interface is still in early development and hence
BioSimGrid had to develop its own portal library.

4. Portal implementation

4.1. SOA implementation

The current implementation of BioSimGrid Portal is based on multi-
tier SOA architecture.

• GUI: HTTP(S)-based web client, provides user interaction
with the system. The client can be either a standard web browser or
web-based application. The use of the web interface eliminates
development and maintenance of client software.

• Environment: This tier is a SOA front-end which handles
communications between web applications and application servers.
We have two environments here. The Web Portal Environment is a
standard Apache/Tomcat based hosting environment to deliver web
portal communications. The Python Hosting Environment is handling
legacy Python applications.

• Application server: This tier is dedicated to delivering data
analysis and data mining services through Grid/Web services. There
are also supporting services such as monitoring, transaction, and

Figure 2. An overview of the BioSimGrid database

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 76

distributed query services. The protocols used here are XML/SOAP.
The application servers also deal with OGSA-DAI Grid middleware to
query the database.

• Database: IBM DB2 Database Version 8.1 Enterprise has
been deployed as the core database. Data resources are distributed
across collaborating sites. The OGSA-DAI Grid middleware enables
the access of these resources transparently in a format of virtual
machine. The database of an individual site can be clustered to
achieve better performance and reliability.

Figure 3. BioSimGrid Portal implementation

4.2 Dealing with simulation data

We have selected an initial application that both tests our methodology
and also allows us to explore an important biological question. We
are currently using BioSimGrid to compare simulations of two
enzymes: (i) acetylcholinesterase (AChE), a key enzyme of the
nervous system [19]; and (ii) outer-membrane phospholipase A
(OMPLA), a bacterial enzyme involved in pathogenesis [20]. Structural
data show that these two enzymes have similar active sites (a triad of
amino acid sidechains involved in their catalytic mechanisms).
Otherwise, the structures of the two proteins are not closely related.

We are analysing simulations to compare the patterns of catalytic
sidechain dynamics in these two distantly related enzymes, so as to
understand the relationship between sidechain mobility and catalytic
mechanism. The AChE simulations were performed at University of
California, San Diego; the OMPLA simulations in Oxford. Normally,
such data would never “meet” and would reside in the separate
laboratories. Furthermore, the simulations were run using different
programs and protocols and the data are in very different formats.
Rather than re-run one (or both) of the simulations (which would
consume many days of costly supercomputer time), we are using
BioSimGrid to make the comparison. Thus this apparently simple test
case enables us to test many aspects of the underlying methodology.

4.3. PortalLib – delivering the web front-end

A web portal implementation involves a large number of web pages,
which are based on HTML code. Among these, a certain amount of
the web pages have to be generated dynamically based on user
requests. There are basically two ways of implementation: client-side
scripting and server-side scripting. In the BioSimGrid Portal
implementation, we have both implementations. JavaScript is currently
used on the client-side as it can run on most web browsers, while
Perl and Python are used on the server-side. We developed PortalLib
to provide a common interface for generating dynamic web pages on
the fly. PortalLib is a Perl library which consists of four main classes
to use for rapid portal development:

• HtmlFile - interfaces with static HTML template files to generate
dynamic web pages,

• HtmlComponent -a standard HTML component to generate web GUI,

• Auth_lib – provides common Authentication and Authorisation
interfaces,

• DB_lib – provides a database common interface to DBI compatible
data sources.

The code in Table 1 is an example of using PortalLib to produce a
trajectory refinement form based on previous user inputs and database
query results. When running ‘refine.cgi’, the result data is dynamically
bound to the template HTML file called ‘refine.html’. For a typical portal
page, we place labels, text fields, buttons and scrolling lists in the
template page and map them to the attributes in the hash list of
‘%options’. Then the attribute data will be automatically passed to
the next Web page via HTTP session. Thus by using PortalLib, we
have achieved rapid and efficient development of server-side web
pages.

#!/usr/bin/perl -w

use PortalLib;

use strict;

use CGI;

my $cgi = new CGI;

my %options = ($cgi->Vars,);

process template HTML

my $template = ‘refine.html’;

my $html = HtmlFile->new(

 File => $template,

 %options,

);

$html->Draw();

 Table 1. Example code: refine.cgi

JavaScript can also be dynamically passed to an HtmlFile object in
the JavaScript property or embedded in a template file as usual HTML
code. The generated form is shown in Figure 5. The trajectory list is
pulled dynamically from the database and bound to the web front-
end below.

Figure 4. A screenshot of the BioSimGrid portal showing the active site
for AChE

Figure 5. Trajectory refinement form

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 77

5. BioSimGrid security

Given the current distributed Grid implementation, security is a critical
element of the project. We integrated various mechanisms to achieve
a secure distributed environment. We have implemented PKI (Public
Key Infrastructure) and X.509 Digital Certificate [21] based
authentication. All the transactions are based on HTTPS secure
channels. The BioSimGrid network has a dual firewall protection. Two
levels of authentication enable legacy user/password based
authentication. The authorisation is based on a distributed database
and implements SSO (Single Sign On).

5.1. PKI and Grid certificates

PKI is a system of public key encryption using digital certificates from
a CA (Certificate Authority) that verifies and authenticates the validity
of each party involved in an electronic transaction. PKI uses an
asymmetric key based algorithm: a private key is used to encrypt
data and a public key can decrypt data encrypted with the private
key. A certificate contains information referring to a public key which
has been digitally signed by a CA. The information normally found in
a certificate conforms to the ITU (IETF) standard X.509 v3 [22].

A Grid certificate is an X.509 certificate. We have two kinds of Grid
certificates used in the portal: user certificates for user identities and
host certificates for servers. Once you have a valid user certificate,
you can use it to access the web portal [24]. A host certificate has
similar format as the user certificate except its DN has a hostname
instead of the user name in ‘CN’.

subject=/C=UK/O=eScience/OU=Oxford/L=OeSC/CN=portal/
portal.biosimgrid.org/emailAddress=bing@biop.ox.ac.uk

The host certificate can be configured to be used by the web server
supporting SSL transactions. We use the Apache server in the portal
environment. The above host certificate is converted to an Apache-
friendly key pair and loaded into the web server [25]. The same key
pair can also be used as a host certificate in the Globus Toolkit [6].

5.2. SSO (Single Sign-On) and AAA (Authentication
Authorisation Accounting)

SSO is designed to provide a foundation that gives users role-based
access to multiple Web applications from a single, secure point of
contact. This simplifies the user AA (Authentication Authorisation):
the user only needs to remember one user id/password. There are
various implementations of SSO technologies, i.e. 3rd party based
SSO and centralised SSO.

In the BioSimGrid project, we have a distributed Grid environment
and need to deal with two levels of authentication for high security
and easy accessibility. To achieve this, we use SSO based on a
distributed database. All the user accounts and corresponding AAA
information are stored in the database distributed across the network.
This enables a user sign on at any BioSimGrid site to access
authorised resources and perform authorised transactions. The
accounting information of the user access will be stored locally and
distributed over the network.

As in Figure. 6, two levels of authentication infrastructures have been
implemented in the system. The first level is based on digital certificate.
A Grid certificate-based authentication mechanism has been
integrated across the system. When a user signs on to access specific
BioSimGrid services, the subject of his/her X.509 personal digital
certificate is passed to the SSO Security Check module, which then
calls the AAA module to verify the certificate against the one stored
in the accounts database. Only if the security check is successful will
the user have the access to the services. The second level is a user/
password based authentication, which is designed for those who have
no digital certificates installed in their client machines. This level of
authentication enables web access of the portal via a public PC from
anywhere in the world.

Once the user has been granted access, the AAA module will store
the user credentials in the database and generate a unique access
token for this session. The token has a limit life time to enhance the
security. We are also investigating the integration of user credential
delegation using MyProxy [26]. All transactions are logged in the
accounts database, which will then be distributed across the
BioSimGrid sites for maximal efficiency and high availability.

6. Conclusions

The BioSimGrid project is still in its infancy. However, the AChE vs.
OMPLA comparison provides a microcosm of the many comparisons
that will become possible once BioSimGrid is fully operational.
Biomolecular simulation groups will be able to deposit their simulation
data for wide-ranging comparative analyses that so far have been
impossible. This will help to propel biomolecular simulation studies
into the post-genomic era.

The OGSA and OGSA-DAI architectures underlying BioSimGrid are
still in the early stage of development. Therefore we have both legacy
programs and new web services co-existing in the current portal
environment. Once Web / Grid services are stable, it would be
worthwhile to migrate all legacy programs to web services under the
proposed SOA architecture.

We are developing methods for data deposition, data exchange and
for quality control of simulation data. This will enable us to run initial
comparative analyses on multiple simulations (e.g. of membrane
proteins) in order to evaluate the current prototype in real world
applications.

Acknowledgements

Many thanks to our BioSimGrid partners (L. Caves, C. Laughton, D.
Moss and O. Smart) for their input to this project. BioSimGrid is funded
by BBSRC and DTI. Our thanks to all of our colleagues in the Oxford
and Southampton simulation labs, to Ivaylo Kostadinov in the Oxford
e-Science Center, and to the Southampton Regional e-Science Centre
for their encouragement, advice and hard work. Our thanks also to
Marc Baaden for providing the OMPLA trajectories and figure1.

References

1. Karplus, M.J. and McCammon, J.A. (2002). Nature Structural
Biology., 9, 646-652.

2. Bourne, P.E. and Weissig, H. (2003). Structural Bioinformatics,
Wiley-Liss, Hoboken.

3. Pang, A., Arinaminpathy, Y., Sansom, M.S.P. and Biggin, P.C.
(2003). FEBS Lett.550, 168-174.

4. Bing Wu, Kaihsu Tai, et al. (2003). BioSimGrid: A Distributed
Database for Biomolecular Simulations. Simon J Cox (editor), 5. 5.
Proceedings of UK e-Science All Hands Meeting 2003. EPSRC, ISBN
1-904425-11-9.

5. http://www-3.ibm.com/software/data/db2/udb/

6. http://www.globus.org

Figure 6. BioSimGrid SSO implementation

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 78

7. Berman, F., Fox, G. and Hey, T., Eds. (2003). Grid Computing:
Making the Global Infrastructure a Reality, Wiley.

8. Foster, I. and Kesselman, C., Eds. (1999). The GRID: Blueprint for
a New Computing, Morgan-Kaufmann.

9. http://www.ogsa-dai.org

10.Hao He (2003). What is Service-Oriented Architecture, http://
webservices.xml.com/pub/a/ws/2003/09/30/soa.html

11.http:/ /www1.ics.uci .edu/%7Efielding/pubs/dissertat ion/
rest_arch_style.htm

12. http://www.w3.org/XML/Schema

1 3 . h t t p : / / w w w . o a s i s - o p e n . o r g / c o m m i t t e e s /
tc_home.php?w_abbrev=relax-ng

14. http://www.w3.org/2000/xp/Group/

15. http://www.w3.org/2002/ws/desc/

16. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002). The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration, Global Grid Forum.

17.http://www.jcp.org/aboutJava/communityprocess/reiew-/jsr168/

18. http://www.oasis-open.org/committees/tc_home.php?w-
_abbrev=wsrp

19. Kaihsu Tai, Tongye Shen, Richard H. Henchman, Yves Bourne,
Pascale Marchot, J. Andrew McCammon (2002). Mechanism of
acetylcholinesterase inhibition by fasciculin: a 5-ns molecular
dynamics simulation. Journal of the American Chemical Society
124:6153-6161.

20. Baaden M, Meier C, Sansom MSP (2003). A molecular dynamics
investigation of mono- and dimeric states of the outer membrane
enzyme OMPLA. Journal of Molecular Biology 31:177-189.

21. Tuecke, S., Engert, D., Foster, I., Thompson, M., Pearlman, L.
and Kesselman, C. (2001). Internet X.509 Public Key Infrastructure
ProxyCertificate Profile, IETF.

22. ftp://ftp.isi.edu/in-notes/rfc2459.txt

23. http://www.grid-support.ac.uk/ca/

24. Bing Wu (2003). User Certificate Installation Guide, http://
www.biosimgrid.org/docs/2003/NOTES/user_certificates.pdf

25. Bing Wu (2003). Digital Certificate Installation Guide, http://
www.biosimgrid.org/docs/2003/NOTES/certificates.pdf

26. http://www.ncsa.uiuc.edu/Divisions/ACES/MyProxy/

