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1 Introduction

For a single-degree-of-freedom vibratory system, the damp-
ing ratio £ determines the boundary of oscillatory and nonoscil-
latory damped free motion. The value of damping ratio at this
boundary (also known as critical damping) is 1. It has been
observed (see for example, Meirovitch, 1975) that, in case of
critical damping, free response of the system approaches the
equilibrium configuration fastest. '

Consider the free damped motion of a multi-degree-of-free-
dom system, governed by the following matrix differential equa-
tion:

Mg + Cx + Kx = 0, (H

where M, C, and K are the mass, stiffness, and damping matri-
ces of order n X n, respectively and x is the response vector
of size # X 1. In this section and the next, matrices M, C, and
K are assumed to be symmetric. In addition, it is also assumed
that M and C are positive definite; while allowing for rigid-
body modes, matrix K is assumed to be positive definite or
positive semi-definite. The case of semi-definite damping matrix
Is not straightforward and is omitted from rhe present discus-
sion. Statements regarding eriticality, similar to those for single-
degrez-of-freedom systems. can be given to each of the decou-
pled modes. when damping is classical (i.e.. when the equations
of motion decouple in the modal coordinates). For a general
case of damping. criticality is expressed in tarms of latent roots
of the N-matrix (\*M + XC + K). Analogy suggests that. for
the case of multi-degree-of-freedom systems. these conditions
could be expressed in terms of definiteness properties of the
matrices involved. It is surprising that this problem was not
addressed until as late as 1955 (Duffin). i

Nicholson (1978) defined a system to be underdamped when
all the modes are underdamped with a sufficient condition Crax
= 2kga. where ¢ is the largest eigenvalue of (M ™V CM 1)
and ki, is the smallest eigenvalue of (M ™'*KM ™). Here
M is the positive square root of M. Muller (1979) gave a
sufficient condition for a system to be underdamped as positive
definiteness of [4M ™ KM ™" — (M ~'2CM %)), This gen-
eralization was further improved by Inman and Andry (1980)
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mixed ‘damping, and by Barkwell et al. (1992) for the cuse of overdumping. The
error in the proof of the conditions for overdamping is brought our. A sufficient
condition for overdamping is presented. Results obtained for the svmmetric systems
are then generalized to the Symmetrizable systems. Theorems on f-"&’é'm‘alue bounds
are applied to establish criticality. ’

by Bhaskar (1991, 1992) for the cases of overdumping and

with a sufficient condition of underdamping as positive defi-
niteness of [2(M KM -1y L (.\I"T:CA\I"’:)]. They
then demonstrated that Muller's condition is a special case of
their’s. when matrices (MK ~'"?) and (N TRCM 1Yy
commute but, they did not notice that. this is not the only case
when the two conditions are equivalent. In fact, whenever the
"? is greater than the
greatest eigenvalue of (M™'*CM~""?). all the three criteria
for underdamping. viz. those of Nicholson’s (1978). Muller's
(1979), and Inman’s (1980) are equivalent. To show this, the
following property of real, symmetric. and positive definite ma-
trices is required:

Ifa,=a:=...=a,arethe eigenvalues of a real, symmetric.
and positive definite matrix A and b, = by =...=b,are the
eigenvalues of another real. symmetric. and positive definite
matrix B and if @, > b,. then (A" = B") is positive definite
for any positive integer p.

This property can be readily proved using the min-max proper-
ties of Rayleigh quotients associated with the matrices A, B, A”.
and B’ and noting that the eigenvalues of A” are
af = ai=... = a]and those of B” are b} = b= ... = b7,

[t is now clear that replacing A by 2(M ™ KM ~V2) 2 gpd
B by (M™2CM ™). when ¢, > b.... (Nicholson's criterion
essentially). Inman’s criterion follows for p = | and Muller's
for p = 2. Of the three criteria. Nicholson's is undoubtedly the
most conservative. Using a result (Beliman. 1963 ) that when-
ever A — B is positive definite (A. B non-negative), (AV° —
B') is also positive definite (rote that this implication is one
way). we conclude that Inman’s criterion is sharper than Mull-
er’s.

The three criteria presented in the literature involve matri-
ces which appear in the governing equations expressed in the
so-called pseudo-modal coordinates (coordinates obtained
through the transformation v = M ™' x. ¥ being the vector
of generalized displacements in the pseudo-modal coordi-
nates). In this paper. we have chosen to express the condi-
tions of criticality in the modal coordinates { coordinates -in
which inertia and stiffness terms decouple) so that the equa-
tions for damped free motion are given by (see Meirovitch,
1975: Newland. 1989)

! 2

g+Cqg+Aq=0 (2)

where C = UTCU. U being the modal matrix (corresponding
def

to the undamped problem). Defins two A-matrices ds Q(A) =

(MM = \C + Krand Ry = U7Q 00U = (ML + AC =+
A whose 2n latent roots are given by det [Q(N)] = 0 and
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det [R(;\)] = 0, respectively. Since ’deéermin{mt of a p;oqui:t
QfmatﬁCES equals produc( ofrgspcctl\«e .e(ermmar}ts, an _SmLc
the rows and columns of the modal matrix U are linearly inde-
pendent so U cannot be singular. we have det [R(\)] = 0=
det [Q(A)] = 0. This equivalence enables us to use matrices
from the modal coordinates while arriving at conc%mons of criti-
cality. These conditions are on the lmes.of those given by.Inman
et al. (1980), but the matrices taken in the present paper are
coefficients from the equations of motion in the modal coordi-
nates (in terms of A and C), instead of the pseudo-modal
coordinates used by Inman et al. (1980). Definitions presented
there draw incorrect conclusions for the case of overdamping
and mixed damping and this will be discussed later.

2 Conditions of Criticality in Terms of Definiteness

of the Matrices

Sufficient conditions for a system to be critically damped,
underdamped, or overdamped are presented as follows:

Condition 1 (Critical damping): If C = 2A'2, the system
described by (2) must be critically damped.

Condition 2 (Underdamping): If (2A"* —~ C) is positive
definite, the system described by (2) must be underdamped.

Condition 3 (Overdamping): [f (T — 2AY2 1,) is positive
definite, the system described by (2) must be overdamped,

Here A denotes the maximum eigenvalue of A. The first
two conditions are essentially the same as those of Inman and
Andry (1980). Discussions on these two cases are presented
here again for the sake of completeness and also to present a
background in order to contrast the situation of overdamping
with that of underdamping.

2.1 Critical Damping. The condition presented above for
critical damping requires that the modal damping matrix C be
diagonal; i.e.. damping must be classical. The ith equation can
be written as

g + 21\:":'/2(]'.; + Ay, = 0. (3)

Discriminant of the characteristic equation (2:AY7)? ~ 44, is
then equal 1o zero. and so latent roots of the A-matrix Q(\) are
repeated and real.

2.2 Underdamping. Positive definiteness of (2A'2
= C). C and 2A requires, for all nonzero vectors X. that
HxTAx)? > (x7Cx)*. Using Cauchy-Schwarz inequality for
normalized vectors X, one obtains (x7AY*x)? = x7AX. To look
into the nature of latent roots of the A-matrix R(\) we post
multiply R(X) by its unit right latent vector x and premultiply
by x7 so that the latent roots are given by .

N=[-x"Cx = V(x"Cx)® - dxTxxTAx]. (4)

[t then follows that the latent roots occur in complex-conjugate
pairs. which is necessary and sufficient for underdamping to be
observed. ‘

2.3 Overdamping. An overdamped system is defined as
the one whose a/l modes are overdamped. This means that the
latent roots of the \-matrix Q(\) (or equivalently R(\)) must
all be real and negative. The criterion for overdamping given
by Inman et al. (1980). when expressed in modal coordinates.
states that the svstem must be overdamped if (C — 2A'") is
positive definire. This rasult has been accepted and/or used by
many authors (se2 Ahmadian et al., 1984; Gray, 1982; Inman
etal. 1982, 19322, 1982b, 1983, 1987, 1989: Liang etal., 1988:
Nicholson et al.. 1983. 1987, 1987a; Ross et al., 1990; Ulsoy,
1989: etc.. fer example). In the following discussions it is
shown that this is incorrect through a counter-examplz. This

388 / Vol. 84, JUNE 1897

has been noted by Bhaskar (1951, 1992) and later by Barkwell
etal. (1992).

* A counter-example:  Consider the following matrices

1 00 . 220 10 1.0
A=[02 0| x10%and C={ 10 320 10
003 1.0 10 360

Both C and (C — C.) are positive definite since
eig(C) = {21.844 31.818 36338} and
eig(C - C) = (1755 0608 4.712}

where eig(-) represents the eigenvalue of (). Thus the criterion
of Inman et al. (1980), would predict that none of the modes
oscillate. This could be checked by computing latent roots of
the associated A\-matrix R(\), which can be shown to be equal
to the eigenvalues of the constant matrix A defined as

0 I, i
_g_:[_A —C]' (5)

If positive definiteness of (C - C.) were a sufficient condition

for overdamping, all the eigenvalues of A must be negative

=

and real (a necessary and sufficient condition for overdamping).
We observe that due to the presence of a complex conjugate
pair of eigenvalues in

eig(A) = {~6.259 -25443 -8.826

~14.185 = j1.040 —21.097},

one of the modes oscillates. Note that if x"Cx = xT(2AY)x
for all x, the discriminant in the above equation need not neces-
sarily be positive, since (x"AYx)? = xTAx. However, the
difference [(xTAx) — (x7AYX) ] is expected to be small (zero
when x is an eigenvector of the matrices A or A'?y due 1o
stationarity of Rayleigh-quotients around the eigenvectors. Thus
if the eigenvector of the matrix A differs from the latent vector
of the system by a small quantity § (in the sense of an appro-
priate norm). the difference [(x7Ax) — (xTAY*x)*] would be
of the order of §°. In these cases. the approximation (xTA"*x)?
~ x"Ax would closely hold. Hence if the inequality x"Cx >
xT(2AY)x is a strong one. where x is a unit latent vector of
the system. it would outweigh in its favor as compared to the
weak inequality (x"A'"x)* = x7AX, so that the inequality
(x"Cx)? = 4x"Ax would hold. and hence overdamping would
be correctly predicted. It is. therefore, not surprising that the
sufficiency conditions for overdamping based on the positive
definiteness of (C — 2A Y7y, although not strictly correct, have
been in use for so long. The reason clearly is the fact that due
to stationarity of the Rayleigh-quotients associated with the
matrices A and A", counterexamples are hard to find. To study
the behavior of latent roots of the system. while the difference
(C - 2A"?) varies. consider the matrix C(e) = 2AY? + ¢P
where P is a constant positive definite matrix and ¢ is a positive
scalar. Consider the scalar form D(¢) = [¥7(2A" + ¢P)y)?
— 4yTyy"Ay where y(e) is a latent vector of the A-matrix
associated with the problem when C = C(e). The discriminant
D(e, y(€)) > 0 for any € > 0 if

[a] OD(e.y =yy)/ >0 and
[b] De=0y=y,)=0

[c] OD{e. y(e)]/9e >0 and
[d] Diz=0.y=v(0)) =0
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‘In'th_e first set of these conditions (ie., [a] and [(b]), the
discriminant is a function of the parameter ¢ alone while the
vector y is held constant equal to y,. These conditions, if cor-
rect, assure that the discriminant is positive for al] positive
values of € when y equals any arbitrary constant vector y, (thus
it is also positive when this arbitrary vector is a latent vector
of the system). The second set of conditions (i.e., [c]and [d]),
in contrast, treat the vector y as a variable equal to the latent
vector of the system while the parameter € changes (the latent
vector of the A-matrix describing the system is a function of
the matrix C(e), which in turn is a continuous function of €
due to Ostrowski's theorem on the continuity of eigenvalues;
Wilkinson, [965). If conditions [c] and [d] were correct, it
would then follow, that the discriminant is always positive for
all positive values of € when vector y assumes a value equal to
a latent vector of the system, as ¢ varies.

Validity of conditions [a] and [d] could be shown as follows.
The left-hand side of [a] equals 4v5A Yy oy i Py, +
2e(yiPy,)? which is positive since the first term is a product
of two quadratic forms of the positive definite matrices A and
P, and the second term is square of a positive definite quadratic
form. When y(e) is treated as a variable equal to the latent

vector of the system corresponding to the variable value of €,

the left-hand side of [d] equals zero since at ¢ = 0 and y
= ¥(0), C = 2A'* and the latent vectors coincide with the
eigenvectors of A (Caughey. 1965) (in fact. in the present
formulation using modal coordinates. the matrix A is a diagonal
matrix so that ith eigenvector is the ith basis vector e;). To
examine the validity of [b]. when the vector ¥ is kept constant.
the left-hand side of [b] could be shown to be equal to

D(e =0.¥ = y) = 4(3JAv))? - 4yTvoyTAy,

which is negative due to Cauchy-Schwarz inequality. Thus in-
equality [b] does not hold. Again it could be shown that the
left-hand side of [c¢] may nor be positive since the latent vector
¥(¢€) is no longer constant but varies with e. Note that the left-
hand side of [c] is different from that of [a]. since derivatives
of y(e) with respect to the parameter ¢ appear in the expression
of {c]. Hence inequality [c] also dues not hold.

In the reference (Inman et al.. 1980) conditions [a] (the case
whenthe vector ¥ has been held constant during differentiation)
and [d] (the case when y(¢) is a variable depending on the
value of €). have been taken as sufficient for positive definite-

ess of the discriminant. which is incorrect. The fallacy in the
proof presentad by Inman et al. (1980) lies in the fact that,
while calculating rate of change of the scalar form, vector ¥
has been kept constant whereas for calculating its value at ¢ =
0 it has been treated as a variable.

The variation of the qualitative behavior of the latent roots,
while € varies, is best illustrated through an example. The nu-
merical values of A (hence C.) and P = [Cle=1) - C.]are
taken to be the same as those in the counter-example presented
in this section earlier. New values of the matrix C(e) are now
generated by varying the scalar e¢. The difference Cle) -
2AY? = ¢P must now be positive definite for all positive values
of €, since € is a positive scalar and P is a positive definite matrix.
Therefore. it the sufficient condition of overdamping presentad in
the reference (Inman et al., 1980) were correct. the overall system
must always remain.overdamped, no matter what the value of ¢
be (so long as it is positive). This is not true for the present set
of numerical values since there exist complex branches in the

trajectory of the latent roots (Fig. 1, in which e € [0, 2]). Imagi-

nary part of the latent roots is plotted as a function of ¢ in Fig.
2. Note that there exist intervals of values of ¢ for which latant
roots possess a complex-conjugate pair. The numerical values of
A and P martrices chosen to generate these trajectories are such

that the countar-example presented in the beginning of this section
corresponds 0 € = |,
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Proof of sufficiency of condition 3: Condition 3 for over-
damping presented here requires that x(C — 2AY2L)x > 0

for all arbitrary vectors x. Separating the terms, one obtains

min (x"Cx/x"x) > (x2AM x/x"x) = 2013, (6)
X

Since both sides of the inequality are positive, the quantities on
!Joth sxges can be squared without changing direction of the
Inequality. Thus for an arbitrary unit vector x, :

min [(x"Cx)?] = [min (xTCx)J?
> 3\ = ¢ max (x"AX). (7)

This inequality implies overdamping since the discriminant in
Eq. (4) is always positive.

24 Mixed Dampi‘nu.. A system is said to possess mixed
damping if, m_1d only if, in the damped free response, at least
one mode oscillates and at least one does not. For this case the
criterion of Inman et al. (1980) demands that the matrix (2A'7
- C) must be indefinite. It should be emphasized here that
indefiniteness does not imply that the matrix could be either
positive definite or negative definite, Rather it means that it
must not be either. It follows then that at least one eigenvalue
of (2A'* — C) must be negative and ar least one must be
positive. It so turns out that indefiniteness of (24" =€) is
neither a necessary nor a sufticient condition for mixed damping
(this has been discussed by Bhaskar (1991, 1992)). Necessity
is violated by the counter-example presented in Section 2.3,
since mixed damping is observed. although (C - 2A'72) is
positive definite for the example chosen thera. The incorrectness
of sufficiency is demonstrated through the following two
counter-examples.

*  Counter-examples: Consider the following modal
damping matrix C and the critical damping matrix C,

195 1 | ,
C= 125 and
| I 30
20.0 0 0
C = 0 28.282 0
0 0 31641

Eigenvalues of (€ - C.) and those of ¢ are then given by
eighC = Cy = {337 =521 +0.16).
eigiCy = {1926 2192 30.32).

Thus matrix (C - C.) is indefinite and C is positive definite.
The condition of Inman et al. (1950 predicts that damping
must be of mived tyvpe and that at least one mode must oscillate
and at least one must not. However. we note that al/ the modes
oscillate. since eigenvalues of the A-matrix are given by
eig(A) = {-10.377 = j1.264.
=124001 = j6.359. 14472 = j8.558)

For the sake of completeness. the following example illustrates
that the condition of Inman et al. (1930) pradicts mixed damp-
ing although overdamping is actually observed. Consider

. [ro - [63246 1
A =10 > [O ZJ and C=§L | 39 1t }

Clearly. (C = C.1is indefinite since :igtC - C.) = {£ 1}.
Again conditions of sufficiency of mixed damping presented by
[nman et al. (1930} would pradict that one of the modes oscil-
[ates and one of them does not. Eigzen:aiues of the associated
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Fig. 1 Trajectory in the complex plane for the six latent roots of the system de-
scribed in the counter-example of Section 2.3. The variable € is the imglicit parame-

ter which varies along the trajectories.

matrix A indicates overdamping, since eig(A) = {-29.655,
—335.4H3, —=39.902, —47.690}.

3 Generalization to a Class of Nonconservative Sys-
tems

In the previous section. matrices M. C. and K were assumed
to be symmetric while M and C wers assumed to be positive
definite. In this section. results of the previous section are gener-
alized to a class of systems known as the symmerrizable systems.
With a suitable transformation. the equations of motion for this
class of systems can be cast in terms of symmetric matrices
and are discussed by Inman (1983). Results of Inman et al.
(1980) are generalized by Ahmadian et al. (1984) and are again
incorrect for the cases of overdamping and mixed damping. In
the present study. these results are modified appropriately.

Assuming that the mass matrix is nonsingular, equations of
motion can be expressed as
L+ Ct+Rx=0 (8)
where C = M™'C and K = M ™K. No matrix is assumed to
be symmetric at this stage which is why premultiplication by
the inverse of mass matrix has bezn carried out, since preserving
the symmetry is not the idea any more. It is now assumed that
the matrices C and K are symmetrizable so that factorizations
C=S,S;and K = T,T: are permissible (Inman, 1983), where
matrices S; and T, are real. symmetric. and positive definite,
while S, and T, need only be svmmetric. The condition for
symmetrizability demands that at least one factor in the above
factorization be common and so it is assumed that S =T,.
Transforming the coordinates according to x(r) = S {7y (+) and

R T
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Fig. 2 Imaginary part of the latent roots as a function of . Nota the existence cf
intervals of € in which the imaginary part is nonzero indicating the presence of

underdamped modes.
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premultiplying by S™'?, we recast the governing equations of
motion (8) in terms of symmetric coefficient matrices as

Ly + SI*S:S1%y + SI"T:S1%y = 0. (9)

Extension of the results obtained in the previous section is now
straightforward.

Condition 4 (Critical damping): If 2(S\*T,S}/*)'? =
S|"S:81"%, then the system must be critically damped.

Condition 5 (Underdamping): If 2(S}*T,SV*)12 -
(S17S:S1"?) is positive definite then the svstem must be under-
damped.

Condition 6  (Overdamping): If (S1?S,S)?) —
2(S1°T.S{?) 2 1, is positive definite then the system must be
overdamped.

Here (S1”T.S|"? ) represents the largest eigenvalue of the
matrix (S{*T,S1"?). The first two of these conditions are identi-
cal to those presented by Ahmadian et al. (1984). The third
condition presented there for overdamping states that, if
S128:S1"” = 2(SI*T,S!"*) " is positive definite, then the sys-
tem must be overdamped. which is incorrect. The fourth condi-
tion presented there for mixed damping based on indefiniteness
of 2(SI7T.SI"*)¥? — (S128.S1"%) is also incorrect.

3.1 Conditions in Terms of Matrices in the Physical Co-
ordinates. In this section, conditions in terms of matrices in
the physical coordinates are derived. Unlike symmetric matri-
ces, the quadratic form is not defined for a general case of real
square arrays. Hence instead of definiteness of the matrices,
conditions in terms of eigenvalues of the matrices are now
presented. Substitution from the factorizations for C and K. S
= S7'Cand T, = S7'K. into the expression (S}3S.S1?) —
2(Si7T.S1*)Y? results in S7V3(C — 2K "*)S}?, which is a
similarity transform on (C — 2K'?). Since similarity trans-
forms preserve eigenvalues, definiteness properties can be ex-
pressed in terms of eigenvalues of matrices involving M, C,
and K. Conditions 4 to 6 can now be expressad as follows:

(1) IF2(M™'K)"? = M™'C. the system must be critically
damped.

(2) IF[2(M™'K)"* = M™'C] has its eigenvalues all posi-
tive then the system must be underdamped.

(3) IfF[M™'C - 2(M™'K)Fi 1,7 has its eigenvalues all
positive then the system must be overdamped.

Here (M ™'K)p.. represents the maximum eigenvalue of
(M'K). Once again. the first two conditions presented here
are identical to those by Ahmadian et al. (1984). The condition
for overdamping presented there is based on definiteness of
[M™'C — 2(M™'K)'"IL,] which is incorrect and is conse-
quently modified here. Again. counter-examples can be con-
structed for the cases of overdamping and mixed damping
(Bhaskar 1992).

4 The Damping-Ratio Matrix

Analogy with a single-degree-of-freedom system suggests
that the scalar quantity damping ratio could possibly be replaced
by a matrix for a multi-degree-of-fresdom system. An attempt
of this can be found in Inman et al. (1937. 1989). A single
matrix takes the role of damping ratios there and definiteness
of the difference between this matrix and the identity matrix
determines criticality for the system. However, we observe that
the development of this matrix assumes the results of Inman et
2l (1980), and consequently derives erroneous conclusions. In
he following discussion. new results arz presented in this light.

The damping ratio matrix Z is defined as

Z = CI¥CCo et (10)

Journal of Applied Mechanics

which is exactly the same as the definition presented by Inman
(1989). The sufficient conditions of criticality, presented there,
are in terms of definiteness of (I, — Z). As expected. the
conditions for overdamping and mixed damping are incorrect
there. The sufficient conditions for criticality presented in the
Section 2 and Section 3 can now be expressed in terms of the
damping ratio matrix Z as follows:

(1) If (I, = Z) = 0 then the system must be critically
damped.
(2) If the matrix (I, - Z) is positive definite then the

System must be underdamped.
(3) If{z - diag (Anu/ AN} s positive defintte then the
System must be overdamped. -

5 Application of the Theorems on Eigenvalue
Bounds

‘Some useful information can be derived by mere inspection
of the terms on the diagonal of the matrix (2A ' — Cyand (C
= 2\JS L), It ms out that if entries on the diagonal of (2A'?
— C) are all positive and if, it is diagonally dominant, then the
system must be underdamped. Similarly, if the entries on the
diagonal of (C = 2.\;{X 1) are all positive and if. it is diagonally
dominant. then the system must be overdamped. These results
follow immediately by applying the well-known Gerschgorin's
theorems (1931). In this section. A denotes the matrix (2A12
— C) which is a real and symmetric matrix. -

Given that the entries on the diagonal of the matrix A are all
positive. it can be concluded that if the centers of the Gersch-
gorin discs fall on the positive real axis. and if A is diagonally
dominant. then none of the disks fall in the left half of the
complex plane. Therefore. all the eigenvalues of A nust be in
the right half of the complex plans. Hence the matrix A must
be positive definite. which is sufficient for underdamping of the
system. On similar lines it could be shown that if another matrix
say B = (C — 2\ L) is diagonally dominant and if, all the
entries on its diagonal are positivs. then the system must be
overdamped. It is noted that all of these conditions are only
sufticient but not necessary.

Conditions of the previous theofem may become stringent at
times and a further refinement is possible using the following
theorem due to Brausr (1946, 1927,

Theorem 1 (Brauer). Everveigernvalue of a marrix A lies
inthe interior or on the boundary o7 az least one of the following
win = 1) Cassini ovals on the complex z-plane

) .

lo-—aAl - =2 1472 14l

I3

i=j. (1)

The proot can be found in Brauer ( 1946, 1947). The above
condition may appear to be complicated. but a simple extension
of the conclusions reached earlier on the basis of Gerschgoria's
theorem can be obtained. For a real matrix (which is the case).
the ovals must be symmetriec about the real axis and about the
line x = (4, + A4 )/2. The ovals for this situation intersect the
real axis and satisfy (x — A,)(x — 4 1+ = 5,5, at the points of

intersection on the v-axis. where = = X [A,[. Solving the

quadratic. the following roots are obtained:

Ma= (A= AN = (12004 =40 = 40,0 (12)

Note that the discriminant is alway s posidve. which is expected
since the roots must remain real. [7 order that the ovals remain
in the right half of the complex piare. e and X must‘be
positive. e (4, = 4 17 = (4 - 4 - — 470 . Rearranging

this ineguality leads ©

i (13}

Az A Joy = 0
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This result was obtained for general Hermitian matrices in
Brauer (1947). It also follows from a more general theorem
for complex matrices given in Brauer ( 1946). Here a simplified
result is presented for the case of general real matrices (which
may not necessarily be symmetric and hence not Hermitian).
[t should be noted that for asymmetric real matrices, Cassini
ovals are symmetric about the real axis. The asymmetric formu-
lation of Section 3 then allows yg to apply these results to
symmetrizable systems also.

Clearly, the condition in the inequality (13) is more relaxed
than the one obtained through Gerschgorin's theorem, since
whenever the latter is satisfied (i.e.. diagonal dominance is ob-
served). (13) is automatically satisﬁcd.vlnequality (13) allows
the violation of dominance by at the most one row (or column).
All that one needs to check s whether product of the smallest
and the next smallest of the numbers (A,/c,) excesds unity.
When A is replaced by (247 — C) in the previous discussion
of this section, inequalizy (13) provides a sufficient condition
for underdamping. Similarly, when (€ — 2AY2 1,) replaces A,
a sufficient condition for overdamping is obtained.

6 Coupling of Single-Degree-of-Freedom Oscillators

Consider a collection of single-degree-of-freedom oscillators,
each of which is critically dumped. These oscillators are then
coupled through dashpots such that the mass elements only are
connected through these new dashpots while the spring and the
dashpots of the originally uncoupled oscillators remain
grounded. If the statements of Ahmadian (1984), Inman et al.
(1980, 1989) regarding overdamping were correct, it would
imply that, coupling these individual oscillators via additional
dashpot elements would always result in an overdamped system
for any positive damping. This follows from the fact that in the
equations of motion for the coupled system, the mass and stiff-
ness matrices are diagonal and the damping matrix is such that
(C = 2A'?) has terms on its diagonal greater than the sum of
the absolute values of the terms off the diagonal. Applying

erschgorin’s theorem it is observed that none of the eigenval-
uss of (C — 2AY?) fall in the left half of the complex plane.
This. as seen earlier. does not guarantee overdamping. Thus
a collection of overdamped oscillators may, in fact, exhibit
underdamped modes when coupled through additional dashpor
elements! However. the condition of overdamping presented in
this paper. offers a class of overdamped oscillators. which when
coupled through further dashpot elements remain overdamped.
This is expressed through the following femma.

Lemma 1l [feach of the oscilictors in « collection of single-
degree-of-freedom oscillators wii mass. dushpor constant, and
stifiness for the ith oscillator as ¢ and &, is overdamped in
such a way. that (¢;/m, ) = max. 2(ksm, )" for all i, then
coupling the oscillators with further dashpots of any arbitrary
values abvays produces a coupled system whiclt is overdamped.

The prove this. consider a colizction of single-degree-of-
freedom oscillators with mass. stitfness and dashpot constants
as m,. k; and ¢; associated to the ith oscillator. Since each of
hese is overdamped in the manner described above. we have

(ci/lm,y — 2 max (A/m.: =0 forall i, (14)

r

The dashpot connecting ith osciliator to the Jth one is denoted

by the dashpot constant equal to «.. Premultiplying by inverse .

of the mass matrix. elements of the marrix (C - 2K¥21) on

its diagonal arz obtained as

"

i = 2KiL=o + X = max 2k )l

(15)

A

p=1

and those off the diagonal on the ‘th row and jth column as

Co = —c.im  wren | =/ (16)

"
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Note that Eq. (16) is not symmetric in { and j so that (C —
2K M2 1) is not symmetric. The conditions of symmetrizability
of Section 3 are satisfied by the present class of systems since
each of the matrices € and K have a common symmetric factor,
viz. inverse of the mass matrix (which is diagonal). Since M
and K are diagonal matrices, (MT'K), = max,(k./m,) is the
maximum eigenvalue of (M™'K). Using conditions of Eq.
(14); Egs. (15) and (16) imply that (C - 2K 12 I,) is diago-
nally dominant. Using Gerschgorin's theorem and the condi-
tions of overdamping stated in Section 3.1, it is concluded that
the system must be overdamped. Two further special cases arise:
If a collection of overdamped oscillators is such that the ratio
of stiffness 10 inertia or the ratio of dashpor constant to inertia
is the same for each one of them, then coupling these oscillators
with dashpots of any arbitrary value abways results in an over-
damped system.

Application of Brauer’s theorem, using Cassini-ovals as the
basis for choosing regions of eigenvalue bounds, results in a
more liberal condition. It could be shown after some algebra
that the coupled system is overdamped if

(L +6&/e)(1 + &§la)) = 1. forall ij (17)

- ”’ .
where, §; = [e;/m, — max, 2(k/m,)"?], and o, = ‘Zl c;- Itis
P

easy to see that. inequality (17) always holds if the condition
of Lemma 1 holds since &; is always positive for all { when the
latter is satisfied.

Consider coupling the underdamped oscillators next. On the
lines of Egs. (15) and (16). elements of 2K "2 — T2 are given
by

Ci = 2(k/m)"* = [¢; + > ociml (18)

=t

2817 —

and

28 - (19)

It could be seen in this instance that. if 2(& /m,)"? — (cilm;)
> 2(Z <1 ¢z)/m; then, the matrix (2K = C'72) s diagonally
dominant and has positive numbers on its diagonal. Hence
(2K'* = C'*) is positive definite. This leads to the following
result.

C—‘,/; =cylm;, =],

Lemma2 [fa collecrion of underdamped single-degree-of-
Sreedom oscillators having mass, stiffness, and dashpot constant
associated wiin the ith oscillator equal to m,, k; and c; respec-
tively, is connected through additional dashpors of constant cy
that connect the ith oscillator ro the Jth one and which satisfy
20k/m ) (ei/my) > 2( S cilmy then connecting the oscilla-

=1
tors through such additional dampers always produces an un-
derdamped system.
Cassini-ovals can still relax the condition but they yield to
a cumbersome result and thus it is omitted from the prasant

discussion.

7 Conclusions

A set of sufficient conditions was presented for criticality in
terms of matrices involved in the governing equations of mo-
tion, when they are expressad in the modal coordinates. This
was later extended to the case of general asymmetric (but sym-
metrizable) systems. Similar conditions available in the litera-
ture for the cases of overdamping and mixed damping were
found to be incorrect. This was shown through some counter-
examples. The theorems on eigenvalue bounds were applied to
infer criticality of a multi-degree-of-freedom system. This may
lead to compurational saving in practical applications. Two
cases when underdamped oscillators remain underdamped.
when coupled through additional dampers. and when over-

o)

damped osciliators ramain overdamped. when coupled through
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Similar elements were discussed in the perspective of the suff.
cient conditions presented here. It is emphasized that all these
conditions are only sufficient but not necessary. However, when
the equations of motion decouple (i.e., when damping is classi-
cal), they become both necessary and sufficient.
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