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Abstract

This paper provides an exposition of the problem of a prismatic elastic rod or beam subject to static end
loading only, using a state space formulation of the linear theory of elasticity. The approach, which
employs the machinery of cigenanalysis, provides a logical and complete resolution of the transmission
(Saint-Venant’s) problem for arbitrary cross-section, subject to determination of the Saint-Venant torsion
and flexure functions which are cross-section specific. For the decay problem (Saint-Venant’s principle), the
approach is applied to the plane stress elastic strip, but in the transverse rather than the axial direction,
leading to the well-known Papkovitch-Fadle eigenequations, which determine the decay rates of self-
equilibrated loading; however, extension to other cross-sections appears unlikely. It is shown that only a
repeating zero eigenvalue can lead to a non-trivial Jordan block; thus degenerate decay modes cannot exist
for a prismatic structure.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Linear elasticity; Hamiltonian; Saint-Venant; State space; Degenerate modes

1. Introduction

The present study was motivated by a series of papers in the Chinese literature [1-4] con-
cerned with the methods of Hamiltonian mechanics applied to problems of the linear
mathematical theory of elasticity, rather than the more usual stress function (for example, Airy
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Nomenclature

a, b, ¢ rigid-body displacements, element in matrix Eq. (9)
c semi-depth of elastic strip

A, B, D partitions of matrix H

matrix of participation coefficients, C

vector of displacement components

e, E dilatation, base of Napierian logarithm, Young’s modulus
shear modulus

system matrix

identity matrix

Jordan block, metric matrix

eigenvalue

length, left

moment, element of, matrix exponential

direction cosine

vector of stress components

shearing force

right, element of, resolvent matrix

Laplace variable, surface, state (eigen)vector
traction

displacements in the x-, y- and z-direction, respectively
strain energy

transformation matrix of eigen- and principal vectors
Cartesian coordinate system

angle of rotation

constant

direct stress

shear stress

Lame’ constant

Poisson’s ratio

Saint-Venant flexure function

Saint-Venant warping function
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and Papkovitch-Neuber) or semi-inverse methods described in most, if not all, of the well-known
texts on elasticity, see, for example, [5]. The Hamiltonian approach is standard within the study of
both rigid body and quantum mechanics, and results in a first-order matrix differential equation.
This, in itself, is not the distinctive feature, as one can always trade the order of a single
differential equation with the size of the system matrix; rather, it treats position and momentum
as independent variables on an equal footing, and these extra degrees of freedom aid the search
for canonical transformations (which preserve Hamiltonian structure) for which the
set of differential equations are either fully or partially solved. For application to the elasticity
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of a beam-like structure, a state space vector consisting of cross-sectional displacement and
stress components naturally takes the place of position and momentum, and the governing
equations then describe how these evolve spatially (rather than temporally) as one moves along
the beam.

In general, an elasticity solution must satisfy the Hooke’s law, the boundary conditions and the
force equilibrium equations; if the latter are expressed in terms of stress then one must also
employ strain compatibility in one form or another. However, if the equilibrium equations are
expressed in terms of displacement (the Navier equations), then strain compatibility equations are
not required; one immediate advantage of the state space approach is that it treats displacement
and stress components on equal terms, so compatibility requirements are satisfied naturally.

A second advantage is that it unifies the two (usually) separate problems which bear the name
of Saint-Venant-the transmission of load applied to the ends only, according to a prescribed
distribution (Saint-Venant’s problem), and the decay of self-equilibrated end loading (Saint-
Venant’s principle)-through the machinery of an eigenvalue problem. Indeed, Yao and Xu [6]
have recently employed the state-space Hamiltonian approach, using a polar coordinate system,
in a re-examination of the so-called wedge paradox, and show that previous difficulties can be
attributed to incompleteness of the eigenspace associated with multiple eigenvalues—one needs
both eigenvectors and coupled principal vectors to span the solution space for the critical wedge
angle of approximately 257°; the coincidence of eigenvalues for the (usually) separate problems of
decay of self-equilibrated loading and transmission of bending moment has been noted previously
by Stephen and Wang [7]; the state space formulation provides the ideal setting in which to resolve
this degeneracy.

Xu et al. [8] considered a prismatic elastic beam and showed how the governing equations can
be derived from a Lagrangian function and use of the calculus of variations. But since the
governing equations are already well known, their re-derivation ultimately serves a pedagogic
purpose only; all that is really necessary is the casting of known equations into the requisite state
variable form. They considered the transmission modes in detail, but appeared to regard the decay
modes as an auxiliary problem, referring to the Papkovitch-Neuber solution provided by Stephen
and Wang [9].

While several recent applications by Zhong and his co-workers have drawn attention to the
advantage of these modern (control) system state variable methods, it appears that Bahar [10] was
the first to note that classical elasticity is well suited to the state space approach, and applied it to
the problem of the plane stress elastic strip; he also noted the relationship to the method of initial
Junction, or parameter, as developed earlier by Vlasov [11]. Sosa and Bahar [12] represented the
fourth-order biharmonic (Airy) stress function approach as a first-order 4 x 4 matrix mixed state
variable problem, and indicated advantages in the treatment of the Flamant problem. Earlier,
Johnson and Little [13] had also considered the strip problem, but introduced an auxiliary
function in addition to the three stress components, rather than the mixture of cross-sectional
stress and displacement components employed by later authors.

More recently, Ustinov and co-workers have applied broadly equivalent spectral operator
theory to the prism [14] and the so-called pseudocylinder, which encompasses pre-twisted
structures such as a turbine blade, drill bit and a helical spring [15,16], as well as a prismatic
structure for which the material displays helical anisotropy [17]. Their very concise treatment is
more accessible to researchers with a mathematical background; here the author seeks to describe
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the approach as simply as possible, so that thes¢ powerful methods can be accessible to the widest
possible readership.

In the present paper, the well-known governing equations of linear elasticity are first cast into a
form suitable for the state space approach, applied to the general problem of a rod or beam of
general cross-section. Before tackling the resulting eigenproblem, restrictions on purely imaginary
eigenvalues are noted, and a proof is provided that degenerate decay modes do not exist for the
prismatic structure—the only repeating eigenvalue that can give rise to a non-trivial Jordan block
is the zero eigenvalue. The relationship between the reciprocal theorem and symplectic
orthogonality is also noted. The twelve transmission eigen- and principal vectors associated with
the multiple zero eigenvalue are determined, and we show how a division of the eigenspace allows
one to transform the 6 x 6 system matrix into Jordan canonical form. It is seen that the state space
approach can completely resolve the transmission problem for the rod, subject to determination
of the Saint-Venant torsion and flexure functions which are cross-section specific. The decay
problem is then considered for the specific two-dimensional problem of the plane stress elastic
strip; the state space approach provides a very simple means of determining the well-known
Papkovitch—Fadle eigenequations, which govern the rate of decay of self-equilibrated loading.
Complete solution of the decay problem for the strip requires state space analysis in the axial and
also, remarkably, in the transverse direction, suggesting that extension of the approach to other
cross-sections is unlikely.

Finally, note that a broadly equivalent state space eigenanalysis of a repetitive discrete (pin-
jointed) structure was presented in [18]; there, a transfer matrix G derived from the stiffness
matrix K of a single cell, took the place of the present system matrix H. Unity eigenvalues pertain
to the transmission modes, allowing one to determine equivalent continuum beam properties from
their associated eigen- and principal vectors; non-unity eigenvalues occur as reciprocals and
pertain to the decay of self-equilibrated loading, as anticipated by Saint-Venant’s principle.

2. State space formulation

The governing equations of the linear theory of elasticity consist of the three stress equilibrium
equations:

0oy 01y, Oty

x Ty Ta Y

aar: ag;Z a;;:(), (la,b,c)
the Hooke’s laws

ax:/le+2Gg—i, ay=/16+2G2—;j, Gzzﬂue—I-ZG%,

Ty = /g_i_'_g_v\, T = G/Z_z+%\, T, = G/%:——l—%\, (2a,b,c,d,e,f)



N.G. Stephen | International Journal of Mechanical Sciences 46 (2004) 1327-1347 1331

where 4 and G are the Lame’ constants, and the dilatation is e = Ou/0x + dv/dy + 0w/dz. The
boundary conditions are the surface tractions

Ix = Oxly + Tuyhy + Tzllz, 1y = Tayplly + Oyl + Tyol, 1 = Tyl + Tyny + 1,0, (3a,b,c)

where n, = cos(n, x), n, = cos(n, y), n. = cos(n, z) are the direction cosines, and 7 is the outward
normal to the surface. The z-coordinate is taken as directed along the axis of the rod, while its
cross-section is defined by an equation of the form f(x, y) =

The cross-sectional state vector s =[d! pT ' consists of displacement components d =
) [ vw]" and stress components p = [t,,7,. 0 2]*. In order to cast these equations into the requisite
state variable form, first rearrange the Hooke’s law, Egs. (2e, f), as

Ou 1, Ow v Ty 0w,

2z~ G ox'oz G oy’

(4a,b)

these are the Ist and 2nd rows of matrix Eq. (9). The Hooke’s law, Eq. (2¢), can be rearranged as

ow 1 A Ou A Ov

oz A+267 T 732Gox  i+2Goy )
and this is the 3rd row.
The equilibrium Eqs. (1a, b) are rearranged as
0Ty _ Ooy B 0Ty
%z  ox oy’
On: _ _ Oty Qo
oz  dx oy’
0o, 01y, Oty
oz~ ox oy’ (6a,b,c)

the third of these is in the required form, involving only the state variables and a derivative with
respect to z, and can be written immediately as the 6th row of matrix Eq. (9). On the other hand,
the first two involve stress components that are not state variables, and these must be re-expressed
as follows. Rearrange (6a) as

0T, 0 /au v\ 6 [ ov 0w\
% =% 5t ““G) ”‘a‘ e

)
now substitute for 8w/dz from Eq. (5), to give the 4th row of Eq. (9). Last, rearrange Eq. (6b) as

%__Gafﬁu w\ 3/ ©u
0z ox ay ox oy

aw\

+ A+ 2G) —é——Z— (8)

and again substitute for dw/0z from Eq. (5), to give the 5th row of Eq. (9).
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Thus, manipulation of the known governing equations leads to the formulation

FTu]l T 0 0 —0/ox  G™! 0 0 1T ]
v 0 0 -08/dy 0 G! 0 v
A w | _[—aA+260)70/x -0 +26)7"8/Ry 0 0 0 A +26)7" w
0z |10 | a b 0 0 0  —MA+20)7"0/0x | |t |
Tyz b c 0 0 0  —iA+26) "y | |1y
o, 0 0 0 —3/0x —0/dy 0 o
)
where
_ 0 46U+ G) @ E @
= 0y? A42G 0x2 T T 0y2 1 —v2ox2
po G0I+26) @ B @
B A+2G dx0y  2(1 —v) 0xdy
and
o8 M6+ eR ¥ E @
X 242G 92T a2 1y

Other elements may be simplified by noting that

Aoy and 1 (I+v)(1—2v)
A+2G 1—v A+2G  E(l—-v)

where E and v are the Young’s modulus and Poisson’s ratio, respectively.
Symbolically, this may be written as

Os
- — H
5, = Hs, (10)
where the system matrix H is defined accordingly. Partition matrix H into 3 x 3 blocks as
[A B ]
H= , 11

where A" denotes the adjoint of A which for a matrix differential operator is its transposition with
the sign changed for all odd order differentials; for a constant matrix, the adjoint is the same as
the transpose. Writing s(x, y, z) = 8(x, y)e** leads to the eigenvalue problem

Hs=ks, or [H-KIS=0, (12a, b)
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where I is the 6 x 6 identity matrix. The formal solution is then
s(x, y, z) = e'*s(0), (13)

where s(0) is the state vector on the end z=0, and describes the cross-sectional (x,y) field of both
displacement and stress components on that end, while et is the matrix exponential, which
describes how that field evolves as one moves along the rod. Now for a 6 x 6 matrix having
constant elements, there are obviously just 6 possible eigenvalues; however, the operator matrix
H, can represent a multitude of 6 x 6 matrices, depending on the x- and y-dependence of the state
vectors, each having 6 possible eigenvalues. Thus, one might expect an infinite number of
eigenvalues of such a matrix. Employing a computer algebra program, such as MAPLE, one may
easily determine that

3
(N
det[H — k1] = et th =0 (14)

from which one may conclude that for state vectors in which the x- and y-dependence is harmonic,
the eigenvalue k£ =0 has a multiplicity of at least 6; in fact, it will be seen that the zero eigenvalue
has multiplicity 12, with the others associated with vectors containing harmonic terms, including
the Saint-Venant warping (1) and flexure (¢) functions, and terms such as (x? — %), for which the
operator d?/0x? + 8% /0y? yields a zero.

3. Hamiltonian nature of the system matrix

The (2n x 2n) system matrix H satisfies the relationship
H' =J,HJ,, (15)
where J,, is the metric matrix
[0 I

J
"1 0
with ng =J-1=_J,, and I is now the (n x n) identity matrix. Post-multiply Eq. (15) by J-! =
—J,, to give J,, H= —H"J,,, and further post-multiply by s, noting Eq. (12a), to give
H'(J,8) = —k(J,5). (16)

Since a matrix has the same eigenvalues as its transpose, one concludes that eigenvalues occur
as equal and opposite pairs. One might have anticipated this result: the trace of a matrix is an
invariant under a similarity transformation, and the trace of the system matrix H, from Eq. (9), is
clearly zero.

4. Restrictions on imaginary eigenvalues

Synge [19] considered Saint-Venant’s problem for a prismatic homogenous elastic cylinder, and
for the decay modes considered stress varying as o(x,y)e’”. According to Synge, A purely



1334 N.G. Stephen | International Journal of Mechanical Sciences 46 (2004) 1327-1347

imaginary k implies a periodic distribution of displacement and stress. Consider the energy in a length
of cylinder equal to this period. It is equal to the work done by the terminal stress in passing from the
natural state to the strained state. But from the periodicity, this is zero. Hence, the energy of a
strained state is zero, which is contrary to a basic postulate of elasticity. Hence there can be no purely
imaginary eigenvalue k. It should be added that we could not assert this if (Poisson’s ratio) v is
arbitrary. It is necessarily only true if strain energy is positive definite, i.e. if —1<v<1/2, indicating
that this simple and ingenious argument was originally put forward by Dougall [20]. One should
add to the above the remark that imaginary eigenvalues can occur for beam-like structures having
a pre-twisted form Ref. [15], as in a turbine blade.

5. Eigenvectors associated with £ =0 do no work

The strain energy is equal to the work done by loading over the surface S, and may be written as

|
U= [ [(uox + vTxy + W)y + (Utyy + voy, + wry)ny, + (uty, + vty + wo)n;]dsS. 17)

2
For the cylinder with traction-free surface generators this reduces to
L/
U= 2 " (Uty; + 0Ty, + wo)n,dS. (18)

Now calculate the strain energy within a slice of rod of length dz: denote the state (eigen)vector
on the left-hand side as s; = se**, then on the right-hand side one has

Sgp = S1 + aFSZL—dZ =sr(1 + kdz). (19)

Moreover, one has

l'dL-l l_dR] _ [-(l—l-de)dL-l

Sy = and sy = (20a, b)
Pr Pr (1+kdz)p,
and the strain energy becomes
| v
v=3"" @hee~alpaxay e

since 7, is equal to + 1 on the right-hand face, but —1 on the left. Substitute from Eq. (20b) to give

1
U=3 [ [(1 +kdz)*d]p, —dlp;]dxdy = k [ d7p; dxdy, (22)
when terms involving (dz)* are neglected; thus the strain energy per unit length is & (] d{p r dxdy.
This is zero when k is equal to zero, which is in agreement with experience: the eigenvectors
associated with the zero eigenvalue are the rigid-body displacements and rotation, for which the
strain energy is zero.



N.G. Stephen | International Journal of Mechanical Sciences 46 (2004) 1327-1347 1335
6. Work associated with a principal vector

Now consider a principal vector (or generalized eigenvector) coupled to the eigenvector in a
Jordan chain according to

HS = k& + 5, (23)

where the superscript p denotes the principal vector. The state vector on the left-hand side of the
slice is s; = (¥ + z8)e*?, and on the right-hand side one has

- Sp=s8.+ %SZE dz =s; + (k& + (1 + kz)§)e** dz, (24)

or more fully

[d] + zd ] [d] 4 zd; + (kd] + (1 + kz)dp)dz]
Sy = and SR = . (25)
P +2p; Py +zp + (kpf + (1 + k2)p) dz
Next, calculate the strain energy according to Eq. (21) to give
|
U= Edz [ [2kd"£Tp’£ +(1+ 2kz)(d12TpL +d7p)) +2z(1 + kz)d)p,1dxdy; (26)

again this in accord with experience: only the repeating zero eigenvalue is known to give rise to a
non-trivial Jordan block, when the above reduces to

1
U= dz ! [@Tp, + dTp5) + 2240, 1dxdy. )

As an example, consider the coupling of the principal vector for tension with the eigenvector for
rigid-body displacement in the axial direction, which has p; = 0, and the above further reduces to

U= % dz | djp) dxdy (28)

so the strain energy is one-half of the product of the extension and the tensile force.

Now, it is well known that if one adds an arbitrary multiple (say, f) of the generating
eigenvector to a principal vector, then it is still a principal vector; on the other hand, one cannot in
general add an arbitrary multiple of a principal vector of one grade to a principal vector of
another grade. Thus suppose the left-hand state vector is now written as s; = ((5” + f§) + z§)e*?;
the left- and right-hand side state vectors are, more fully

[d] +(B+2)d. ] [d} + (B +2)dL + (kd] + (1 + k(B + 2))d;)dz]
S = and sy =
P, +(B+2p, P+ (B+2)py + (kd] + (1 + k(B + 2))p,) dz

and the strain energy is

(29)

U= %dz [\ [2kdT D], + (1 + 2(8 + )&} py + dLp5) + 28 + 2)(1 + (B + 2)k)dLp,]dx dy.
(30)

This degenerates to expression (26) when f is equal to zero, as it must.
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If one now demands that the strain energy stored should be independent of the arbitrary f3, then
one requires, comparing with expression (26)

[ k@, + 700 + (kB + B+ 2k=)dTp, ] dxdy = 0 31)

or more compactly
AB* + BB =0, (32)

where
A= k/‘ d{pdedy,
and
Bkl (@ p, +dlp?)dxdy + (1 + 2kz) [ dlp, dxdy.

Since B is quite arbitrary, one must have 4 = B = 0; for A=0, one must have either k=0, or
fldfp,dxdy =0, or perhaps both. If one chooses k=0, then [[dip,dxdy =0, and the
requirement that B=0, leads to [/(&, p, 4+ d}p?)dxdy = 0. Thus one may conclude that either

(@) k=0or / d7p,dxdy = 0 or perhaps both . (33)
or
(b) k#0 and both [ dlp;dxdy =0, [ (& p, +dIp2)dxdy = 0. (34)

Case (b) is inconceivable as the first integral implies that the work done (and strain energy
stored) within an entire semi-infinite rod for a decaying state of stress, is zero, which is again
contrary to a basic postulate of elasticity; on the other hand, case (a) accords with experience—
addition of an arbitrary rigid body displacement, for which k=0, has no effect on energy stored.
Thus, one may conclude that the only possible repeating root giving rise to a secular term (within
a Jordan block) is k=0, at least for a prismatic structure. Note that Getman and Ustinov [21,22]
have considered the issue of repeating eigenvalues (termed resonances, or critical frequencies) in
the context of energy flux during wave propagation.

7. Reciprocal theorem and symplectic orthogonality

Zhong and Williams [23] have considered in detail the symplectic orthogonality of the
eigenvectors, and show that it is a direct consequence of the reciprocal theorem of Betti-Maxwell:
for two different load systems, denoted by subscripts 1 and 2, the work done by the stress
components p; acting through displacements d, is equal to the work done by the stress
components p, acting through displacements d;. Again employ subscripts L and R to denote the
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left- and right-hand sides of a slice of length dz, then from Eq. (21)

1 |
7 4 (droPri — d1,ppy) dxdy = 3 [ (dgiPro — A} pyo) dxdy. (35)
Assume the two load systems are different eigenvectors and writing s;; = §; €517 and sy, =
§, ek* | gives
[dr1] [dri]  [(1+kidz)dp ]
Sr1 = > SR1 = =
Pri Pri (1+kid2)py,
and
d d 1 +krdz)d
SL2=[ Lz],stzf r] _ [( 2 )Lz]' (36)
P12 Pro (1 + kad2)p,y
Substitute into Eq. (35), and ignore terms involving (dz)?, leads to the expression
(ki + k) dz " @py, — T py) dxdy = 0. (37)
Thus, for k1% — k5, one has
L (@hps — T pr)dvdy = 0 (39)
and omitting the subscript L, the above may be expressed as
[ s3ds1dxdy =0, 7 (39)

which is the statement of symplectic orthogonality. In principle, this allows the expansion of an
arbitrary end load, s(0), into its constituent transmission and decay modes; in practice, however,
the decay modes would more often than not be neglected by invoking Saint-Venant’s principle,
and the magnitude of, say, tension or bending moment would be known in advance.

8. Eigen- and principal vectors associated with k=0

A zero eigenvalue implies that the eigenvector satisfies the equation
HS = 0; (40)

there are four eigenvectors, and these are identified with the superscript (0):
(1) rigid-body displacement in the x-direction:

%= 0 0 0 0 0, (41)

where a is a constant,
(1) rigid-body displacement in the y-direction:

$P=10 » 0 0 0 0], (42)

where b is a constant,
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(ii1) rigid body displacement in the z-direction:
$9=10 0 ¢ 0 0 0], (43)

where ¢ is a constant,
(iv) rigid-body rotation about the z-axis:

59 =[—yx xx 0 0 0 07, (44)

where the constant « is the (small) angle of rotation.
Coupled to these eigenvectors are four principal vectors of the first grade, according to
equations of the form

Hs =50 j=1,2,3,4 (45)

and these are identified with the superscript (1),
(v) rigid-body rotation about the y-axis:

$V=10 0—ax 0 0 OFT, (46)
(vi) rigid-body rotation about the x-axis:

V=10 0—by 0 0 O], (47)
(vii) tensile force in the z-direction:

sV =[—cvx —cvy 0 0 0 cET, (48)
(viii) torsional moment about the z-axis:

§0=10 0 a) Ga@y/ox—y) Ga@y/dy+x) 0]%, (49)

where ¢ is the Saint-Venant warping function which must satisfy V2 = 0.
The rigid-body rotations (v) and (vi) are coupled to two principal vectors of the second grade,
superscript (2), according to

Hs® =50, i=1,2. (50)

These are:
(ix) bending moment about the y-axis:

5(12)=[av(x2—y2)/2 avxy 0 0 0 —aEx]T, (51)

(x) bending moment about the x-axis:

8P =[bwxy —bv(x2—3»/2 0 0 0 —bEx]". (52)
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Last, these bending moments are coupled to two principal vectors of the third grade,
superscript (3), according to

HsY =57, i=1,2, (53)

These are:
(xi) shearing force in the xz-plane:

V=10 0 a(p—v?/2+Q+Wx3/6) aG@¢/ox—vi* +(1+0xd) aGod/dy 017,
(54)

(xi1) shearing force in the yz-plane:
=10 0 b(¢p—vx%/2+2+))3/6) bGOp/ox G /y — v+ (142 0],
(55)

where ¢ is the Saint-Venant flexure function which, again, must satisfy V>¢ = 0.
We now see that there are 12 eigen- and principal vectors pertaining to the zero eigenvalue, and
one may construct the rectangular (6 x 12) matrix of eigen- and principal vectors V, where

V=[5 s P 5P 5 5P 2 0 0 5P 50 5 (56)
such that
HV = V], , (57)

where J 1s the Jordan canonical form

[Ji 0 0 07

g l 0 J, 0 o0 ‘ (58)
0 0 J; o
0 0 0 Jy4
in which 0 are zero matrices of the appropriate size, and
[0 1 0 0]
Ji=dh= 001 O(, J3=J4=I—O H (59)
0 0 0 1 0 0
0 0 0 0

show the zero eigenvalue on the leading diagonal, with a unity element on the superdiagonal
indicating the coupling between vectors, within four distinct eigenspaces. The state vector
boundary condition, s(0), on the end z=0 is a linear combination of the eigen- and principal
vectors and may be expressed as

s(0) = VC, (60)
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where the vector of participation coefficients is ‘
C=[C C,---Cp]". (61)

In order to determine the final solution one needs to determine the matrix exponential, eH?; one
of the standard methods [24] employs the Jordan canonical form, together with the inverse of the
matrix of eigen- and principle vectors, V. However, the latter is of dimension (6 x 12), so is
obviously not invertible. Instead, partition this matrix as

V =[Vi3 V4], (62)
where
Vi3 = [5(10) §(11) 5(12) §§3 ) §§0) §(31) , Vau= [520) §(21) 522) 5(23) 550) 521) 1, (63)

are both invertible, and of the same size as H. One then has

VL HV; = Jj3 = [0 Vo HVy = Joy = 12 0] (64)
and within the eigenspaces spanned by Vi3 and V4, one has
et = Vi elnr Vi, et = vy, " Vo) (65)
Now Jy3 and Jy4 are identical, and their matrix exponential is
[z 222 22/6 0 0]
01 =z /20 0
o _ dur _ 0 0 1 z 00 (66)
0 0 0 1 00
0 0 0 0 1 z
0 0 0 0 0 1
The end condition can also be decomposed into the two combined eigenspaces, as
$13(0) = V13Ci3 and  $04(0) = V4 Cyy (67)
with participation coefficients
Ci3 =[C1 C3 C3 C4 Cy Cyg]'  and  Cpy =[Cs5 Cs C7 Cs C1y Ca]; (68)

the formal solutions become

s13(2) = es13(0) = Vi3e?? VIV 3C)3 = Vise"5°Cy 5 (69)
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or in expanded form

['Cl + Crz + C3Zz/2+ C4Z3/6‘|
Cr+ Ciz+ C422/2

sp@ =150 50 5 5 50 0] s ;46’42 (70)
Co+ Cyoz
Cro
or
$13(2) = (C1 + Caz + C322 /2 + Ca2*/6)80 + (Cy + Caz + C422/2)5
+(C3 + C42)87 + Ca5P) + (Co + C102)50 + o500, (71)

This can be interpreted as follows: suppose one has a cantilevered beam of length L, with a
shearing force Q in the xz-plane, only, on the end z=0 (implying that the origin is located at the
cross-section having the maximum deflection and slope); all participation coefficients are set equal
to zero with the exception of Cy which may be set equal to unity as the principal vector describing
shear already contains the arbitrary constant a which can be related to Q. The state vector at
generic cross-section z is then

s(z) = 2250 /6 + 22810 /2 4 57 4 5, (72)

where the state vector consists of the shearing force vector, a bending moment which increases
linearly w1th the ax1al coordinate, z, and rotation and transverse displacement vectors which
increase as z? and z°, respectively.

More conventlonally, one might locate the origin at the fixed end, where the rotation and
transverse displacement vectors are equal to zero, and there are reactions of shearing force Q and

bending moment M = —QL. The non-zero participation coefficients may be set as Cy4 = 1, and
C3 = —L, and the state vector at generic cross-section z is then
s(z) =z s( ) /6 + zz(s(l) Ls(lo)) /2 + 7(5(2) Ls(ll)) + s(3) L§(12), A (73)

which is in agreement with the expression given by Zhong and Xu [4].
For the second combined eigenspace, the formal solution is

$24(2) = eM504(0) = V4e"7Cyy. (74)

9. The decay eigenproblem for the elastic strip

While the state-space approach can completely resolve the transmission problem for any cross-
section, the Saint-Venant warping and flexure functions being the only indeterminates, the decay
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eigenproblem (associated with Saint-Venant’s principle) appears restricted to amenable
cross-sections in general, and the state space approach appears to offer an advantage only in
the case of the two-dimensional strip problem. (At least the present author cannot see how
it can extend to a three-dimensional problem such as the rod of circular cross-section; indeed this
may be why Xu et al. [8] quoted the Papkovitch—Neuber solution for the decay problem, from
Ref. [9].)

With this in mind, consider the two-dimensional elastic semi-infinite strip occupying
the space

0<x<2,0<z<00, (75)

where the z-axis has been chosen deliberately to coincide with the lower edge of the strip.
Returning to Eq. (9), if one deletes the rows and columns pertaining to displacement v and
shearing stress ,., and drop all terms involving 9/0y, one obtains the governing equations in state
space form for the plane strain problem; however, the concept of a cross-sectional state vector is
more natural in the context of plane stress setting, which can be obtained in the usual way [25] by
replacing E by E'(1 +2v)/(1 + /)%, and v by v/ /(1 4+ ') and then dropping the primes. In this way,
one finds

ful T 0 -0/ox 1/G 0 1T 7

0 | w | | —vofdx 0 0 A=V)J/E || w (76)
0z |1 | I —Ed? /ox? 0 0 —v0/dx Tyz
g, 0 0 —0/0x 0 o,
or compactly
Os
P Hs. (77)

Separate variables by setting s(x,z) =§(x)e* which leads to the characteristic
equation
2 2
detiH — kN = 12 42\ —¢ (78)
0x?

suggesting that the eigenvalue k=0 has a multiplicity of at least four, for vectors in which the x-
dependence is lower than second order; in fact for a planar structure, it is six. However, for a
decay eigenmode k#0, so one has the double root 0/0x = =ik,i=+/—1, and choosing the
positive sign, and substituting back into H, gives

[ 0 -ik 1/G 0 ]
—vik 0 0 (1—Vv3)/E
Tl EE 0 0 —vik
0 0 —ik 0
Again, the formal solution is written as

s(x, z) = e'%s(0), (80)

H (79)
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where now [24] the matrix exponential M = e may be calculated as the inverse Laplace
transform of the resolvent matrix R = (sI — H)™!, where s is the Laplace variable; R has elements!
such as Ry; = (8° + vk2s) /(s> — k%)%, and when one performs the inverse Laplace transformation,
this term yields the expression

kz —kz
=S N fi e, 81)

Now the presence of the secular terms ze*** indicates that the manifestation of the double root
0/0x = ik has been assigned to the axial z-direction, which has been shown in Section 6 above, to
be impossible. Moreover, the approach gives no information on the possible values of k; thus at
first sight, the state space approach appears to offer no obvious advantage.

Instead, define a transverse (rather than cross-sectional) state vector

S=[u w 7o o' (82)
and recast the governing equations in terms of this vector to give

os’
—_— H/S/’ (83)
0x
where the new system matrix H' is identical to H, except that d/dz replaces 0/dx. Now set
s'(x,z) = §(z)ek*, which leads to the characteristic equation

2 2
det[H' — K'T] = /a% + k’z\ =0 (84)

and again the double roots 0/0z = +ik’; thus one may conclude that the resolvent matrix R’ =
(sI — H')~! for this second eigenproblem is identical to that already presented in the Appendix,
Eq. (A.1); moreover, the matrix exponential M’ = e"'* is identical to M in Eq. (A.2), but with the
variable x replacing z, and k’ replacing k. Also note that the spatial variation in the x-direction,
exp(k'x), implies a variation in the z-direction of exp(ik’z) = exp(kz), where ik’ = k.

Again the formal solution may be written as

s'(x,z) = e ¥/(0). (85)

Now the traction-free boundary condition on tThe lower edge of the strip, x=0, implies that the
initial state vector is s'(0) = [u(0) w(0) 0 0], so the above becomes, in more detail

[ulx) ] [My, w0)+ M, w(0)1

ey | W) My w(0) + MY, w(0)
S0 = te(x) | | MY w(©0) + My, w0) | (86)
ox(x) My, w(©0) + My, w(0)

'The complete matrix R is given in the Appendix, together with its inverse Laplace transform.
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But one also has traction-free conditions on the upper edge of the strip, that is 7,.(2c) =
0x(2c) = 0, giving
M, : u(0
[May Ma] o [uO] _ o 87)
My My e w(0)
since the displacement components are not zero on the lower edge, the determinant must be equal
to zero, which leads to the eigenequation
K2 4 e e _ 16k — 2) =0, (88)
which may be expressed in the more familiar form
K’*(sinh 2k'c — 2k'¢) (sinh 2K ¢ + 2K ¢) = 0. (89)

This is identical to the well-known Papkovitch-Fadle eigenequation [5, see Article 23], if one
replaces ik’ by k. The smallest roots are k'c = +1.1254 £ 2.1062i, and k'c = +1.3843 + 3.7488i
for the positive and negative signs within Eq. (89), respectively. The slowest decay of self-
equilibrated end loading on the end z=0, as anticipated by Saint-Venant’s principle, is then
according to

exp(kz) = exp((—2.1062 £ 1.1254i)z/c). (90)

Having determined the possible decay rates from the eigenequation (89), one can back-
substitute to determine the initial state (eigen) vector; thus the first row of matrix Eq. (87) may be
written as

(M5 _, u(0)+ [ ol ., w(0) =0 1
from which one finds

[2k'c cosh 2k’ ¢ + sinh 2k/c]
i2k’c sinh 2k'c

w(0) = u(0). 92)

For simplicity, set #(0) = 1, when the lower edge state vector may be written as

[ { 2k’c cosh 2k’c + sinh 2k'c
i2k’c sinh 2k’c

]T

s'(0) = 0 0. (93)

The displacement components may then be found from Eq. (86), together with the

shearing stress t,;, while the two direct stresses can be calculated from the displacement
components.

10. Conclusion

In this paper, the linear elasticity of a prismatic rod or beam has been considered from a state
space point of view. Since elasticity may be regarded as a classical field of study, one might
imagine that there are no new insights to be gleaned; indeed there seems little point in deriving
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from first principles the governing equations, which are already well known, and need only be
rearranged into the requisite form. On the other hand, the approach treats displacement and stress
components on an equal footing, which obviates the need to employ strain compatibility
equations. It unifies the treatment of transmission and decay problems, and benefits from the
machinery of an eigenvalue problem; these attributes have previously been shown to provide an
elegant resolution of the so-called wedge paradox, so it is clear that this alternative viewpoint has
some definite advantages.

Employing the machinery of an eigenvalue problem, it has been shown that degenerate modes
occur only for the zero (transmitting) eigenvalues—repeating decay eigenvalues cannot lead to a
non-trivial Jordan canonical form; thus the non-zero eigenvalue degenerate modes considered by
Zhong in Section 4.8.3 of his monograph [26], cannot exist for a prismatic structure.

The transmission modes pertaining to the multiple zero eigenvalue can be completely resolved,
subject to determination of the Saint-Venant warping and flexure functions for a specific cross-
section; the approach is logical and does not rely on the semi-inverse method.

The decay problem for the plane elastic strip can also be treated very simply using the present
approach. Determination of the matrix exponential, using Laplace transformation of the system
matrix, provides an elegant way of obtaining the well-known Papkovitch-Fadle eigenequations
which describe the decay rates; unexpectedly, this requires a second state space formulation in the
transverse direction. However, the scope for extension of the state space approach to the decay
problem for prismatic rods of other cross-section appears severely limited: exact solutions are
known for very few cross-sections, such as the circle, both solid and hollow, and it is not apparent
that the present method is capable of replicating even these known results. Overall, the main
advantage of the approach is that one can draw on the extensive literature on system theory, and
it is likely that this will prove beneficial in the control of dynamic problems of continuum elastic
structures.

Appendix

The resolvent matrix R has elements

§* +vk?s —ik(s® + vk?) (1 4+v)[25% + (1 — VK
R11=—-—§, R=—""755" Riz= 55 s
(s2 — k%) (2 — k) E (s2 — k%)
P k(4w s
14 E (S2 _ k2)2 4
R — _ik(vs2+k2) R 5(s> — 2+ k?) Rov— R Ry — WA~ v)s? — 2k%]
21 (S2 _ k2)2 5 22 — (S2 _ k2)2 5 23 — 14, 24 — E (52 _ k2)2 >
2
2 S 3 s
R31 = Ek m, R3 = —1Fk mz—)z, R33 = Ryy, Ras = Ry,
—EK* :
R4t = Rz, Ryp = Ry3 = Rip, Rus = Ry, (A1)

(2 — k%>
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The inverse Laplace transform of R is the matrix exponential M = eH? and has elements

kz —kz
M11:9—/1+(1+v)k2\+e /1—(1+V)k2\,

2 2 2 2
iek ie™*
Mip = (14— k) (1= = (L k),
(1 + v)ek (1 4+ v)e™*
=" 3- 1 — (= 1
M gk GV k) + (3 v+ (1 +v)ka),
i+ v)PkzeRi(1 A+ v)hze
Mu==""m " am
iek? je ™
Moy =——(1=v = (1 +v)k2) + Ly = (L +v)kz),
kz 1 —kz 1
Mzz:f:-—/l—(—-’_—v)kz\+e /1+( +v)k2\,Mz3=M14,
2 2 2 2
(14 v)e (1+v)e™
My = ETkekZ(l + kz) — %—lce“kz(l —kz), M3 = _lfkkzekz +%kze'kz, M3y = My, M3y = M,
Ek Ek
My =Mz, My = Tekz(l —kz) — Te_kz(l +kz), Mys = My, Mgy = M. (A.2)
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