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ABSTRACT

In this paper we examine the use of optimization
methods and a variety of shape definition schemes to
design spinal structures for the control of deformable
shape airfoils. The aim is to find structures that, when
suitably loaded, can be used to alter the aerodynamic
performance of a cladding that forms the airfoil.
Further, by using structures that are acting in the post
buckling regime it is possible to obtain significant
changes in shape with only modest changes in applied
load.

INTRODUCTION

Flapless, variable geometry airfoils are not a new
idea: the original Wright Brothers Flyer used “wing
warping” to provide flight control. There is, however,
a great deal of current interest among aircraft
designers in shape control systems that work without
conventional slats and flaps, with their associated
discontinuities, hinge lines and gaps. Primarily this is
because engineers seek designs that have low radar
signatures or are very quiet in operation. When
controlling the shape of a wing for such roles only
internal mechanisms can be used and a flexible outer
cladding forms the aerodynamic surface. Given the
space and weight restrictions that apply inside aircraft
wings, design requirements lead to the need for
simple yet powerful ways of controlling the airfoil
external shape. Such devices must also be extremely
reliable and have low maintenance and operational
power requirements.

The structural system considered here would be
coupled by a flexible foam core to a conformable
aerofoil surface to achieve the desired control effects.
The main thrust of this paper is to demonstrate the use
of optimization based inverse design methodologies
to configure a deformable internal spinal structure
that could produce shape control with a very limited
number of low-power actuators. By using non-linear
structural effects this addresses some of the key
problems identified in existing work in this field, ie.,
the complexity of the internal actuator schemes

currently needed, the difficulties associated with
scaling them to relatively large, heavily loaded
airfoils and excessive power consumption'. In this
last reference the authors recommend the need to
optimize the actuator distribution and the wing
configuration — something that is intrinsic to the
current work, and with a reduced number of actuators
made possible by the non-linear structural response
being exploited. This is achieved by adopting a pre-
loaded internal spinal system that moves through the
desired shape changes under the control of a very
limited number of actuators (in an aircraft just one
each for the two tip cambers, one for each wing twist
and one for the common root camber). In effect
control system complexity is traded for passive
structural sophistication. This provides a low-power,
light weight means of aerofoil shape control with
independent control of camber and twist®.

SHAPE CONTROL CONCEPT

Perhaps the simplest way to envisage the spinal
structural approach proposed is to consider a partially
buckled simply supported Euler strut subject to an
eccentric end load, as depicted in figure 1. As is well
known such a strut takes up a half sine wave shape
whose amplitude is controlled by the end loading.
Moreover, this amplitude is linked to the end-loading
in a highly non-linear way, so that modest increases
in load result in significant changes in shape (see
figure 2).

Next let the properties of the strut vary along its
length. In such cases the shape adopted ceases to be a
pure sine wave and becomes dependent on the way
the strut properties vary. With an appropriate choice
of properties the buckled shape can be made to
conform to the camber line of an airfoil. Now as the
end load is varied we have a means of varying the
camber line. If the strut is then connected to a semi
rigid pre-tensioned elastic skin via a flexible foam
core this affords a means of aerofoil section shape
control. The selection of properties is here
accomplished via an inverse design procedure



whereby an optimizer is used to control the structural
properties and end loads and a commercial FEA code
(Abaqus) is used to asses the deformed shape. The
objective function used is the sum of the square of the
differences between the desired and actual deformed
shapes.
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Figure 1: Example of a beam-column with eccentric
load.

By extruding the strut into a plate and linking this to a
wing surface with actuators acting along its edge, full
wing shape control becomes possible. Moreover, the
principal set of shapes the wing can take up is not set
by the actuators and controllers; rather it is
determined @ priori by the structural system - this
provides a very efficient and low-powered way of
achieving overall shape control. It is also simple and
thus reliable. This novel approach is in contrast to the
systems researched in the literature where complex
actuator setups and sophisticated controllers are used
to achieve the desired shapes, which are perhaps
better targeted at localised control of shape. A key
feature of the proposed spinal structure approach is
that the passive structural elements act to distribute
simple actuator effects smoothly into the external
surface of the wings, thus avoiding undesirable
localised features in the surface such as ripples or
bulges’.

STRUCTURAL MODEL

These days the analysis of all but the simplest
structures is carried out with the aid of computer
programmes, and in particular via finite element
analysis (FEA). FEA provides a way of solving
complex non-linear equations and implementing
theoretical and mathematical methods of physical
behavior. Since the loads of interest here are greater
than the Euler buckling load, the large deflections
encountered are tackled by iterative techniques.
Solutions to such nonlinear problems can be found
with various different methods: the most commonly
used are the single-step and iterative (multi-step)
procedures (Euler method, Second order Runge
Kutta)* and incremental-iterative methods
(Newton-Raphson)™*"%.

In order to understand a model which can be
developed to study spinal structures, we begin by
considering a pin-ended column subjected to an axial
eccentric load (see again figure 1). Here the control
force is applied outside the axis of the column so a
- concentrated moment equal to the force multiplied by
the eccentricity appears in every section of the
column. Therefore any structural model used must
allow for bending and buckling of the column.

In simple linear analysis, the deflection of a perfect
beam is indeterminate at the critical axial load,

because of the nature of the differential equations
used for calculating the deflections. The equation
governing bending of beams according to the Euler-
Bernoulli beam theory is

d2

M

where w is the transverse deflection, £ is the modulus
of elasticity, / is section inertia and f is transverse
loading.

Beyond the critical (Euler) axial load there will be no
indefiniteness in the value of the deflection and very
large deflections occur for modest increases in load.
The shape of the resulting elastic curve is called the
elastica. The small displacement hypothesis, usually
accepted for stress analysis of structures is, of course,
not suitable in such circumstances. The elementary
theory neglects the square of the first derivative in the
curvature formula and provides no correction for the
shortening of the moment arm as the loaded end of
the beam deflects. The equations governing the large-
deflection bending of elastic beams are:
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where u is the longitudinal displacement, A is the
cross-sectional area and ¢ is the axial distributed load.
This set of non-linear equations reverts to equation
(1) if the slope dw/dx 0, and then the terms dw/dx =
0 and (dw/dx)*=0°.

We have plotted the force vs maximum lateral
displacement in the y-direction for columns with
different eccentricities (assuming the length of the
deflected centroidal axis of the column remains the
same) using the commercial FEA tool Abaqus 6.3.1,
figure 2.
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Figure 2: Behavior of beam-columns in non-linear
regime, with different eccentricities.



The beam elements in Abaqus use linear, quadratic
(allowing transverse shear strain, where the cross
section may not necessarily remain normal to the
beam axis - Timoshenko beams) and cubic
interpolation (in the context of large rotations and
small strains, using the Euler-Bernoulli assumptions).
For large deflection solutions, the kinematic
relationships are not linearized and the problem is
solved iteratively, whereby the results of the last run
are used as starting values for the next, until
convergence conditions are fulfilled, typically a
balance of forces. Abaqus breaks the simulation into a
number of time increments. At the end of each
increment, it finds an approximate equilibrium
configuration. For each increment, it takes several
iterations using the Newton method, to find an
acceptable solution 7

The curves in figure 2 show the non-linear behavior
of the beam-column, as a fraction of the Euler critical
load. The greater the eccentricity is, the greater the
concentrated moment at the end of beam-column.
Consequently, the buckling behavior is not as
dramatic as for a classical column. Moreover,
increasing the load after the critical state is reached
causes the lateral deflection to continue to increase as
the load rises, but the stiffness remains positive
(P/Pcr>1), which indicates the beam-column has a
post-critical reserve strength.

The aim here for our spinal structure is to gain control
of large displacements using small force variations.
The more the eccentricity is increased the greater the
slope of the force displacement curves 62 Therefore,
a small eccentric loading gives us the desired effect.
Given all these data, we choose to analyze beams
with 0.3% eccentricity as this assures robust solution
convergence in Abaqus, while still giving significant
deflections for small force changes. We have found
that ~with only 0.1% eccentricity = numerical
instabilities can occur during optimization, due to the
widely varying stiffness of the discretized elements
needed.

OPTIMIZATION
1. Search Process

To establish the design parameters we seek and to
generate equivalent .inp files for submitting into
Abaqus we have used the Options optimization tool ™.
The purpose of this is to simultaneously modify the
design and fix the end loading in such a way as to
minimize an objective function which, in some sense,
characterizes the aerodynamic suitability of the
structure:

H 2
f =min Z (Wdesired,i - Wdeﬂecled,i) ) (3)
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This objective function is the difference between the
desired deflected shape — here given by second degree
equations based on NACA four digit airfoils'' and the

deflected shape obtained from the lateral deflected
nodal positions in the Abaqus solution.

Two codes have been developed to interface with the
Options programme. The first code creates the .inp
file to be submitted to the Abaqus Solver, which is
regenerated at every step taken during the
optimization. The second code returns the data
produced by Abaqus and creates the objective
function. These two codes have been linked together
within Options (see figure 3). We have then used two
stochastic search engines to find the required shapes
and end loads: a Genetic Algorithm (GA) and
Simulated Annealing (SA), both already implemented
in Options. Both methods have the ability to avoid
becoming trapped in local minima.
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Figure 3: Design System Structure

A Genetic Algorithm imitates the natural evolution
process by stochastic means, achieving an optimum
solution via an artificial selection method, applied
over a number of generations. Its applicability is very
good even in complex optimization problems,
because it doesn't require complementary attributes
for the objective function such as continuity or
differentiability. GAs search from one population of
solutions to another, rather than from individual to
individual. Here, a GA with a population of 100
members is used over 50 generations.

Simulated Annealing is 2 Monte Carlo approach for
minimizing multivariate functions. SA exploits an
analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure
(the annealing process) and the search for a minimum
in a more general system. To apply simulated
annealing, the system is initialized with a particular
configuration, generated by imposing a random
displacement. The algorithm is based on a Metropolis
step'?, which was proposed first as a means of finding
the equilibrium configuration of a collection of atoms
at a given temperature. The algorithm employs a



random search which not only accepts changes that
decrease objective function £, but also some changes
that increase it. The latter are accepted with a
probability

i
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where §f is the increase in f and 7 is a control
parameter (i.e., “temperature” in the original
application).

2. Parameterization Techniques

The aim of parameterization techniques is to build
functions that describe curves and surfaces which are
flexible enough to represent a wide range of desired
shapes. They should be easily controlled, increasing
in this way the number of potential solutions that may
be considered. Moreover, if one global
parameterization gives a design satisfactorily close to
a desired shape, we may begin seeking an improved
design using as the starting point the last best
solution, by parameterizing the shape
perturbations'>'*. Therefore, a solution can be an
algebraic sum of different parameterizing functions.
Shape parameterization is the first step in
Multidisciplinary Shape Optimization. A number of
different techniques are described in Samareh's
papers“”s’m ]

» Discrete Approach

Initially we have adopted a Discrete Approach
technique, using a subset of the finite element grid-
point coordinates as design variables. To begin, we
have parameterized 14 sections along the beam as in
figure 4 (more sections would be computationally
more expensive to search), which shows the section
variations along the beam following the optimization
process.
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Figure 4: Discrete approach thickness distributions
for optimized models to yield 1% NACA camber line
when buckled.

To achieve a given deflected shape (e.g., 1% NACA
camber line with the position of maximum camber at

25% length) we varied the cross-sectional area by
parameterizing the thickness distribution along the
beam while the width of the discretized elements
remained fixed (here 8 mm — the case with both
thickness and width variable is again more
computationally expensive to search). The results of
searching using this approach while also allowing the
optimizer to control the end load are depicted in
figure 5, which shows how close the optimized shape
of the beam is to the desired camber. Using this
approach it is, however, difficult to maintain
smoothness of the geometry and the resulting shapes
are somewhat impractical to manufacture.
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Figure 5: Optimized camber lines obtained with the
Discrete Approach technique for 1% NACA camber
line, using GA (min. error=7.23 mm?®) and SA (min.
error=9.54 mm>).

» Alternative Parameterizations

An alternative parameterization is given by Hicks-
Henne curves, which provide a compact formulation
commonly used in airfoil section parameterization 1,
18 Using these curves, we have again chosen to
generate a thickness distribution along the beam,
while the width of each section is constant. Here, the
thickness variation is given by

In2
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where b(x) is the height of the bump, x,, is the location
of the peak of the bump and ¢ is a parameter that
controls the width of the bump. The resulting
distribution is depicted in figure 6 while figure 7
shows the deflected shapes of the optimized cambers
using GA and SA searches, again compared to the
desired camber line.
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Figure 6: Optimal thickness distributions with Hicks-
Henne parameterization.
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Figure 7: Optimized camber lines obtained with the
Hicks-Henne parameterization using GA (min
error=11.07 mm?) and SA (min error=31.97 mm?).

A polynomial approach has also been used to assign
the thickness distribution to the beam-column:

n~-1

Rw) =Y cu’ ©)
i=0

where 7 is the number of design variables, and u is
the parameter coordinate along the curve. Since the
family of polynomial equations is quite large, we
have optimized the beam by using a quartic-spline
representation as used in the camber definition of the
NACA four digit airfoils, i.e., the same set of
equations as we use to describe our desired shape. In
this formulation, the shape is given by equations 7.1
and 7.2:
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where Y. (the original NACA camber line)
incorporates coefficients found to be effective by
experimental means, x is the position along the
abscissa, x,, is the position of maximum camber as a
fraction of the chord, ¢, and g is the maximum
camber. The resulting optimized thickness
distributions are shown in figure 8, while the
deflected shapes are depicted in figure 9.
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Figure 8: Optimal thickness distributions with
polynomial parameterization.
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Figure 9: Optimized camber lines obtained with the
polynomial parameterization using GA (min
error=25.71 mm?) and SA (min error=26.85 mm®).

A wing geometry, and in particular the camber line,
can also be defined by spline curves (B-splines,
Hermite functions, Bézier curves, NURBS™?°?!).
Bézier forms are a special case of B-spline curves.
Cubic B-splines curves are numericaily more stable
than curves in the piecewise cubic Hermite form. B-
splines form a basis for all splines, so any spline
curve can be written as a B-spline. We have used
NURBS  (Non-Uniform  Rational ~ B-Splines),
considering as design variables the position of the
control points of these curves.

The basic formulation of NURBS is given by a set of
equations 8.1, 8.2 and 8.3, as follows:
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in which:

o P, pi,--Dnare the control points, each of which is
associated with a non-negative weight w;;

o the knot vector U={up, u, ...t} of m+1 knots;
o N;,arethe NURBS basis functions of degree p;

o the number of knots is m+I, the degree of the
basis functions is p, and the number of degree p
basis functions is n+1, and m=n+p+1;

o local support is 2 non-zero on [uj, Ui+p+1) and

o the basis function R;4(u) is a composite curve of
degree p rational functions with joining points at
knots in [ui, Uppe1]-

To create the design curves or surfaces, here we have
used Dassault Systemes” CATIA V5 CAD system.
The NURRBS curve is the fundamental data structure
of a V5 curve. The geometry of the beam is here
modeled using unit control point weights, with
control point locations forming the design variables.
Figure 10 shows the thickness distribution along the
beam after the optimization process. The optimized
deflected camber can be seen in figure 11.
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Figure 10: Optimal thickness distribution with
NURBS approach.
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Figure 11: Optimized camber line obtained with the
NURBS parameterization using GA (min error=9.10
mm?).

To summarize, we have used Discrete, Hicks-Henne,
Polynomial and NURBS geometry parameterizations
and searched using local Simulated Annealing and
Genetic Algorithm methods to design a beam
structure that deforms to give airfoil shapes in the
post-buckled regime, see table 1. As depicted in
figures 4, 6, 8 and 10, the thickness of the beam tends
to increase gradually at the RH end, as the beam
needs to be stiffer there, while in the region of
maximum camber, it is less stiff, in order to match the
curvature of the desired deflection, not unlike the
battens used in racing sails. Figures 6 and 8 show no
inflection of the thickness (i.e., the distribution is
quasi-linear) but the resulting accuracy is then poor.
As a result of this study we choose to use the GA /
NURBS approach in further work as it gives good
results and smooth geometries.

Parameterization | Errors (mm?)

Using GA Using SA
Discrete 7.23 9.54
Hicks-Henne 11.07 31.97
Polynomial 25.71 26.85
NURBS 9.10

Table 1: Summary of beam optimizations

We next turn to the use of these results as the starting
points for the plate designs that would be used to
support full wing geometries.

PLATES

In real aircraft operations we desire the shape of the
whole wing to alter from one configuration to another
by the application of simple forces. So far we have
concentrated on achieving a single known camber
shape. Next we seek plate geometries that can move
from one deflected shape to another by simply



varying applied end loads. This requires suitable
surface parameterizations and we can use essentially
the same techniques as already described. We
commence by taking solutions obtained for the 2D
strut models and extruding them into 3D.

If we take the geometry of figure 10 and create a
wing plate that is 1600mm wide and 1000mm deep
and then load it eccentrically and non-uniformly
along its edge we gain control of the whole wing, see

figure 12.
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Figure 12: The lateral deflected shape of a plate,
under a compressive non-uniform distributed load
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To begin we will consider two cases: one with only
two point loads, one at each corner and one with a
linearly varying load. The point loads model would,
of course, be easier to control in terms of using
actuators to achieve the required shapes. In both cases
the loading is defined by the value at the two extreme
edges and so it is possible to produce contour maps of
deflection as these two quantities change. These are
plotted in figures 13, 14, 15 and 16. In both cases
some of the calculations become unstable and so the
plots show regions where there is a lack of continuity
as the forces alter. Nonetheless the overall trends can
clearly be seen. These show that a range of camber
variations can be achieved with these simple forcing
arrangements, although rather higher forces are
needed if simple point loads are used.

The resulting deflected shapes for several particular
loading cases are plotted in figures 17 and 18 and
compared to equivalent NACA shapes. While the
basic trends desired are apparent these are, however,
not so accurate in terms of the NACA four digit
family as the original strut model. To improve on the
agreement with the desired NACA shapes would
require further optimization effort, but now using
plate analyses and also varying the plate properties
both along the camber-line and across the span.
Studies in this direction are ongoing at the time of
writing.
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Figure 13: Contour plot of the plate response on its
left-hand edge — point forcing
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Figure 14: Contour plot of the plate response on its
right-hand edge — point forcing
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Figure 15: Contour plot of the plate response on its
left-hand edge — linearly varying load
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right-hand edge — linearly varying load

Deflected sections along the plate - point forcing

—— desired camber {y=0 mm}
—— desired camber {y=L/4)
—— desired camber (v=L/2)

-~ desired camber {y=3U/4)
--«~ desired camber (y=L)

Deflections (mm)

-200 o 208 400 800 00 100G

Chord e {mim)

Figure 17: Deflected shapes of four equally spaced
sections along the plate ~ point forcing

Deflected sections along the plate, with a linearly non-uniform
distributed force

~-y=0 mm -x- desired camber (y=0 min)
y=0 desired camb 0
~e-y=Li4 --~desired camber y=L/4g
o y=Li2 -x-desired camber (y=L/2)
-=—y=3L74 -x- desired camber (y=3L/4)

eyl -x- desired camber (y=L)
100 - PR,

Deflections (min)

AR RSt RN TR T

3 196 200 360 400 509 560 700 300 900 1000
Chord fine (mm})

Figure 18: Deflected shapes of four equally spaced
sections along the plate — linearly varying load

CONCLUSIONS

A number of shape definition schemes have been
assessed for use in providing a deformable airfoil
spinal structure. These include direct control of the
properties of the finite element mesh, polynomial
models, Hicks-Henne functions and the NURBS
capabilities of the CATIA V5 CAD system. We have

used these parameterizations to carry out inverse
design work on strut models using two global
optimizers (a genetic algorithm and simulated
annealing). To date we have found that good
approximations to the camber lines found in NACA
four digit airfoils may be readily achieved using 0.3%
eccentric end loads, genetic algorithm searches and
either direct control of the meshes or via the CAD
code (the latter obviously has advantages when
considering plate models). Overall, the GA applied to
a discrete 14 variable model gives the most accurate
control of deflected shape, although the resulting
geometry is not smooth. Of the smooth shape control
parameterizations studied here, the NURBS method
gives best control, and is only slightly less accurate
than the discrete method.

We have also carried out preliminary studies of plate
deflections models and shown that varying camber
control can be achieved over wing-like structures
using just two localized forces. To date these have
been directly based on the optimization of two
dimensional strut models which have then been
extruded to create full plate systems. Future work will
address searches across fully three dimensional
structures.
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