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Abstract

Symmetrically laminated plates are analysed by the boundary element method. A common numerical scheme is devised for the linear,
uncoupled plane stress and plate flexure problems. A generic formulation is based on adopting the stress function and the deflection as field
variables in the respective problems. Their mathematical similarity allows the use of essentially the same fundamental solution and almost
identical solution algorithms. The application of plane stress and flexure analyses to several benchmark problems illustrates the versatility of
the formulations and the degree of accuracy achieved. In the case of flexure in particular, comparisons are made with results from earlier

boundary element analyses.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The most cited advantage of composites is their high
specific stiffness and high specific strength compared with
traditional engineering materials. Structural elements made
of composites can be engineered to meet the specific
demands of a particular application through various design
options such as the choice of reinforcement and matrix
materials, the volume fractions of fibre and matrix and the
fabrication method. With regard to laminates, in particular,
additional options concern layer orientation, number of
layers in a given direction, thickness of individual layers,
type of layer and the layer stacking sequence.

The complexities in the mechanical behaviour of
composite materials demanded the development of new
methods for their analysis. A detailed and accurate
calculation of stresses in composite components is required
for design purposes. The boundary element method (BEM)
has emerged, in the late seventies, as a powerful alternative
to other numerical techniques for the analysis of engineering
problems. Through BEM, the dimensionality of the problem
reduces by one. Thus mesh generation is comparatively easy
and design changes do not require a complete re-meshing.
BEM is well suited for the analysis of structures with
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complex geometries and loadings. Good accuracy is
achieved in stress concentration and infinite domain
problems.

In general, numerical composite analyses can be
subdivided into micro-mechanical and macro-mechanical.
BEM has been applied to both. A macroscopic view has
been adopted in this paper. Effective aggregate mechanical
properties are entered into such an analysis with the material
usually considered anisotropic. A laminate is generally
subjected to lateral and membrane forces, it therefore
undergoes both extensional and flexural deformation. These
two modes are uncoupled and analysed separately in
symmetrically laminated plates considered here.

Several direct BEM formulations for the extensional
deformation of thin elastic anisotropic plates have been
developed. Rizzo and Shippy [1] obtained boundary integral
equations using the displacement fundamental solution of
two-dimensional anisotropic elasticity and applied their
formulation to orthotropic plates. Zastrow’s integral
equations [2] were based on stress fundamental solutions
due to force singularities and displacement fundamental
solutions due to edge dislocation singularities. Indirect
formulations, based on an integral equation for the stresses
and fictitious boundary load distributions, have been
obtained for orthotropic materials and applied to problems
with only traction boundary conditions [3,4]. Lee and Mal’s
approach [5] was based on boundary integral equations for
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displacement and traction derived from the anisotropic
elasticity solution in terms of complex potentials. Wu et al.
[6,7] derived boundary integral equations for the tangential
derivative of the deflection using fundamental solutions in
terms of complex variables.

An early attempt at an indirect BEM analysis of the
corresponding anisotropic plate flexure problem [8] relied
on a single fundamental solution and a number of fictitious
point loads outside the plate domain. These fictitious
sources are determined by requiring that the approximate
solution satisfy the boundary conditions at a consistent
number of discrete points. An alternative indirect formu-
lation [9] was restricted to a particular type of orthotropy
allowing the transformation of the problem to an equivalent
isotropic one. A direct formulation for orthotropic plates
was first proposed by Kamiya and Sawaki [10], who adopted
the methodology applied earlier to the bending of isotropic
plates. Shi and Bezine [11] extended that analysis to plates
of general anisotropy providing expressions for all boundary
integral kernels and validating their algorithm through a
range of benchmark problems.

In this paper, the previously applied direct approach is
extended to the complete membrane and flexural analysis of
laminates. The theory is initially developed for the coupled
problem but then specialised to separate in-plane and flexure
direct BEM formulations. With regard to bending, certain
ambiguities regarding the theoretical basis of the method are
clarified. The numerical implementation uses discontinuous
linear and quadratic elements, which provide higher
accuracy than constant elements as well as convenient
modelling of discontinuities at corner points. The form and
properties of the fundamental solution is explored and
particular attention is given to the evaluation of singular
integrals over elements containing the source point.

The plane stress analysis is based on the choice of the
stress function as the field variable. The corresponding
mathematical model is almost identical to that governing
flexure using the same fundamental solution. The result is a
new BEM formulation for two-dimensional anisotropic
media applicable to any combination of boundary con-
ditions. Both BEM analyses are applied to a series of
benchmark problems for validation purposes. Comparison
of BEM predictions with results from exact or finite element
analyses lead to conclusions regarding the accuracy and
efficiency of the developed numerical algorithms.

2. Laminate theory

According to the classical lamination theory, the plate is
assumed to be perfectly laminated consisting of an arbitrary
number of discrete layers, each individual layer being
homogeneous through its thickness and in a state of
plane stress. The laminated plates considered here are
made by stacking orthotropic layers (or plies)
symmetrically arranged about the middle reference surface.

Bending-stretching coupling does not arise for these
symmetrically laminated plates.

The laminate is also assumed to deform according to
Kirchhoff’s assumptions for the bending of thin plates.
According to this theory, the membrane forces N,z and
bending moments Mg are related to the curvatures «,z and
mid-plane strains g, by

Nop = Aapys€ys ey
MaB = DaBy5Ky§ (2)

where A 5,5 and D g5 are, respectively, the extensional and
flexural rigidities, Greek indices ranging from 1 to 2 indicate
components relative to Cartesian co-ordinates x;, x, (Fig. 1)
and repeated indices mean summation over their range.
Strain and curvatures are related to mid-plane displacements
u,, and deflection w, respectively by

1
Eap = E(“a,ﬁ + ug o) €))

Kap = —W.ag )

where a comma followed by lower Greek indices indicates
differentiation with respect to the corresponding co-
ordinates. The membrane forces N,g and bending moments
M,z should also satisfy the equations of equilibrium

NaB,B +fa =0 (5)
Maﬁ,aB + q= 0 . (6>

where f,, is the body force assumed to be derivable from a
potential function @ according to

fa = _(p,a (7)

and ¢ is the lateral pressure. Along the smooth portions of
the plate boundary I with normal and tangent unit vectors n
and s, respectively, the field variables should satisfy the
conditions

either

Pa= nBNaB :f)a orug, = iza (8)

v

X1

Fig. 1. Plate co-ordinates and notation.
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either
MHS‘ ¥ ~
Vi=nMupp+ =V,orw=w 9)
either
Mn znanﬁM(,BZMﬂ or 0}1 = én (]0)

where p,, V,, M, are the in-plane boundary traction, shear
force, bending moment, respectively, p,,V,,M, are the
corresponding pre-scribed values and M, the twisting
moment

Mns = SanBMaﬁ
At any corner point j of a non-smooth boundary,

where [M,,]; represents the discontinuity jump of M, at that
corner.

The extensional problem described by Eqgs. (1), (3), (5)
and (8) can be re-formulated in terms of a stress function F
such that

where 0,5 is the Kronecker delta and the operator L,g
defined by

82

_ 2 _
Lap = BapV dx,0xp
o

13)

In-plane equilibrium is identically satisfied by the forces
given by expressions (12), which also need to satisfy
compatibility. For this purpose, A;éya is defined as the
inverse of the extensional rigidity tensor A,gys :

Aalﬁ’y5A'}’5/\/-L = Sa)\SB/L (14)

so that constitutive Egs. (1) and (2) are re-formulated as
Eap = Aa/375F’75 +AC¥BKK(D (15)

Mg = —=DopysWsys (16)

where membrane forces and curvatures have been replaced
by the stress function and deflection using Eqs. (12) and (4),
respectively, and

< _ 41 -1
AaB'yS - AaBKK8y5 - AaBy&'

Substituting Eq. (15) into the compatibility condition
LU‘BSO‘B =0

and Eq. (16) into equilibrium Eq. (6) leads to the fourth-
order differential equations

Aaﬁ'yﬁF’aByB =-A KKaf3 (pm{B (17
DaBySW’aﬁyﬁ =4q (l 8)
where

AaByﬁ =A, KK)\)\ 80([3 6‘)/5 aBKK 378 ;K]'yﬁ SaB +A;[§75 ( 1 9)

Omitting the body force potential from expressions (12)
and referring to Fig. 1, it is possible to show that, at any
point Q(X,X,) along the boundary,

0
- f 1= x)p;— (o~ T)p AT 20)

F Q Q
-a-=—51(Q)J' P1dF—Sz(Q)I pdl’ 2D
n 0 0

where O is an arbitrarily located origin. According to Eq.
(20), F can be physically interpreted as the resultant moment
about Q of the traction over OQ. Similarly, Eq. (21) describes
the normal derivative of F as the component of the resultant
traction over OQ in the direction —s at Q.

3. Integral equations

The similarity of Egs. (17) and (18) suggests that a
reciprocity relation is required for the generic linear operator

Ac(U) = CopysUsapys (22)

where the 4th-order coefficient tensor C,g,s is considered
symmetric with respect to the pair of indices (af) and (yd).
Integrating by parts, applying Green’s theorem and defining
the operators

U
6,(U) = (23)
an
ME(U) = = CopystangU.ys (24)
M/?s(U) aByﬁn SB Us'yﬁ (25)
aM¢,
VE(U) = =Copyoha Usﬁ'ySa— (26)

N

it is possible to transform the identity

| CoptiopUpa2= | Copsl'agUnpo? )
to:

In [(AcD)U* = (AcUHUIAQ+IXU, U+ I (U, U*) =0

(28)

where U and U® are any two functions satisfying the
conditions imposed on either F or w, and

1w.vh= [ WEoU - MEwaw
+MEUH6,(U) - VEWUHUAr (29)

Iew.)=3 {[[M solv -[usen]u o

{2is the plate domain bounded by contour I', which is smooth
apart from a finite number K of corner points as shown
in Fig. 1.
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Boundary integral equations are derived from Eq. (28)
using the fundamental solutions of A(u) satisfying

CaByﬁ“j,aByS = SA(X - f) (31)

in an infinite domain with

Bix = H=dx— & (2
90(x —
Bx-p=2000 33

where 6 is the Dirac delta function and m indicates an
arbitrary direction specified through unit vector m (Fig. 1).
Then, substituting «) for U™ in Eq. (28) yields

JQ(ACU)u’de—kU,\(é)+IZ(U,uK)—I—JC(U,uj)zO (34)

where U; =U and U,=9U/dm and k is equal to 1 or 0.5
depending on whether P is in the domain or on a smooth
portion of the boundary, respectively.

Since MS,(U) appears only in the jump term (30) but not
in the boundary integral (29), it may be eliminated as a
boundary variable if it can be related to other boundary
variables. Such a relation is derived by transforming the
constitutive equations at the boundary relative to a local n—s
frame of reference. Referring to Eqs. (24) and (25), this
transformation needs only to be applied to U,,s which
becomes

2 2 2
0
U,ys= n’,ng-an—2 + (nys5 + syns)m + s,/SBW (35)
Substituting Eq. (35) into Eqs. (24) and (25) gives
aU? aU? U?
o
U)=— Cn - 7 2Cnnns—_—_ Cnm 7 36
Mn( ) ( nnn anz + onds + ss 5 2 (36)
aU? oU? oU?
MC; U)y=-1C snn o5 2Cm e Cmssh 37
n.( ) ( n anz + sns onos + S asz ( )

where the transformed C-tensor components are given by

Cnnnn = CozB‘yénaan‘)nS

= CapysltallghySs
Cnnss = CaBySnanBs ysﬁ

Cnxns = CozB'yénaSBn)/s&

Cnsss‘ = CaB'yﬁnaSBsySS

Cﬂﬂns = Cnsnn

Eliminating 8> U/dn” between Egs. (36) and (37), results in:

C Cogin Cons | 0U°
MC — _nsnn MC U) — 2(C o nsnn ™~ nnns )
" Cmmn ! () " Cnmm ands
Chsnn Conss \ 0 U2
~ (o — e ) 2 (38)

that is, an expression for MS, in terms of

c B(BU)
M;, —|—
ds \ on

and 92U/os.

4. Fundamental solutions

Explicit expressions for the first fundamental solution of
Eq. (31) can be found in earlier BEM anisotropic plate
analyses by Wu and Altiero [8] as well as Shi and Bezine
[11], who cited relevant original work by Polish authors (in
Polish). A compact form of this solution can be obtained
applying Fourier transforms to Eq. (31) or, even more
directly, from John’s general solution for a linear elliptic
equation with analytic coefficients [12]. Either of the two
procedures requires complex function integration by the
method of residues and finally gives

up = ;Re<i v—'z‘]nv,() (39)
47Co00 =1 By

where

Ve =X~ &+ A — &)

Bi =ei(Ay = L)\ — Ay)

Bz = ex(A1 — M)A — Ay)

and
A =d, +ie,,
Ae=d, — ie,

(k=1,2;e, > 0), are the complex roots of the 4th-order
polynomial f(A) in A = {,/{; defined by

Copyslalplyls = Comli *f(N) (40)

It can be shown that the second fundamental solution is
given by

* auT(X B f)
2T am®

1 LI
_ @Re[z ;—(ZIan + Dy + )\sz)] @1

k=1 K

Compact expressions of all other kernels appearing in
integral Eq. (34) are given in the Appendix.

5. Flexure
Integral Eq. (34) is first applied to the plate flexure

problem by replacing function U with deflection w and
tensor Cag,s with the flexural rigidities Dggys. Also
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accounting for Eq. (18) results in the boundary integral
equation

j GWha Q2 — bown(® + TG00 W) + I W) =0 (42)
n

with the fundamental solutions still given by Egs. (39) and
(41) but represented here by wj. These solutions are
interpreted as deflections of an infinite plate due to unit
force and unit moment acting in the plane m — x; at the
source point P. The operators defined through
Eqgs. (23)—(26), applied to deflection, generate expressions
for the normal slope 6, (w), bending moment M2 (w), twisting
moment M2 (w) and shear force V2(w) along the boundary.

The bending moments at any point within the domain are
computed using the constitutive Eq. (16) with the curvatures
obtained by differentiating twice the boundary integral Eq.
@2)yfork=1land A=1:

WyaB (g) = J‘Q qu’aB 0 + Ig(w’ WT’C{B )

+ T, Wag) (43)

These second partial derivatives are directly evaluated
since they depend on known or already determined variables
along the boundary.

6. Extension

Due to the similarity of Eq. (17) to Eq. (18), the boundary
integral Eq. (34) can also be applied to the extensional
problem for the stress function with the function
¢(P) = —A,apP.ap replacing lateral pressure. In this
application, U is replaced by F,uj by Fy and C,g,s by
A,pys, giving the boundary integral equation

L) qFyd0 — kF\(&) + I5(F, F}) + J,(F,F}) =0 (44)

subject to boundary values for F and oF/dn satisfying
Egs. (20) and (21) respectively.

The singular fundamental solutions Fj, given by
Eqgs. (39) and (41), are identical in form to those for the
bending problem but their physical interpretation is of
course different since they are due to unit point and dipole
potential sources. The interpretation of expressions
M2(F),MA(F) and VA(F), obtained by applying the
operators defined by Eqs. (24)—(26) to F, is not immediately
obvious. However, using constitutive Eq. (15) and ignoring
body forces, it is possible to show that, for a piece-wise
rectilinear boundary, they are related to boundary strain and
displacement by

ou,
as

M(F) = e, (46)

M,(F)=—¢g,= - 45)

og; 0&p, a2u,,

on +2 as 952 “7)
therefore the jump term J,(F, Fy), obtained from Eq. (30),
depends in this case on the discontinuities of shear strain
(46) at the corners.

Provided that all the unknown boundary variables have
been determined, the membrane stresses at any point within
the domain are then computed by differentiating twice the
boundary integral equation for the stress function, that is,
Eq. (44) applied with k = A = 1, with respect to the source
point co-ordinates. These second-order partial derivatives
are then substituted into Eq. (12).

VI(F) =

7. Boundary element modelling
7.1. Interpolation models

The boundary integral I2(U, U*), defined by Eq (29),
depends on variables, which may not have been specified
over part or the whole of the boundary I'. Discontinuous
models have been adopted in the present analysis to
represent these unknown boundary variables. Such models
not only approximate more accurately the variation of a
variable over a boundary element, but also facilitate the
modelling of comer discontinuities. Linear and quadratic
discontinuous boundary element models have been
fully described in an earlier buckling analysis of isotropic
plates [13].

If the boundary unknowns are represented by Z™ where
7z =y, z% = 0,U), 2% = MS(U), and Z® = VE(),
their approximation over an element would be

P
" =3 7" (48)
k=1

where ¢ are the interpolation functions and P is the order of
approximation, that is P = 0, 1, or 2 for constant, linear or
quadratic elements, respectively. Then a typical boundary
integral over an individual element I, has the form

P

5=y z,ﬁ”ﬁj G dpdl’ (49)
=1 e

where Gf\"’)()\ = 1,2) would be the fundamental solution

kernel paired with variable Z®™ in any of integral Egs. (34),

(42) or (44).

7.2. Principal values of singular integrals

The integration in Eq. (49) over elements, which do not
contain the source point is performed numerically using
Gaussian quadrature. Analytical integration is however
possible and indeed essential over elements containing the
source point not only for achieving better accuracy but also
for avoiding alternative numerical schemes to cope with
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Fig. 2. Integration over boundary element containing the source point.

the r~' and r~? singularities of certain kernels. A local
co-ordinate s, with origin at an internal node specified as
the source point, is defined as shown in Fig. 2. Then the
interpolation functions are expressed in terms of s so that the
coefficients of Z{™ are obtained as linear combinations of

L, = L G™sd, (50)

where ¢ =0,---,P.
It is evident from Fig. 2 that, over a straight boundary
element containing the source point,

Vie =7(81 + A$2)

where

r= \/(xl — &P+ (x — §)?

Referring to the complete expressions of the various
kernels Gg\'") given in the Appendix, it is easily shown that,
in this case, they reduce to the form

G\ (r, ) = [f"(O)lnr + g ()" !
for m—A = 1, or simply
GE\m) — rm-—A— lf)(‘m)(e)

for m—A <1 since vectors m = n and s all depend on the
single angle 6, which is constant over that element. Hence,
analytical expressions for all Ij, can be obtained by
performing the integration with respect to r so that Eq.
(50) is simplified to
Ly L

I, = L G (r, Oyrdr + JO Gy (r, 0+ m)(—r)dr

It should be noted that the derived expressions represent
the principal values of integrals (50) only when singular
integrals arise, that is, in the cases of kernels Ggl) and G(22)
with ¢ = 0 as well as kernel G with ¢ = 0, 1.

7.3. Modelling of the jump term

The modelling of the jump term at corners can be based
on Eq. (38), which provides a relation between M¢, and

other boundary variables or their path derivatives. Using the
adopted boundary element models, an approximation can
thus be deduced for the twisting moment appearing in the
jump term over the boundary elements adjacent and on
either side of a corner in terms of the nodal unknowns within
these elements. Since Eq. (38) involves the second
derivative of a boundary variable (deflection or stress
function), only the quadratic element is directly applicable
in the most general case. In the case of constant or linear
elements, the approximation scheme for the jump term
would have to be extended to additional elements on either
side of a corner.

7.4. Matrix equations

Performing the integrations with the adopted boundary
element modelling transforms the boundary integral
equations into a system of algebraic equations

4
> E,z" =qQ° (51)

m=1

where superscript C can be either D or A depending on the
problem being flexure of plane stress, respectively The
coefficient matrix ES is due to boundary integrals associated
with boundary variable Z™ incorporating any contribution
from the jump term. Vector Q° is due to domain integrals
depending on the external action, that is, lateral pressure if
C =D or body forces if C =A. Accounting for the
boundary conditions and re-arranging Eqgs. (51) gives the
final system of equations

HZ = P° (52)

which can be solved for the vector of the boundary
unknowns Z. Since there are two independent unknowns
per node, the size of the problem will be N, = 2N, where
N, = n,N, is the number of nodes and N, the number of
discontinuous boundary elements.

With all boundary variables known, the deflection wat an
arbitrary point inside the domain can be computed from
Eq. (42) with k = A = 1. The plate curvatures can also be
computed at any point within the plate domain from the set
of boundary integral Eq. (43). These integral equations
contain higher-order derivatives of the kernels but no
singularity arises since the source point is always in the
domain. The bending moments are finally obtained by
substituting the values of the curvatures into Eq. (2).

7.5. Mixed extensional boundary value problem

If the displacement is specified along part of the
boundary, then Eqs (45) and (47) imply that M?(F) and
VA(F) are known, while F and 8 F/dn cannot be determined
from Egs. (20) and (21) since they depend on partly
unknown tractions. A boundary element solution of integral
Eq. (44) is still however possible if BEM modelling is
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applied to tractions rather than to F and 8F/dn. Then Eqgs.
(20) and (21) can be transformed to matrix equations of the
form

ZM = KMPp, m=1,2

where P is the one-dimensional array of all known and
unknown tractions. Eq. (51) can then be written as

2 4
(Z E;‘,K(’"))P + > EpZ™ = Q€ (53)
m=1

m=3

which can be re-arranged after the application of the
boundary conditions to yield any combination of unknown
variables among py,p,, Z® = MA(F) and Z® = VA(F)
along the boundary.

8. Numerical results
8.1. Flexure

BEM was originally applied to a circular clamped
orthotropic plate under uniform lateral pressure by Kamiya
and Sawaki [10] who obtained deflection and boundary
moment distributions in good agreement with Timoshen-
ko’s exact solution [14] Further results are presented here to
confirm the accuracy of the BEM solution in connection
with the chosen elements. The computer code implementing
the analysis was written in C. The calculations were based
on an orthotropic composite plate with flexural rigidities
Dy =17.337%10° Nm, Dyypr = 1.1558 X 10° Nm, D51, =
0.34675%10° Nm, D5, = 0.050458 X 10°Nm and thick-
ness 2= 0.1a where q is the radius of the plate.

The performance of straight and curvilinear (circular arc)
elements can be compared by referring to Fig. 3 showing
the variation of the dimensionless edge shear force v,
defined by

v, = —
pa
where p is the lateral pressure. It is noted in Fig. 3 that the
straight element nodal values oscillate about the exact
solution although the mid-element value appears to be
accurate. This is probably due to ignoring the jump term at
the artificially generated corner points. This oscillation almost
disappears with the use of curvilinear elements, which restore
boundary smoothness. It is noted that the accuracy of the
results is maintained with fewer elements. This is confirmed
by the domain bending moment results of Fig. 4, which shows
the internal variation of the dimensionless bending moment

my = —5
pd?

along both axes of symmetry. Excellent agreement with the
exact solution is achieved with a relatively small number of
boundary elements.

0.0

Exact solution
02 1 a2 BEM 48 straight elements
o  BEM 48 arc elements
s BEM 24 arc elements

04 A
;;:
-0.6
08 - SRR S
-1.0 ; ; : ;
0 20 40 60 80
Angle (degrees)

Fig. 3. Dimensionless edge shear force for a clamped circular orthotropic
plate under uniform lateral pressure.

Previous results [11], based on constant boundary
elements, for square orthotropic plates under various
support and loading conditions were found in good
agreement with the respective exact solutions [14,15]. The
same high degree of accuracy was generally observed in the
present BEM results obtained using both linear and
quadratic discontinuous boundary elements. The calcu-
lations were based on the same material constants as those
used for the circular plates. The results were further
validated by comparing them with output from ANSYS
[16], a general-purpose finite element package. This is
essential when the available exact solution does not provide
unique, stable results as happens in the case of the edge
shear force in a simply supported plate due to a central point
load P. Predictions of the dimensionless shear force

_ Vua
P

based on the exact solution, ANSYS and the present BEM
formulation are shown in Fig. 5. The exact solution is

Vn

0.2

my

0.1 4~

Exact solution along x,
— —- Exact solution along x,

®  BEM 12 elements
& BEM 48 elements

_02 SO

03 ; 5 ; §
0.0 0.2 0.4 0.6 0.8 1.0

vla

Fig. 4. Radial variation of the dimensionless bending moment m;; in a
clamped circular orthotropic plate under uniform lateral pressure.



1012 S. Syngellakis, N. Cherukunnath / Engineering Analysis with Boundary Elements 28 (2004) 1005-1016

a series Navier solution, which fails to converge to a single
value near and at the middle of the edge. It is also worth
noting that the use of 8-node quadrilateral finite elements
leads to a widely oscillatory solution about the correct one.
It was thus necessary to use 4-node quadrilateral FE in order
to establish the reliability of the BEM results.

Another interesting case, previously analysed but not
validated [11], is that of a cantilever plate, clamped along
the edge x; = 0 and all other edges free under a central point
load. Since there is no exact solution to this problem, the
boundary element predictions for the deflection were
compared with those from ANSYS. The material properties
adopted in the calculations were the same as those used in
the previous examples. The dimensionless deflection

Doypow

W =
Pa?

was obtained along various key plate sections and plotted in
Fig. 6. BEM and FEM predictions are seen to be very close
with their agreement improving as the modelling by both
methods becomes more refined.

In the previous examples involving orthotropic plates,
the bending-twisting coupling stiffness terms D;;;, and
Dy, vanish. Such plates are special cases of general
laminated plates and occur only when laminates are
constructed of orthotropic or isotropic plies with principal
material axes parallel to the plate axis. As a more general
example, symmetrically laminated plates made up of
orthotropic layers with the principal material axes not
parallel to the plate axes are considered. Such laminates are
characterised by the non-vanishing bending-twisting coup-
ling stiffness terms Dy, and Dy,;,. Rectangular anisotropic
plates with clamped edges under a uniform load were
analysed. General anisotropy is simulated by assuming the
plates composed of a single layer of the same orthotropic
material characterised by E;/E; = 10,G;r = 0.25 and

——=—- Exact solution, 25 terms
— Exact solution, 24 terms
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Fig. 5. Dimensionless shear force along edge x; = 0 of a simply supported
square plate under central point load.
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Fig. 6. Dimensionless deflection of a cantilever square plate under central
point load.

v = 0.3, but with the longitudinal material axis at various
angles with the plate x-axis. Boundary element and
analytical solutions [17] for the dimensionless maximum
deflection defined by

Wmax

P = D, max
w 1111 pb4

are listed and compared in Table 1 for various orientation of
the principal orthotropic axis of the material with respect to
the plate edges.

It should be noted that, for isotropic materials, the
polynomial f(A), defined through Eq. (40) reduces to
(A2 + 1) which has double roots A = A; = A, =1i. The
form of the fundamental solution (39) is not therefore
appropriate since in this case, it does not yield finite values.
It was thus considered necessary to test the effectiveness and
stability of the computer code for almost isotropic materials,
that is, materials with properties very close to isotropic.
The code proved to be robust in this seemingly unstable
case. Moreover, results obtained for square simply sup-
ported plates were found in excellent agreement with the
respective isotropic solutions.

Table 1
Maximum dimensionless deflection (WX 10%) of clamped rectangular
anisotropic plates under uniform lateral pressure

Reinforcement orientation a/b =1 alb=?2
(deg)

Analysis [17] BEM  Analysis [17] BEM
0 2.72 2713 189 18.95
15 2.96 2957 1.74 17.45
30 352 3521 136 13.14
45 3.83 3833  7.89 7.88
60 352 352 4.49 441
75 2.96 2957  3.10 297
90 2.72 2713 275 2.61
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8.2. Extension

Initially the membrane stress analysis was tested on
simple benchmark problems involving uniform stress states
Using linear boundary elements, the results were not as
accurate as expected. This was due to modelling the known
boundary variation of F as linear while, in fact, it was
quadratic. The error in the determination of boundary
variables affected the accuracy of domain membrane
stresses. The implementation of quadratic elements
improved the accuracy of solution considerably. Using
these elements, the determined values of boundary variables
MA(F) and VA(F) were shown to satisfy exactly Eqgs. (45)
and (47).

The analysis was validated further by applying it to a
series of two-dimensional problems as shown in Fig. 7. The
laminated plates were assumed orthotropic with the
following extensional stiffness coefficients:

A = 1.8181 % 10° N/m
Anypy = 1.0346 X 108 N/m
A2 = 2.8969 x 107 N/m
Ay = 7.17% 10" N/m

The corresponding compliances Aaﬁyg, replacing Cggys
in the fundamental solution (39), are:

Ay = 9.7089 X 10™° m/N

Az = 055249 % 10™° m/N
Az = —0.1547 x 10~° m/N
Apypp = 3.48675 % 107° m/N

The presented results were obtained using quadratic
elements and a computer code written in C.

The plate in Fig. 7(a) is under uniform in-plane
pressure, partially and symmetrically applied to the
edges, so that the membrane stress distribution inside the
plate domain is not uniform. The boundary was divided
into a total of 80 elements (20 along each side). The
dimensions a and b were both taken equal to 1 m and
pressures p; = p, = 1 MPa were applied on the edges over
lengths ¢ = d = 0.5m. The same plate was analysed using
ANSYS adopting a regular mesh of 400 8-node quadri-
lateral elements (PLANES2). The results from both
analyses for the variation of N;; and N,, along the
centrelines parallel to the x; and the x, axis are shown in
Figs. 8 and 9. Excellent agreement between the two
solutions is noted, the difference between them being much
less than 1% at most points.

The plate in Fig. 7(b) was subjected to symmetrically
positioned, point in-plane forces acting at the middle of
each edge. This is a case of highly non-uniform
membrane stress distribution inside the plate domain. A
point load of P; = P, = 1 MN was applied on the edges,
while the adopted geometry as well as BEM and FEM
modelling were identical to those for the previous
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Fig. 7. Analysed examples of membrane stress states.

problem. The results from both analyses for the variation
of N, and N,, along the centrelines parallel to the x; and
the x, axis are shown in Figs. 10 and 11. The agreement
between the two predictions is again excellent away from
the points of application of the point loads where the
stresses are singular. It is worth noting that the BEM
results appear to be more stable and reliable than the
corresponding FEM ones as the solution approaches these
singular points.

The plate in Fig. 7(c) can be considered as a flat, narrow-
section, simply-supported beam undergoing bending under
the action of uniform lateral load on its top surface.
The adopted dimension and loading were ¢ = 5m,b = 1 m
and p = IMN/m. The boundary was divided into a total
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Fig. 8. Membrane forces along the centreline parallel to x; axis for the
problem of Fig. 7(a).
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Fig. 9. Membrane forces along the centreline parallel to x, axis for the
problem of Fig. 7(a).
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Fig. 10. Membrane forces along the centreline parallel to x, axis for the
problem of Fig. 7(b).
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Fig. 11. Membrane forces along the centreline parallel to x, axis for the
problem of Fig. 7(b).

of 120 elements (50 along each longer and 10 along each
shorter side). The FEM analysis of the same plate was
performed with a regular mesh of 400 8-node quadrilateral
elements (PLANES2) and symmetry accounted for, that is,
with only one half of the plate modelled. The predictions of
both analyses for the variation of Nj; and N, along the x,-
axis are shown in Fig. 12. Excellent agreement is noted in
this case as well.

All BEM results shown in Figs. 8—12 were obtained
using the boundary integral equation for the domain values
of the membrane forces, they do not therefore include
boundary values. Such values can however be directly
obtained by recalling that strain &, is determined as a
boundary variable according to Eq. (45) and N,, N, are
known from the boundary conditions. It is thus possible to
find N, as well as g, and ¢, relative to a local n — s frame
of reference using constitutive Eq. (1).
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Fig. 12. Membrane forces along x, axis for the problem of Fig. 7(c).



S. Syngellakis, N. Cherukunnath / Engineering Analysis with Boundary Elements 28 (2004) 1005-1016 1015

9. Conclusions

It has been shown through the solution of several
benchmark problems that the BEM formulation is effective
and accurate for both flexure and plane stress analysis of
laminate plates modelled as elastic and anisotropic. The
transition to higher-order boundary elements proved to be
advantageous, especially in the case of the extensional
problem. Performance improvement was also observed
when analytical replaced numerical integration over
elements containing the source point. Numerical integration
was made more efficient through an adaptive scheme
whereby the number of Gaussian quadrature points
depended on the proximity of the source point to the
element over which the integration was performed. Internal
bending moment and membrane force distributions were
found in excellent agreement with respective results from
exact or finite element analyses. The importance of
representing the smoothness of a curvilinear boundary
through curvilinear elements was noted. Inaccuracies
arising from the use of straight elements may be corrected
by accounting for corners, that is, including the contribution
of the jump term.

For plates under bending with regular shapes and
loading distributions, accurate results are obtained with a
relatively small number of elements. An important next
step is to test the algorithm and the developed computer
codes on problems with greater material and geometric
complexity. It is also necessary to validate the membrane
analysis on problems with mixed boundary conditions.
Established dual reciprocity schemes can be adopted to
transform domain integrals to boundary ones. A major
challenge in future work would be to explore the
possibility of extending the BEM formulation to the
analysis of the coupled bending-stretching model for a
general laminated plate.

Appendix A

The fundamental solutions (39) and (41) are substituted
into Egs. (23)—(26) to give the kernels

1

0,(u)) = =G =———
b 4mCyyy

2
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1
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! 47Cy00)
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where R is the radius of curvature of the boundary contour
and

fi=nn5Ci1,5 811 =1,55C 11580 1= 5y55C 15,
fa=nn5C105. 812=1,85C1245, [12=5,55C12,5,
Fr=n15C0.5 82=ny55C1158 [22=5,55C0y5,
hii =(Criis+ Ciiyss15,)ns,
h112=[C112+2C1215+(Ci1y58 +2C12,551 )5, ]n5,
h122 =[2C 1205 +2Co25+ (2C 2455 +2Cr04551)sy 115,

hao =(Coas+ CrpysS25,)ns
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The second derivatives of the first fundamental solution
appear in the integral equations yielding internal forces and
bending moments. They are obtained as

. 1 2]
Ul,qg=———Re —2hv,+3)e, (A.1)
B B
4mCrp —1 B«

where
€ap =014+ A 820)(81 5+ A 839

The remaining kernels in these integral equations are
obtained by substituting Eq. (A.1) into Egs. (23)—(26). This
gives the expressions

2
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