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Genetic Programming (GP) is a powerful string processing technique based
on the Darwinian paradigm of natural selection. Although initially conceived
with the more general aim of automatically producing computer code for com-
plex tasks, it can also be used to evolve symbolic expressions, provided that
we have a fitness criterion that measures the quality of an expression. In this
paper we present a GP approach for generating functions in closed analytic
form that map the input space of a complex function approximation problem
into one where the output is more amenable to linear regression. In other
words, intervening variables are evolved in each dimension, such that the fi-
nal approximation model has good generalization properties and at the same
time, due to its linearity, can easily be incorporated into further calculations.
We employ least squares and cross-validation error measures to derive the fit-
ness function that drives the evolutionary process. Results are presented for
a one-dimensional test problem to illustrate some of the proposed ideas – this
is followed by a more thorough empirical study, including multi-dimensional
approximations and an engineering design problem.

Nomenclature

x = vector of design variables
k = number of design variables (problem dimensionality)
n = number of training points
y = response
ŷ = approximated response
xi = ith element of x
ξ = vector of intervening variables
z = vector of design variables in the transformed space
φ(.) = basis function
c = basis function centre (k-vector)
αi = the weights of the basis function predictor

I. Introduction

RESPONSE surface approximation techniques are widely used in modern engineering design prac-
tice to model relationships in observational data of the form (xi, y(xi)), i = 1 . . . n. Here, xi

denotes a k-dimensional input vector of design variables and y is the response, typically the output
of an expensive computer simulation. A number of techniques exist in the literature for constructing
response surface approximations: linear and polynomial regression,1 radial basis functions,2 Kriging,3

support vector machines,4 etc. The approximate model can subsequently be used as a computatio-
nally cheap surrogate in lieu of the original computer simulation to expedite design optimization and
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uncertainty analysis studies.5–7 Here we focus our attention on linear models, which have important
applications in several areas. For example, they are ideal for uncertainty analysis, where the analytical
modeling of the propagation of probability distributions is often intractable when a nonlinear model
is fitted to the data.

Of course, the major drawback of linear response surface models is that they tend to generalize
badly over highly nonlinear training data. To overcome this, the present work revisits an idea originally
proposed in the 1970s by Schmidt and co-workers8 in the context of structural optimization: that of
intervening variables as a means of enhancing the accuracy of response surface models.∗ At the basis
of the approach adopted here stands the replacement of the original design variable vector x with the
intervening variable vector ξ, such that the function to be approximated, which is originally nonlinear
in x, turns out to be approximately linear in ξ.

On the following pages we will argue that Genetic Programming (GP) is a flexible, effective means
of “discovering” such intervening variables. The fundamentals of this idea are set out in the next sec-
tion, followed by a simple one-dimensional example that illustrates them (Section III). More complex
examples follow in Section V, but they are preceded by a discussion of the co-evolutionary principles
driving the multidimensional version of the GP algorithm used here (Section IV). We then apply the
proposed technique to an engineering design example. We conclude the paper with an assessment of
the advantages and drawbacks of the method and outline a number of avenues for further research.

II. Evolution of Intervening Variables Using Genetic Programming

Genetic Programming, an ensemble of techniques originally developed by Koza,12 applies the
Darwinian natural selection paradigm to the evolution of computer programs or symbolic expressions.
It is a powerful method for transforming a high level problem statement into a sequence of instructions
that can be run on a computer. In striving towards a flexible means of identifying good intervening
variables, our interest lies mostly in evolving mathematical expressions – therefore we briefly review
this particular aspect of the substantial area of genetic programming.

The standard GP algorithm is population-based. First, an initial pool of candidate solutions is
generated, usually randomly. The expressions are then transformed into data structures that are
more amenable to computational processing. These strings of operators and operands, referred to as
chromosomes, are generated by some encoding procedure – typically Reverse Polish (postfix) nota-
tion. New generations of trial expressions are produced using techniques adapted from the Genetic
Algorithm literature: selection, crossover, mutation.

As in the case of most evolutionary optimization algorithms, in the GP algorithm the driving force
behind the evolution process is an objective function indicating the “fitness” of a candidate solution.
In the general template outlined by Koza in his seminal book13 the evolution of symbolic expressions
is usually driven by some type of error measure (whether we are considering symbolic integration,
regression, differentiation, etc.). In the case of symbolic regression, the objective function can be a
least-squares error function or some other measure that reflects how well the model generalizes.

To illustrate the idea proposed here, consider an approximation model of the form

ŷ(x) = α0 +
m∑

i=1

αiφi(x), (1)

where x is a k-dimensional input vector, αi, i = 0, 1, 2, . . . , m are undetermined scalars and φi(x), i =
1, 2, . . . , m are known basis functions. A number of surrogate modeling techniques can be written in
this form. For example, in the case of linear and quadratic response surface approximation techniques,

∗Incidentally, the concept of intervening variables has also been used in the literature to derive two-point approxi-
mation techniques, which have been shown to give significantly better accuracy than the conventional first-order Taylor
series approximation.9–11
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the basis functions are polynomials in the input quantities. In the case of radial basis function
networks, the bases in Eqn. (1) can be expressed as φi(||x − c||) : Rk → R, where c ∈ Rk is the
center of the basis function. Similarly, feedforward neural networks can also be written in the form
of Eqn.(1) by defining appropriate tunable basis functions; see, for example, Ref. 14.

Let us now assume that we apply GP to evolve intervening variables via a transformation z = ξ(x)
to arrive at a modified observational (training) dataset of the form (zi, yi), i = 1 . . . n (note that only
the inputs are transformed). Eqn.(1) can hence be rewritten in terms of the intervening variables as

ŷ(x) = α0 +
m∑

i=1

αiφi(ξ(x)). (2)

Our goal in using the GP algorithm is to evolve intervening variables in such a way that the model
in Eqn.(2) has better generalization properties than the original model in Eqn.(1).

Consider now the case of linear regression, i.e., m = k and φi(x) = xi. Here, if the original data
(xi, yi), i = 1 . . . n has a nonlinear input-output relationship, the approximation quality can be rather
poor. However, by choosing an appropriate set of intervening variables, it is conceptually possible to
arrive at a transformed dataset (zi, yi), i = 1 . . . n which depicts an approximately linear input-output
relationship. Clearly, the least squares error function can be chosen as the objective function which
is to be minimized using GP, i.e., we solve the following problem:

Minimize :
ξ(x),α

n∑

j=1

(ŷ(ξ(xj)) − yj)
2
, (3)

where α = {α0, α1, . . . , αm} ∈ Rm+1 is the set of undetermined scalars in Eqn.(2)∗.

We solve this minimization problem using a two level approach. In the first level, the GP algorithm
evolves a population of candidate functions representing ξ(x). In the second level, during fitness
evaluation of each candidate solution, the vector α is computed by solving a linear least-squares
problem. The resulting value of the training error is the objective function to be minimized by
the GP algorithm. Clearly, this approach can eventually lead to a set of intervening variables that
approximately linearize the function being modeled. However, in certain cases more care may be
required when choosing the objective function if timely convergence is sought. Let us examine some
of the issues to be considered here.

Ideally, the objective function minimized by GP should be a good indicator of the generalization
error. Since the least-squares error function only minimizes the errors over the training dataset,
there exists the possibility that the final model may not generalize well, due to overfitting. It is also
worth noting that if m = n, irrespective of how the intervening variables are chosen, the least-squares
error function is always zero, i.e., the final model is always an interpolator. There are a number of
approaches for dealing with such cases and to improve generalization. A possible route is to solve a
regularized problem of the form

Minimize :
ξ(x),α

n∑

i=1

(ŷ(ξ(xi)) − yi)
2 + λg(α), (4)

where λ is a regularization parameter and g(α) is the regularization function (for example, g(α) =
||α||). In the work reported here we use another approach. Whenever the GP solution process of

∗A note regarding the implementation of the algorithm: it is often necessary to translate the input space in such a
way that the domain does not contain the origin. The purpose of this operation is to reduce the number of candidate
solutions that are eliminated prematurely by the selection process due to “division by zero” errors. This, of course, does
not change any of the equations presented here – one merely adds a constant to the training data and to the coordinates
of points were subsequent predictions are made.
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Eqn.(3) converges too slowly, we optimize an alternative objective function, which can be derived
using the leave-one-out error measure, an unbiased estimator of the generalization error.4 Here, the
minimization problem to be solved becomes

Minimize :
ξ(x),α

n∑

i=1

(
ŷ−i(ξ(xi)) − yi

)2
, (5)

where ŷ−i(ξ(xi)) is the predictor obtained by excluding the ith training point. For generalized linear
models of the form given in Eqn.(1), this error measure can be approximated efficiently.∗

It can be seen clearly from Eqn.(3) that the present approach is different from conventional symbolic
function approximation using GP. The latter has been studied in much detail in the literature (see,
e.g., Refs. 15, 16); unfortunately, such algorithms often converge relatively slowly for problems with
a large number of variables and therefore have found few applications in real-life problems. However,
in the present formulation we only use GP to evolve intervening variables, as the top level of the two-
level scheme outlined earlier. On the lower level the weights in the approximation model (see Eqn.(2))
are estimated by solving a linear least-squares problem – this can be viewed as a local Lamarckian
learning procedure integrated into the GP algorithm.

We now describe a simple, one-variable example to illustrate some of the ideas outlined so far.

III. A Demonstrative Example

The set of training points we have used for our one-variable experiments is shown in Fig. 1, together
with the underlying function (a sine wave), which we have sampled at 10 equally spaced points, the
first being placed at x = 0, while the last of the series is x = 2π.

We have performed four experiments, generating four different predictors based on this data.
The predictors and the corresponding error measures are shown in Fig. 1 and Table 1 respectively.
The latter contains four error estimates for each experiment: the Mean Square Error (MSE) of the
predictor calculated over the 10 training points and the MSE, average absolute error and L∞ norm
of the predictor calculated over a set of 500 uniformly distributed test points.

First, we have fitted a simple linear regression model using the training data in its original form.
As expected, this results in poor generalization (see the first column of Table 1). Slightly better
results have been obtained using a simple technique often encountered in the literature: mapping
the input space using an intervening variable of the form xp. This is, essentially, a simple version of
the optimization problem set out in Eqn. (3), where a form constraint is imposed on the intervening
variable (ξ(xi) = xp

i ) and the MSE is minimized over p. The optimum p in this case is 1.2854 (found
by a simple hill-climbing search of the MSE surface) and the predictor over the input space warped
using this intervening variable yields the errors listed in the second column of Table 1.

Table 1 Comparison of error measures of the various models fitted to the one-variable example
training data.

Lin. regression Interv. var. of xp form Evolved interv. var. SR
Test function f1(x) = sin(x), x ∈ [0, 2π]
MSE (training set) 0.2647 0.2587 0.0422 0.2730
MSE (testset) 0.2225 0.2166 0.0301 0.3050
Avg. abs. err. (testset) 0.4216 0.4155 0.1388 0.4768
L∞ (test set) 0.6859 0.7019 0.3024 0.9159

As this second set of results suggests, for the intervening variable approach to be successful, more
flexibility is required in choosing its form. Here we argue that Genetic Programming can be an

∗It must be pointed out here that the variance of the leave-one-out error can be high. Therefore, sometimes it may
be preferable to use a k-fold cross-validation error measure as the objective function.
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Fig. 1 A demonstrative example: the training points, the underlying (true) response and the
responses predicted using four different techniques.

effective, automated means of achieving this. For this example we have run the GP algorithm over 10
generations with a population of 10,000 individuals, the objective function being the MSE of a linear
regression model fitted to the training points mapped via the candidate solution being evaluated (i.e.,
via the proposed intervening variable). In other words, Eqn.(3) is solved again, but, of course, this
time the minimization is carried out over a much larger search space. We evolve the symbolic form of
ξ, allowing it to take its genes from a dictionary of operands and operators comprising: “x”, integer
constants, “+”, “−”, “·”, “/” and “exp(.)”. We note here that in most of the experiments reported in
this paper the dictionary also included “sin(.)” and “cos(.)”, but since the underlying function here
is sin(x) itself, the inclusion of these building blocks would have made the problem trivial. The best
solution obtained after the 10 generations was z = ξ(x) = x(x − 4)(x − 6). Figure 2 shows the 10
training points again, this time mapped using this intermediate variable. It is clear intuitively that
this new set is more amenable to linear regression – column three of Table 1, the list of the errors for
the corresponding predictor (also plotted in Figure 1), confirms this.

Let us now consider a final experiment on this data. It can easily be shown that in a one-
dimensional space the underlying function (sin(x) in this case) from which the training data is taken,
when used as an intervening variable, maps the data into an exactly linear set of responses (i.e., the
MSE of the linear regressor vanishes). Therefore, the global optimum found by a standard GP-based
symbolic regression (SR) procedure (using an MSE objective function) is also a global optimum of
the intervening variable-based technique described above.∗ However, it is important to point out once
more that the two techniques are quite different. They are based on different objective functions and
it is also worth noting that there is an infinite number of possible mappings that produce an exactly
linear set of responses, most of which are not solutions of the classic SR problem (which has a unique
exact minimizer). To stress this distinction, we have also applied SR to our initial data, using the
same GP algorithm and the same budget of evaluations. The predictor thus found clearly has poorer
generalization properties than the one based on intervening variable evolution, as indicated by the
last column of Table 1 and Figure 1.

We conclude this brief demonstration with two remarks relating to our implementation. First, it
is worth remembering that, given sufficient computing time, it is likely that higher fidelity solutions
could be evolved than those obtained here. For example, given the operator set used here, the standard
symbolic regression search would probably find an expression similar to the MacLaurin expansion of

∗Some authors use the term “Symbolic Regression” to refer to any error-driven search through the space of symbolic
expressions (e.g., symbolic integration). Here we use it to mean the search for a symbolic expression to fit observational
training data of the (xi, yi) form.
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Fig. 2 A demonstrative example: the training points mapped by the intervening variable into
the new space.

sin(x) – see, e.g., Ref. 17. This is a tradeoff that ultimately comes down to the user who has to balance
the computational cost of obtaining the training data against the computational cost of evolving the
model to approximate it. Secondly, relatively short GP runs, such as those presented here, tend to
produce very parsimonious models, which are often linear and the GP algorithm takes a long time
to break the dominance of such candidate solutions. In order to discourage such linearity from the
very beginning (and thus accelerate the search), we “repair” each candidate solution, by multiplying
it by x (i.e., every individual has the “x·” genes by default). This is the approach adopted for all
experiments presented in this paper.

From the GP point of view, evolving a single intervening variable, as in the example discussed
above, poses little technical difficulty. However, multidimensional problems, i.e., the simultaneous
evolution of several such expressions, requires an important addition to the standard GP algorithm –
we discuss this next.

IV. A Coevolutionary Framework

The techniques of Evolutionary Computation (EC) in general and GP in particular imitate some
of the complex processes that create living organisms. However, in doing so, most of these algorithms
rarely go beyond copying the fundamental principle of natural selection, namely that complex life
results from the non-random survival of randomly varying replicators.18 One of the simplifications
often used by EC practitioners is that the environment, in which the virtual “creatures” evolve, is
represented by an entirely static figure of merit: the objective function. To be sure, many aspects of
the natural environment of a species can be considered to be more or less static (for example, whether
its members live in water or on dry land). However, the most important part of the environment
in which a creature evolves is the fauna and flora which it shares its habitat with and which it thus
coevolves with. “Arms races” between predator and prey19 are a typical example of this, where the
evolution of the prey’s defences continuously “tracks” that of the predator’s weaponry and vice-versa.

Incorporating this idea into some applications of evolutionary algorithms has been one of the most
successful nature-inspired EC innovations of recent years. The reader interested in the theoretical
aspects and technical details of coevolutionary computation may find the dissertation by Potter20 a
useful reference. As far as applications are concerned, this relatively new paradigm has been used,
for example, in multiobjective searches21 and in MDO type applications.22 The GP community have
also embraced the idea as a natural means of (co)evolving game strategies.23

A popular approach in artificial coevolution is to decompose the population into several species24
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Table 2 Comparison of error measures for the linear regression model fitted to the non-
transformed data set and the set expressed in terms of the intervening variable – 2d examples.

Linear regression Interv. var. of xp form Evolved interv. var.
Test function f2(x1, x2) = sin(x1) − cos(x2), x1,2 ∈ [0, 2π]
MSE (training set) 0.8052 0.6019 0.0798
MSE (testset) 0.7461 0.7117 0.0692
Avg. abs. err. (testset) 0.7187 0.6954 0.2202
L∞ (test set) 1.9427 1.6303 0.5724
Test function f3(x1, x2) = 1

f

{
−a exp

[
−b

√
1
n

(
x2
1 + x2

2

)]
− exp

(cos(cx1)+cos(cx2)
n

+ a + e + d
}
,

where a = 20, b = 0.2, c = 2π, d = 5.7, e = exp(1), f = 0.8 and x1,2 ∈ [−2, 2]

MSE (training set) 1.9332 1.6723 0.3249
MSE (testset) 2.0387 1.5974 0.4260
Avg. abs. err. (testset) 1.1810 1.0225 0.5112
L∞ (test set) 2.5551 2.8002 1.1290
Cross-validation error 106.2949 91.5290 18.1316

and this is the approach we take here. Recollect that in the derivations outlined earlier we wrote
the vector of intervening variables in the general form z = ξ(x). In practice we rewrite the inter-
vening variables as z = {ξ1(x1), ξ2(x2), . . . , ξk(xk)}, i.e., running the GP algorithm results in a set of
one-dimensional functions ξ1, ξ2, . . . , ξk, which we evolve separately, each dimension having its own
population (or species).

The algorithm is, fundamentally, still the classic selecto-recombinative GP heuristic (or, to be
precise, k instances of this, running in parallel). The only deviation from the standard scheme is the
way in which the objective value of an individual is evaluated. When the objective value of, say, ξi(xi)
(residing in population i) is required, we assemble the candidate solution z by inserting this expression
into the ith slot and filling up the remaining k − i slots with representatives of the corresponding
populations. The initial (randomly generated) populations are represented in this evaluation process
by a randomly chosen individual; in subsequent generations the fittest member of each sub-population
is used.

We now continue with an experimental test of the performance of this co-evolutionary scheme –
first, using analytical test functions.

V. Two Analytical Test Functions

As a first application of the coevolution-based search for intermediate variables, let us consider
the simple analytical test function shown in Fig. 3a. We have generated a 16 point training set, using
a Morris-optimal25 Latin Hypercube experimental design. The 1600 test points used for the off-line
assessment of the predictors based on this training data were arranged in a full factorial design. As
far as the GP setup is concerned, here and in subsequent examples the search was performed over 10
generations with 2500 individuals in each population.

The top section of Table 2 compares the generalization properties of the models generated with
three approaches applied to this data. The first column contains the error measures of linear regression
applied to the original data. The second technique investigated here is linear regression using a pair
of intervening variables of the form z = {ξ1(x1), ξ2(x2)} = {xp1

1 , xp2
2 }. Solving Eqn.(3) over p1 and p2

using a conjugate gradient search yields p1 = 1.0542 and p2 = 0.1110 and an MSE over the training
data of 0.6019. The generalization measures are listed in column two of the same table.

Finally, the results of applying the GP-based intervening variable technique point again at the
advantages of flexibility in building such a mapping: the MSE, as measured over the test data, is
an order of magnitude lower than in the previous case. The intervening variables evolved by the GP
were z = {ξ1(x1), ξ2(x2)} = {x3

1 − 9x2
1 + 17x1,−3x2

2 + 19x2}. As in the case of the demonstrative
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Fig. 3 The two-variable test functions.

example of Section III, “sin(.)” and “cos(.)” were excluded from the operator dictionary available to
the GP algorithm (a run with a dictionary including “sin(.)” and “cos(.)” found the exact solution
z = {ξ1(x1), ξ2(x2)} = {sin(x1), cos(x2)} in the second generation).

The next analytical test case, the two-variable Ackley function depicted in Fig. 3b, proved to be
much more challenging. Keeping the 402 full factorial design for the generation of the test data, this
time we adopted a larger training set, a 49-point Latin Hypercube. We carried out the same three
experiments (results shown in the bottom section of Table 2). On this occasion, the convergence
of the GP method using the MSE-based objective was slow so we opted for the solution of Eqn.(5)
instead, i.e., for the minimization of the leave-one-out cross-validation error (hence, this criterion is
also included in the results table).

For the z = {ξ1(x1), ξ2(x2)} = {xp1
1 , xp2

2 } intervening variable approach we have found that p1 =
p2 = 6.0313 minimizes the cross-validation error over the training data and the generalization error
measures are shown in the second column of Table 2.

The GP-based process generated the intervening variables z = {ξ1(x1), ξ2(x2)} = {x1(sin(x2
1 +

4x1)−x1 +2), x2 cos(x2−3 sinx2)} and, as previously, these improved the generalization properties of
the linear model, although not quite as substantially as with the previous test function. Also, as the
relatively high cross-validation error suggests, the brief GP run was not sufficient for the mapping-
based model to capture all modes of the Ackley function.

The attentive reader will have noticed that so far we have only dealt with separable test functions,
for which there exists a vector of intervening variables that will map the original data into a space
where the MSE of the linear regressor will be zero (although it is unlikely that the GP algorithm
will find this exact expression in a reasonable amount of time for all but the most trivial cases). To
complete our empirical investigation, we now look at a non-separable example.

VI. A “Real Life” Design Problem

The pair of testcases we discuss here is based on the optimization of the frequency response of
a two-dimensional structure of the sort that may be found in girder bridges, tower cranes, satellite
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booms, etc.26 It consists of 40 individual Euler-Bernoulli beams connected at 20 joints. Each of the
40 beams has the same properties per unit length.

Initially the truss was designed and analyzed for a regular geometry, where each beam was either
1 m or 1.414 m in length (see Fig. 4). The joints at points (0,0) and (0,1) are fixed, i.e., they are fully
restrained in all degrees of freedom. All other joints are free to move. The structure is excited by a
point transverse force applied halfway between points (0,0) and (1,0) (as indicated by the ’x’ on the
figures). The vibrational energy level was calculated for the right-hand end vertical beam27 ∗ – the
minimization of this frequency averaged response in the range 150-250 Hz was chosen as the objective.

We have constructed two different testcases: a two-variable one (denoted by f4), where where
the x and y coordinates of the top mid-span joint were allowed to vary by ±0.15m (Fig. 4a) and a
four-variable one (f5), where the y coordinates of the joints either side of the beam connecting the
two mid-span joints were allowed the same range of movement (Fig. 4b). The objectives are denoted
by f4 and f5, respectively.

The experiments and the structure of the results table (Table 3) are the same as before. The sizes
of the training sets and test sets were 16 and 1600 respectively for the two-variable example and 120
and 5000 for the four-dimensional test case. The optimization of Eqn. (5) over the exponent values of
the xp intervening variable yielded p1 = 4.5121 and p2 = 0.6897 and p1 = 0.2670, p2 = 2.3351, p3 = 0.1
and p4 = 0.1095 respectively. Allowing more flexibility in the choice of the intervening variables, i.e.,
applying the GP approach, led to the “discovery” of the following mappings: z = {ξ1(x1), ξ2(x2)} =
{x1 exp(x1 − exp(3x1)) , 5x5

2 − 2x3
2 + x2} for the two-variable case and z = {ξ1(x1), . . . ξ4(x4)} =

{1/x1 , 1 , 2x2
3 − 5

2x3 , x2
4 − 5

4x4} for the four-dimensional problem. Once again, as the comparison

∗We note here that the results of the analysis have been validated experimentally.28
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Fig. 6 Two-variable sections through the objective function landscape of the four-dimensional
truss example (f5). Each section was computed by sweeping the range [0, 1] with two of the
variables and holding the remaining two at 0.5 (i.e., at the values corresponding to the baseline
truss shown in Fig. 4).
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Table 3 Comparison of error measures for the linear regression model fitted to the non-
transformed data set and the set expressed in terms of the intervening variable – truss beam
example.

Linear regression Interv. var. of xp form Evolved interv. var.
Test function f4(x1, x2), x1,2 ∈ [0, 1]
MSE (training set) 0.0949 0.0741 0.0170
MSE (test set) 0.0998 0.0770 0.0271
Avg. abs. err. (test set) 0.2635 0.2176 0.1343
L∞ (test set) 0.8354 0.7109 0.5258
Cross-validation error 2.3202 1.6744 0.4430
Test function f5(x1, . . . x4), x1...4 ∈ [0, 1]
MSE (training set) 0.0189 0.0174 0.0131
MSE (test set) 0.0276 0.0381 0.0239
Avg. abs. err. (test set) 0.1275 0.1426 0.1185
L∞ (test set) 0.2156 0.7866 0.4553
Cross-validation error 2.4951 2.3493 1.7841

criteria listed in Table 3 demonstrate, the GP-evolved intervening variables improve the generalization
properties of the linear predictor, although the change is less marked in the case of the four-dimensional
example.

VII. Conclusions and Future Directions

The selection of intervening variables for response surface approximation is usually based on
problem-specific knowledge (as is often the case in aerodynamic optimization). Where no such knowl-
edge is available, designers often resort to using a parametric intervening variable (usually of a simple
form, such as xp), which is optimized over its parameter space. In this paper we have proposed the use
of Genetic Programming as a more flexible means of selecting intervening variables and experimented
with the idea on a set of test cases.

Although some of the results reported here are promising, we cannot claim at this stage that they
are of universal value and, consequently, we shall not draw any far-reaching conclusions based on them.
They merely serve as “proof-of-concept” experiments, which later work can build on. In our view,
the next step would be a more thorough empirical study, using a wider range of test functions and
looking into issues such as the variance of the quality of the results (arising from the stochastic nature
of the GP paradigm), the choice of the operator-dictionary that the GP algorithm can draw on, etc.
Also, more sophisticated GP algorithms could be considered, perhaps using specialized operators – our
experiments were conducted using a standard, general purpose GP code. We have briefly touched on
the issue of balancing intervening variable evolution time against the time required to obtain an extra
training point. This is another aspect (arising, of course, with almost any global modeling technique)
that a more detailed study should look into.

Although our central aim was to facilitate the construction of accurate linear predictors, the more
detailed analyses suggested above could be of use for the wider community as well, as the approach
outlined here appears to offer significant time savings over standard symbolic regression curve fitting.

As far as extensions of the method are concerned, an immediate application could be its use to
enhance the generalization properties of nonlinear models. For example, the same framework could
be used to construct better DACE models, by replacing the current local (Lamarckian) learning
component of the GP search with a maximization in hyperparameter space of the sample likelihood of
the model. In a machine learning context, the technique could be used to automate feature extraction
– again, the general framework could be the same as here, but the operand-dictionary of the GP
algorithm would include all k variables for each expression.
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