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This paper reviews aspects of low dimensional visualization methods, which are used
currently in aerodynamic design and how these can be extended to higher dimensions. The
shortcomings in current visualization methods are described and metheds introduced which
extend other visualization methods to this application. These simplify complex ideas into a
small number of plots that the designer can understand and so use to gain insight into
design. In general these take the form of maps which reduce the problem dimensionality
from 5 and 8D to just 2 dimensions. This enables screening and optimization to be performed
visually. Much of this is made possible only because the large amounts of data required for
high dimensional design space appreciation are provided by response surface method
technology. A modus operandi is proposed and the possibilities for visualization as an aid to
understanding design are illustrated via aircraft aerodynamic design. Application to a
sample problem that deals with a military aircraft optimization problem in 2, 5, 8 and 14
dimensions is discussed.

Nomenclature and Abbreviations

a = angle of attack

0 = wing twist angle

5 flap deflection angle

Cp = drag coefficient

Cr = lift coefficient

Cn = pitching moment coefficient
CFD = computational fluid dynamics
DoE = design of experiments
GTM = generative topographic map
HAT = hierarchical axes technique
SOM = self organizing map

M = Mach Number

Tip Le. loc = tip leading edge location

I. Introduction

THERE are considerable cost benefits to be derived from improving designs both by better searches in current
design spaces and by satisfying more complex design criteria, for instance by striking the right balance between
multiple objectives from the same discipline or from different disciplines. At present designers spend too long
preparing individual analysis cases and, therefore, are constrained to sampling only small areas of the design space
close to previously explored regions. In the design process, complex design tasks need to be broken down into
manageable portions so that specialists in individual disciplines can resolve different parts of the design. Currently
these portions are too small and there is too much iteration between disciplines which prohibits the challenging of
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the constraints of one discipline by another, where progress is likely to be made. However, this situation can only be
ameliorated if small numbers of individuals can assimilate, appreciate and understand large amounts of data rapidly
and efficiently.

With this in mind, this work is aimed directly at the designer in the design process of the future, who communicates
with and steers the design, search and optimization process and will extract previous work from databases
transparently and flexibly. They will use software and data perhaps as web services, so that the source of this data
and software will also be relatively unknown and unimportant. This designer makes use of high cost analysis codes
within automated search and response surface models to map and optimise domains using computationally
expensive evaluations. He or she then uses low fidelity (or computationally inexpensive) meta models to navigate
high fidelity design spaces. The placement of analyses in the design space are defined by design of experiments
(DoE) both as a scheme defined a priori and as a result of an optimization or error-defining processes. This engineer
armed with more information and understanding, regularly challenges cross-discipline constraints. They are more
concerned with problem definition, design space shape and optimization than how any one analysis is obtained and
use advanced visualization techniques to provide enhanced comprehension and effective navigation of hyper-
dimensional design spaces.

This paper reviews some currently used visualization methods: schematics, scatter plots, optimization tracing and
parallel axes methods. It proposes a design process in which visualization is integral, introduces a scalable aircraft
design problem and applies some currently used and more novel visualizations to this problem, including self-
organizing maps (SOM) for visual screening and Mihalalisin’s hierarchical axis technique (HAT) plots for
optimization tracing in high dimensions. Finally, an 8 dimensional design space is reduced to a 2 dimensional design
space and its potential role in optimization is discussed. This is achieved using a combination of these approaches,
performing the transformation using the generative topographic mapping (GTM), to give a method of optimization
tracing in high dimensions. Here, no new visualizations are developed, but the SOM, HAT plot and GTM are
applied in novel ways.

II. Currently used visualization

Current multi-dimensional design space visualizations include, for example the general arrangement of an aircraft, a
drawing in which the plan, front view and side elevation of an aircraft are shown. This potentially illustrates all of
the geometrical variables of the aircraft simultaneously and is used extensively in commercial aircraft conceptual
design to show starting, final and intermediate aircraft designs. The experienced design engineer can at a glance
discern all the key features and assess whether or not he or she likes the design, based on similarity to previously
obtained designs with good performance.

Figure 1: Schematic of Airbus A320 and DeHavilland Comet Aircraft.

An example of two such schematics is shown in Figure 1, in which the geometrical properties of the 1958 de
Havilland Comet aircraft can be compared and contrasted to its successor, the Airbus 4320 aircraft of 1988. These
schematics also illustrate the vast numbers of design variables involved in a real aircraft design. For aircraft with a
similar range and thrust, the fuel consumption is much lower for the A320 aircraft and it carries half as many
passengers again as the Comet. An indication as to why this is the case is given by the relatively large wing plan
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form of the Comet and its much narrower fuselage. The performance of the aircraft has, however, to be inferred
from the geometry.

In this paper we aim to bring together a variety of data sampling and hyper-surface fitting technologies to draw
multi-dimensional maps of key performance quantities. The visual inspection of these will aid the designer in the
design process. However, with higher dimensional data the trends, clusters, hyper surfaces and anomalies, that may
be of interest to a designer, are often difficult to identify and interpret because higher dimensional data is often
sparse (described by Huber® as the curse of dimensionality). Structure in the data may also be difficult to locate or
comprehend.

The work described in this paper builds on earlier work see, for example, Tweedie', in which an electronics design
application is discussed, and extends this to an aircraft design application. This work additionally expands the
visualization methods discussed in for instance, Chatterjee” into four dimensions and for more complicated
functionality, without necessarily resorting to the use of parallel co-ordinates, although the use of this technique is
also illustrated. An aircraft application is presented in Grubel’, which also uses parallel co-ordinates, but the design
space visualization does not include four variable visualization with constraint application as presented here. A nice
review of other visualization methods is presented in Messac'”.

III. Taxonomy of a Design Process

The modules available in the design process discussed here are illustrated in Figure 2. The design problem is first
specified in terms of an objective function with equality and inequality constraints, which vary with respect to
design variables. It is assumed here that calculation of these quantities is expensive and that any such calculations
must be sparingly applied.
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Figure 2: Taxonomy of a Design Process. The items highlighted in red indicate a possible set of selections.

Next a Design of Experiments (or DoE) is implemented to populate the sample space. A key question to be
answered is exactly how many samples are required in a design space. Often the answer is those that can be
afforded. The next question is how best to place these. Full factorial and random experiments are common in
complex design situations, but techniques such as Latin hypercubes described by McKay'’, minimax space filling as
discussed in Audze' or LP; arrays described by Statnikov'* sample the design space more effectively. It is usually
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best to use relatively few initial samples and then insert additional points based on goodness of fit metrics such as
root mean square error and expected improvement.

The next question is which response surface algorithm to use to interpolate or regress the available data. Possibilities
include radial basis functions without basis function tuning, such as linear, cubic and thin plate spline or with a
single tuning parameter, for instance multi-quadric. An alternative is kriging, a form of Gaussian processing, with
statistically motivated basis function tuning as described in Jones ef al’, Jones’ and Sacks et al’. In addition, simple
multi dimensional polynomial interpolation and localised Shepard's methods may also be applicable in some cases.

At this point we may decide we want to reduce the size of the problem to more manageable dimensions. This area of
research can be termed data screening. Techniques such as principal component analysis can be utilized to
orthogonalize and then prioritize the design variables. The tuning hyper parameters in kriging can also be used to
provide the order of importance of the design variables.

We will normally next want to put more points into the sample, in promising regions, where for instance the
expected improvement is a maximum (see Jones ef al®) or we may be interested in identifying the best point or a
variety of local optima. Then a range of stochastic and gradient based optimization methodologies may be brought
to bear in the response surface design space to identify these points. New sample points are then obtained at these
optima. Alternatively, we may wish to zoom in, in terms of variable range or numbers of variables, or both, on a
smaller subset of the original design space.

A variety of maps can be made available to the designer to aid this process. It is the construction and use of such
maps that is the main subject of this paper.

IV. Airplane Design Problem

The problem chosen here to illustrate design space visualization is to minimize the drag coefficient Cp of a
representative Military Aircraft. This is a trapezoidal tail-less aircraft in cruise at M=0.85, subject to constraints on
lift coefficient (C;) and pitching moment coefficient (C,,). Different problems are considered, representative of
different phases of the design process.

Figure 3 shows the forces and moments on the aircraft in straight and level flight, from which the trim condition is
derived.

Figure 3: Major forces and moments on a military aircraft in straight and level flight, showing sign
conventions utilized.

A BAE SYSTEMS in-house 3-dimensional inviscid, unstructured CFD method is used to perform the evaluations,
which is computationally relatively expensive. A single evaluation takes approximately 10 c.p.u. minutes on a single
processor computer. Morgan ef al'’describes the methodology used in the CFD code. To begin with, 200 calculation
results were used in the DoE.
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V. 2-dimensional search space

In order to understand the requirements of visualization to support optimization, let us first examine a two-
dimensional design space that we can readily understand and use it to examine the additional appreciation that
visualization provides. Discussion of this type of visualization for constrained optimization is provided for example
in Jones® and in the determination of feasible solutions section of Statnikov and Matusov'®. In order to perform an
optimization successfully, it is helpful to the designer to be able to view the design space, to see the path of the
optimization algorithm and the constraint boundaries restricting access to certain sub domains and highlighting the
feasible region. This is relatively easy to do in two dimensions, where the variation of the objective against two
design variables can be drawn as a contour plot or three-dimensional surface (provided that enough data points are
available to construct the plot).

Figure 4: Visualization of 2 dimensional design space for Military Aircraft Wing Alone Problem. C, is shown
shaded, with the constraints Cr >= 0.1994 and |C,,|<= 0.02. The infeasible region is indicated by use of black
circles to represent DoE points and white circles are used in the feasible region. Also shown are white crosses
to represent the evaluations of simulated annealing on the Kriged design space. The square represents the
domain optimum, where the constraints are satisfied and the C) is a minimum.

To illustrate this, a 2-dimensional visuvalization of a Kriged search space of Cp(6,a), where 8 is the linear twist
down the wing or wash out and e is its angle-of-attack is shown in Figure 4. The design variables act within user
specified bounds: -3 ? <=@<= 7’ and -3 ° <=a<= 7. Two additional Krigs of C; and C,, are also made. The infeasible
region, where the inequality constraint on Cy is not satisfied (i.e. where C;, <0.1994) or on C,, (i.e. where |C,, [>0.02)
is indicated by use of black circles to represent DoE points in this region. Notice that the Cp design space is
relatively smooth. The faint, white crosses represent the evaluations of the Krig model using simulated annealing to
find the domain optimum. A white square represents the location of the optimum in the Krig domain, i.e. the
location where both the constraints are met and Cp has the lowest (whitest) value. Large numbers of evaluations of
the simulated annealing search center on the optimum. The optimum is given by CFD as C,, = -0.007081, Cp, =
9.999¢-03, Cp, = 0.1994 and from the Krig model as C,, = -0.007238, Cp = 9.918E-03 and C; = 0.1994, the

differences illustrating the slight lack of precision in the Krigs.

VI. 5-dimensional search space

We next consider a 5-dimensional search space with the additional design variables: mid-camber (all sections

assumed to be the same and scaled according to local chord), flap deflection angle (8) and tip leading edge location
(tip Le. loc), which impacts on both leading and trailing edge sweep angles. In this case 200 CFD calculations were

made for a body/wing aircraft.
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In the first instance, scatter plots of the data, as shown in Figure 5, can provide some appreciation of the design
space and establish that known trends are being followed, for instance, the quadratic nature of the relationship
between €y and Cp can easily be identified. Any off trend points, which can represent failed CFD evaluations can
also easily be identified and either repeated or eliminated from the data set.

Figure 5: Scatter plot.

It is sometimes useful to know the order of importance of the design variables in the problem, particularly when
eliminating variables to reduce problem size. The results from screening this data using conventional PCA and
kriging (as described in Jones et al’) give a as the most important design variable in the problem, then camber and 6

and then #ip Le. loc. and 6.

A parallel co-ordinates plot for the independent variables, constraints and -objective is shown in Figure 6. Here, the
variables are sorted so that variables which are related are adjacent, for instance & and Cp. As we are attempting to
minimize Cp, the lines for the lowest 2 values of Cp, which satisfy the equality constraint on #rim and the inequality
on Cy are shown as bolder lines. The independent variables, give in general uncorrelated responses as defined by the
DoE. The negative correlation between €y, and C,, and the positive correlation between C; and Cp and C,, and rim
are also clear.
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Figure 6: Parallel Co-ordinates technique for Body/Wing Problem design space visualization.

The self-organizing map (SOM, after Kohonen®) is a diagrammatic representation rather than a physical map of
the design space. The SOM is a projection and visualization of a high-dimensional signal space on a two-
dimensional display. Coarsely defined SOM’s are presented here in Figure 7. In the SOM's the trends of the maps of
C;, Cp, C,, and trim are generally from red to pink in diagonal bands, showing that they are all related (Cp, Cy, crare
positively correlated to each other and negatively correlated to C,, and trim). The orientation of the SOM's is
arbitrary, but the relative orientation is significant. The SOM's also show that the independent variables in the
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problem are unrelated, as they should be. In higher dimensional problems, the SOM has been shown to indicate the
first two principal components, as their SOM’s can be related although often in opposite directions (e.g. in opposite
diagonal directions or vertically and horizontally). This can be used as a visual representation of non-linear principal
component analysis. Bland regions in the SOM can give an indication of rogue data e.g. from unconverged CFD
evaluations) and completely bland SOM’s can help to identify unimportant variables. Further discussion of the
establishment of variable relationships using SOM’s is given for different design spaces in Matthews’.

Figure 7: Use of Kohonen's Self--Organizing Maps for design space visualization.

Figure 6 and Figure 7 are clearly not easy to interpret and so the next question is whether or not the type of
visualization presented in Figure 4 can be extended to higher dimensions to provide equally useful information. A
Hierarchical Axes Technique (HAT) plot, after Mihalasin'’, is shown in Figure 8. Here, within an individual tile
camber and §vary. As we go from tile to tile in the horizontal direction of the main plot & varies and in the vertical
direction e varies. Then the top 8/ tiles of this image represent the highest value of the fifth design variable, leading
edge tip location. Each block of 8/ tiles going down then represent lowering values of leading edge tip location.
Only the top of this image is presented so that the smaller tiles are seen clearly. Two optima are shown: the first the
result of a simulated annealing optimization (filled square) and the second the result of an exhaustive search in the
representation data. This picture is only possible because response surface methodologies enable the large amount of
data required for plotting to be provided. The image gives confidence that the same optimum is being located in both
cases and that the curve fit is well behaved. To prevent confusion with the trace of the optimization, the initial DoE
has not been presented here, although this is clearly possible and useful, in the same way.

To validate our procedure some results from this process are given in Table 1. (For clarity of presentation the GTM
results for the following section are also presented in Table 1). The variation in the results given in Table 1 could be
cause for concern, except that reference to the visualization shows that these results are close to each other and are
therefore close to the same optimum. The CFD result is significantly different from the RSM, which means that
there is mileage in building a new model, including this optimum and iterating until the optimum and CFD result
obtained converge. Such differences are common in higher dimensional RSM work. Often multiple updates are

required.
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Figure 8: HAT Visualization of the 5 dimensional Airplane Problem Design Space. Also shown is a trace of a
simulated annealing optimization, in which all the evaluations made during the optimization are
superimposed on the plot as unfilled squares.

Method Xq Xy X3 X4 X5 trim Cy, Cp Cn

Simulated 3.583 5.194 1.184 0.0156 10.24 1.000 0.1993 | 68.07¢-04 | -0.2153
annealing on
response
surface

Additional 3.583 5.1936 1.1835 0.0156 10.2366 1.0004 | 0.2035 | 86.31e-04 | -0.2153
CFD
evaluation

9”6 point 5.75 5.75 1.125 0.035 9.5573 0.9999 | 0.1994 | 74.03¢-04 | -0.2153
search on .

response
surface

Simplex 6.6985 | 4.8302 | 5.7286 | 0.0004 9.5808 0.9973 | 0.1974 66.19E- -0.2188

method on 04
response
surface

27877 | 4.0083 | 0.5342 | 0.0506 | 10.1614 | 0.9803 | 0.1966 | 64.0E-04 | -0.2284
GTM

Additional 27877 | 4.0083 | 0.5342 | 0.0506 | 10.1614 | 0.9920 | 0.1934 | 54.0E-04 | -0.2221

CFD
evaluation

Table 1: Results for Design Space Optimization using different methods, but note that results were achieved
only using the initial DoE
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VIL. Transformation of high dimensional spaces to low dimensional spaces using the GTM

Although the coarse SOM’s already discussed enable the detection of relationships between functions and
identification of their relative importance, they do not facilitate the scrutiny of trades between domain constraints. In
addition, the location of function minima is also desirable, along with tracking the paths of optimizations and neither
are possible in the SOM.

One approach to this problem is the triangle plot presented in Grossman'®, which is a mapping of 28 dimensional
space into 2 dimensions. To do this 3 points are chosen to form the corners of the triangle. These may be local
optima or perhaps two local optima and one intermediate point. All the intermediate points are then obtained as
being a certain distance away from these reference points. The actual objective and constraints are then plotted as
usual in a 2 dimensional plot. This technique necessarily incurs a loss in data structure, and a triangle is a relatively
complicated mapping, particularly from higher dimensions. Additionally, optimization is difficult in this
transformed space, as the corners of the triangle are defined by known points (the optima are used) and therefore
exactly how far away other optima are and how far to extend the space is not known a priori.

To obtain a plot that gives the designer better insight a transform is required which has a more intuitive 2
dimensional manifold. The SOM is a projection and visualization of a high-dimensional signal space on a two-
dimensional display. However, it is based on a heuristic algorithm rather than sound statistical techmques and
therefore errors are difficult to control when transforming between design spaces.

Kohonen® introduces the Generative Topographic Mapping (GTM)'" as an alternative computation of the SOM in
which the metric relations between the models on the map grid and the data space are defined with improved
fidelity. The trade-off is a higher computing load.

Therefore, in a new development, we transform data from a high-dimensional to a low-dimensional design space
and, by inspecting the transformed data in the low-dimensional design space, enable an optimum value for a
functional representation of the transformed data to be established. This permits effective exploration of the high-
dimensional design space. A patent has been filed and is pending regarding this process in Holden and Keane® and
an example for an 8 dimensional aircraft design problem is shown in Figure 9. This Figure was obtained using 516
points in the initial DoE.

Penally fanction Wit circies in Sensitile region.
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Figure 9: GTM for 8D aircraft design space.

The end solution to the 5 dimensional problem is given in Table 1. The sweep is reduced compared to the initial
configuration as large amounts of sweep give a large amount of downward pitching moment, which has been
reduced.

The solution to the 8 dimensional problem obtained using the GTM after a number of iterations is at: x;=0.05058,
x;=0.01256, x;=0.005531, x,~0.00668, xs=0.00953, xs~0.00360, x=4.8462, xg= 1.7266, and the equivalent CFD
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solution is at C;=0.2022, Cp=58.83 counts, C,=-0.00359661. This is probably reasonable compared to other
optimizations. For instance, a gradient search in a similar 3 dimensional version of this problem also gave Cp= 58.8
counts, with C;=0.1994 and C,,=-0.02 (higher C; and lower C,, in this case), although the GTM solution is not fully
optimized as it is not on the boundary. This optimum could possibly be found using a gradient search within the
GTM space.

The pressure distribution, loading distribution and geometry of the starting and final 8D configurations are shown in
Figure 10 to Figure 13. In this case the loading distribution is nearly elliptic, as expected, except for the removal of
twist to reduce wave drag in the outboard wing and similar increase inboard to maintain lift.
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Figure 10: Pressure distribution from 8D optimization using the GTM compared to baseline.
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Figure 11: Spanwise loading distribution for 8D optimization using the GTM compared to baseline and
elliptic.

A visualization is also presented for the corresponding 14D design space in Figure 14. The similarity with the 8D
space should be noted. However, good results were more difficult to obtain in 14D. This is probably because the
transformation is doing more work, i.e. going from 14 to 2 dimensions. To ameliorate this problem we transform to
4 dimensions (instead of 2) as presented in Figure 15. (This image is easier to understand if the similarity with the
HAT plot in Figure 8 is appreciated.)

The quantitative results obtained in 14 dimensions were not as good as might be possible (although this is quite a
high dimensional space which is difficult to navigate) and therefore further work is required to either use larger
numbers of Gaussian centers, to use curvatures when obtaining physical distances or perhaps to use the Neuroscale
transformation instead of the GTM. (See for instance Nabney”' for further information.) However, the GTM is still
useful qualitatively, for example it could be used to pre-process a problem so that a subsequent method could look at
a reduced problem area or start from a better location.
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Figure 12: Baseline geometry, 8D problem.

Figure 13: Geometry after optimization, 8D problem.

Feiaky iuetion. Wiile circies in feasitde regioe.

Figure 14: 2D GTM for 14D aircraft design space.
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Figure 15: 4D GTM for. 14D aircraft design space

VIII. Conclusion

In summary the work done in this paper achieves:

The review, testing and ranking of a small number of existing high dimensional visualization methodologies,
the use of the coarse SOM for pictorial screening in design,

the establishment of relationships between variables,

the use of Kriging to produce HAT plots in four to six dimensions in sparsely sampled domains,

the use of the GTM to perform graphical optimization in, so far, up to 14 dimensions,

the play off between the objective function and constraints,

Optimization and optimization tracing.
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