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Summary. We present a stochastic meshfree projection scheme for analysis of flow in random porous media.
The random field describing the log-permeability is discretized using the Karhunen-Loéve expansion scheme.
We perform spatial discretization of the governing equations by representing the pressure distribution using
an expansion in terms of radial basis functions with undetermined random coeflicients. Subsequently, we apply
a collocation scheme over physical space, which leads to a system of linear random algebraic equations. The
algebraic equations are solved by Galerkin projection on to a preconditioned stochastic Krylov subspace. This
enables the possibility of accurately estimating the statistics of the pressure distribution at a computational cost
only marginally higher than the solution of the deterministic version of the governing equations. We present
numerical results for two test cases to illustrate the performance of the proposed approach.
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1 INTRODUCTION

In this paper, we consider the problem of incompressible flow in random porous media. Using the
continuity equation and Darcy’s law, it can be shown that the steady-state pressure distribution in the
domain is governed by the following stochastic diffusion equation [1]

VIs(@w)Vp(z;w)] = f(z;w), (;w0) €D x 0
Bp(z;w) = g(z;w), (w;w) € D x 12, (1)

where k(x;w) denotes the spatially varying permeability field and p(z;w) is pressure. D is a bounded
domain in R? and 9D denotes its boundary. B is an operator representing the boundary conditions
imposed on p(z;w). 12 is a probability space. f(z;w), 9(7;w) and k(z;w) are real valued functions on
D x 2. Note that we use the symbol w or 0 to indicate the dependence of any function on a random
dimension.

Numerical solution of ( 1) involves computing the statistics of the pressure distribution p(x; w), given
the statistics of the permeability x and the functions f and g. In this probabilistic model, it is implicitly
assumed that random field models for &, f and g are available. For simplicity of presentation, we shall
henceforth assume that only the permeability #(x;w) is random, i.e., both the source term and boundary
conditions are deterministic.

Stochastic approaches to flow and transport in random porous media have been extensively studied
over the last two decades; see, for example, the recent monograph by Zhang [1]. A straightforward
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approach for solving (1) involves the application of Monte Carlo simulation techniques or its variants
[2]. In this approach, a deterministic solver based on a standard spatial discretization scheme such as the
finite difference or finite element method is first created to solve (1) given a realization of the permeability
field k. This solver can then be run for many realizations of the random field (1) @ K@ to
generate the corresponding pressure distributions, say pD), P (@), Subsequently, the statistics of
P can be approximated to an arbitrary degree of accuracy given sufficient number of samples (). Clearly,
the major drawback of simulation techniques is the high computational cost incurred when a fine grid
is used in the deterministic solver and the number of samples is large.

Perturbation-b‘ased moment equation approaches are computationally cheaper alternatives for ap-
proximating the statistics of p; see, for example, [2, 3]. However, the results can be highly inaccurate
when the variability in « is significant [2]. More recently, polynomial chaos projection schemes have
been proposed in the literature for solving (1); see, for example, Ghanem [4]. Even though this ap-
proach is more accurate than perturbation methods, the computational cost can be prohibitive when
the correlation length of K(z;w) is small.

In this paper, we present a meshiree stochastic projection scheme for solving (1) which gives sig-
nificantly more accurate results than perturbation methods, while requiring computational effort only
marginally higher than solving a deterministic version of (1) with (k), where () denotes the ensemble av-
erage operator. The present approach is based on stochastic reduced basis projection schemes proposed
recently in the literature for solving stochastic operator problems in computational mechanics; see, for
example, Nair and Keane [6], and Nair [7]. We first discretize the lognormal random field representing
uncertainty in x(x;w) using the Karhunen-Loéve (KL) expansion in conjunction with the polynomial
chaos decomposition scheme [5, 7]. For spatial discretization, the random pressure distribution p(z;w)
Is represented using an expansion in terms of radial basis functions (RBF) with random coefficients,

by Galerkin projection onto a preconditioned stochastic Krylov subspace [6, 7]. Numerical results are
presented to illustrate the performance of the algorithms.

2 STOCHASTIC MESHFREE FORMULATION

We start with the standard assumption that the permeability field has a lognormal distribution, i.e.,
k(z;w) = exp(h(z; w)), where h(z;w) is a Gaussian random field with correlation function Ry (z,y).
Applying the KI, expansion scheme [5] to h(z;w), we have

M
(5) = exp <<h<x;w>> +3 ﬂwmw) , (2)
i=1

where \; and ¢, (z) are the eigenvalues and eigenfunctions, respectively, of the correlation function
Ry (z,y), and bi(w),i=1,2,... ;M are uncorrelated Gaussian random variables.

Due to the Cameron-Martin theorem (8], a 1Lean-square convergent expansion (also known as the
Weiner chaos decomposition [5]) of the permeability field can be written as

N
slaiw) = 3 wi(x)13(0), (3)
=0

where I3(0),i = 0,1,... N are Hermite polynomials in § = {Ol(w), O2(w),...,0m(w)} € RM,
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N
{AO+ZA@~FZ-(0)J T(0)—b L 9,(0),Vi=12... m. (9)

i=1
The Galerkin condition results in a deterministic, reduced-order, m x m linear algebraic system of
equations in & of the form

N
<!I/TA0W +> Fi(O)gDTAiu'/> €= (wTh). (10)
=1
Solving the preceding system of equations and substituting the computed value of £ into (8), we arrive
at an explicit expression for a in terms of the random variables arising from discretization of the
permeability field. Hence, using the stochastic reduced basis approximation for e in conjunction with the
RBF expansion for p(z;w) in (4), the statistics of the pressure distribution can be efficiently computed.
For example, the mean pressure can be written as

n

(p(x3w)) = D (u(0) K (]2 ~ il]), where (a(6)) = (#)¢. (11)

i=1
Similarly, the covariance function of the pressure distribution can be written as

n n

By(y,2) = (g )p(5:0)) = 3 3 (s0)az (00 (|ly — w: DK (1= — a5)), (12)

i=1 j=1

where (a;(0)a;(0)) is the ijth element of the matrix (a(0)a(0)T) = (weeTwT),

3 NUMERICAL RESULTS

In this section, we present numerical studies on one- and two-dimensional test problems. The first
example considered is the following stochastic differential equation [10]

d d
Zl;m(z’ U))a;p(l‘,UJ) =0, ze [O’ 1]7 (13)

with the boundary conditions p(0; w) = 0 and p(1;w) = 1. The random diffusivity has the form Klzyw) =
1+ ¢(w)z, where €(w) is a Gaussian random variable with standard deviation o.. The exact solution of
this problem is given as

oy log[l +e(w)x]
pe(@;w) = m,
=z, for e(w)=0. (14)

for e(w) #0.

We use Gaussian RBFs for meshfree approximation with 10 uniformly distributed collocation points.
Figure 1 compares the standard deviation of p(z;w) computed using the stochastic reduced basis projec-
tion schemes with the exact values for o, = 0.1 and 0.2. In the figure, SRBM1 and SRBM2 denote results
obtained using two and three basis vectors, respectively. It can be seen that the statistics computed
using SBRM2 agree well with the exact results for this problem.

In the second example, we consider the two-dimensional model problem on the unit square |0, 1] x
[0,1] described in [2]. We model the log-permeability as a homogenous Gaussian random field with
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Fig. 1. Comparison of standard deviation of p(x;w) computed using stochastic reduced basis methods with
exact values for o, = 0.1 and 0.2.

covariance function o7 exp{—(z — ') /by — (y — ¢/)/ b2}. We conducted numerical studies to investigate
the performance of the stochastic meshfree approach for a% = 0.1 and 0.2 with b; = by = 1.0. Ten terms
are retained in the KL expansion of the log-permeability field, i.e., M = 10. We use Gaussian RBFs for
meshfree approximation and an uniformly distributed set of 11 x 11 collocation points.

Since no exact solutions are available for this problem, we generated benchmark results using Monte
Carlo simulation (MCS) by solving (7) exactly for 2000 realizations of 6. Figure 2 compares the standard
deviation of pressure along the z direction at y = 0.5 computed using stochastic projection schemes and
MCS for o7 = 0.1 and 0.2. It can be seen that the projection scheme with three basis vectors (SRBM2)
shows good agreement with MCS.
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Fig. 2. Comparison of standard deviation of pressure along z direction at y = 0.5 computed using MCS and
stochastic projection schemes for o = 0.1 and 0.2.
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4 CONCLUDING REMARKS

In this paper, we presented a stochastic meshfree approach for studying flow in random porous media.
Numerical studies on model problems indicate that the proposed approach gives accurate results using
few stochastic basis vectors (m << n). Hence, the computational cost of the stochastic projection
scheme is only marginally higher than the solution of a deterministic version of the governing equation
with (k(z;w)).

Further studies are required to investigate the performance of the projection scheme for problems
with smaller correlation length and higher variability. In such cases, a few hundred terms will result
from the Karhunen-Loeve expansion and a dense set of collocation points would be required to resolve
the pressure distribution. It is expected that such problems can be solved with high accuracy using a
larger number of stochastic basis vectors.
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