The University of Southampton
University of Southampton Institutional Repository

Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure

Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure
Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure
A normally closed microgripper with a radius of curvature of 18–50 µm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°–90° at an applied power of <20 mW.
0003-6951
5748-50
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3

Luo, J.K., Flewitt, A.J., Spearing, S.M., Fleck, N.A. and Milne, W.I. (2004) Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure. Applied Physics Letters, 85 (23), 5748-50. (doi:10.1063/1.1833555).

Record type: Article

Abstract

A normally closed microgripper with a radius of curvature of 18–50 µm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°–90° at an applied power of <20 mW.

This record has no associated files available for download.

More information

Published date: 2004

Identifiers

Local EPrints ID: 23005
URI: http://eprints.soton.ac.uk/id/eprint/23005
ISSN: 0003-6951
PURE UUID: 2f2c0114-433a-4853-854f-235c346265cf
ORCID for S.M. Spearing: ORCID iD orcid.org/0000-0002-3059-2014

Catalogue record

Date deposited: 10 Mar 2006
Last modified: 16 Mar 2024 03:37

Export record

Altmetrics

Contributors

Author: J.K. Luo
Author: A.J. Flewitt
Author: S.M. Spearing ORCID iD
Author: N.A. Fleck
Author: W.I. Milne

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×