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The optimized high-order compact (OHQC) finite difference schemes, proposed as central schemes
are used for aeroacoustic computations on interior nodes. On near-boundary nodes, accurate non-
central or one-sided compact schemes are formulated and developed in this paper for general compu-
tations in domains with non-periodic boundaries. The near-boundary non-central compact schemes
are optimized in the wavenumber domain by using Fourier error analysis. Analytic optimization
methods are devised to minimize the dispersion and dissipation errors, and to obtain maximum res-
olution characteristics of the near-boundary compact schemes. With the accurate near-boundary
schemes, the feasibility of implementing physical boundary conditions for the OHOC schemes are
investigated to provide high-quality wave solutions. Characteristics-based boundary conditions
and the free-field impedance conditions are used as the physical boundary conditions for direct
computations of linear and nonlinear wave propagation and radiation. It is shown that the OHOC
schemes present accurate wave solutions by using the optimized near-boundary compact schemes
and the physical boundary conditions.

1. Introduction

The seven-point stencil high-order central compact finite difference schemes for evaluation
of the first derivatives on interior nodes were optimized in the wavenumber domain by Kim
and Lee,! The analytic optimization methods were devised to minimize dispersion errors
and obtain the maximum resolution characteristics of the central compact or non-compact
schemes.!? With periodic boundaries and simple boundary conditions, the optimized high-
order compact (OHOC) schemes were used accurately to provide high-quality linear and
nonlinear wave solutions.3-3

Many practical applications involve computations in domains with non-periodic bound-
aries. For these general computations by the OHOC (optimized high-order compact)
schemes on interior nodes, accurate non-central or one-sided compact finite difference
schemes should be incorporated on near-boundary nodes. Accurate evaluation of the first
derivatives on the near-boundary nodes is important for the high-order and high-resolution
schemes to provide high-quality numerical solutions.® In general, when all the first deriva-
tives of the Euler equations are evaluated by the high-order finite differences, the order of
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the resulting finite difference equations is higher than that of the original partial differential
equations. Moreover, the high-order multidiagonal compact schemes may produce serious
errors near the boundaries unless such accurate near-boundary compact schemes are imple-
mented. The near-boundary schemes are, of necessity, non-central or one-sided differences
and their error characteristics are both dispersive and dissipative, while those of the central
compact schemes are only dispersive. Fourier analysis provides an effective way to quan-
tify the dispersion and the dissipation errors of the near-boundary compact schemes.® In
this paper, the errors of the non-central near-boundary compact schemes are minimized in
the wavenumber domain through the Fourier analysis and analytic optimization methods.
In this way, the near-boundary compact schemes may be optimized to obtain maximum
resolution characteristics and high accuracy.

When the first derivatives are evaluated accurately on the near-boundary nodes, correct
and physical boundary conditions should be imposed in order to yield high-quality wave
solutions. The high-order compact schemes are sensitive to boundary values in the eval-
uation of the first derivatives, so the quality of solutions, even on the interior nodes, are
dependent on the accuracy of boundary conditions. For this reason, the correct physical
boundary conditions as well as the accurate near-boundary schemes are essential to the
actual applications of the OHOC schemes.

Recently, several suggestions for the physical boundary conditions have been proposed for
unsteady aeroacoustic computations. These proposals can be classified in three categories,
namely, (1) quasi one-dimensional characteristics, (2) decomposition of the solution into
Fourier modes, and (3) asymptotic analysis of the governing equations for large distances.”
Thompson®? decomposed hyperbolic equations into wave modes of definite velocity and then
specified boundary conditions for the incoming waves. The starting point of his analysis
was the nonlinear Euler equations. The idea of his approach was that one-dimensional
characteristic analysis could be performed by considering the transverse terms as a constant
source term. The amplitudes of the outward propagating waves were defined entirely from
the variables inside the computational domain, while those of the inward propagating waves
were specified as the boundary conditions. These characteristics-based boundary conditions
were utilized and developed by Poinsot and Lele!® for the Navier-Stokes computations
with non-dissipative algorithms. Giles!! derived boundary conditions based ou the Fourier
analysis of the linearized Euler equations. His basic idea was that the dispersion relation
for the linear equations could be modified to prohibit propagation for waves with group
velocities directed into the computational domain. Tam and Webb,? Bavliss and Turkel,'2
and Hagstrom and Hariharan'® considered boundary conditions based on au asvinptotic
analysis of the linearized Euler equations with constant mean flow in one direction. These
approaches were effective when the position of acoustic source is specified exactly. The
system of asymptotic equations could be reduced to the convective wave equations for
pressure.

The present work is concerned with applications of the characteristics-based boundary
conditions to the OHOC schemes. Thompson’s inviscid wall and non-reflecting boundary
conditions are used for the actual computations. Especially on radiation boundary, the
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free-field impedance conditions® are imposed to correct the multi-dimensionality problem

in Thompson’s non-reflecting boundary conditions. The free-field impedance conditions
can improve the non-reflecting characteristics of the radiation boundary conditions. In
this paper, these physical boundary conditions are implemented for the OHOC schemes
to provide high quality numerical solutions of linear and nonlinear wave propagation and
radiation.

2. Governing Equations

The linear and nonlinear waves are computed from the Euler equations. The conservative
form of axisymmetric and two-dimensional Euler equations in the Cartesian coordinates are
considered in this paper.
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The axisymmetric and two-dimensional equations are formulated in cases where o = 1
and a = 0 respectively. The linear and nonlinear wave propagation and radiation are
computed from Eq. (2.1) by using effective numerical algorithms and boundary conditions.
The spatial derivative terms in Eq. (2.1) are evaluated by the OHOC schemes. For nonlinear
wave computations, the artificial selective damping (ASD) terms*®1® can be added in the
right side of Eq. (2.1) as a treatment of nonlinearity. The fourth-order low dissipation and
dispersion Runge-Kutta (LDDRK) scheme is used as a time advancing method, which has
two steps with 4-6 alternating stages.®?1¢ These numerical algorithms can be also applied
to three-dimensional problems in generalized coordinates without any additional treatment.

3. OHOC Schemes in a Domain with Non-Periodic Boundaries

3.1. OHOC schemes on interior nodes

The main schemes presented here are generalizations of the Padé scheme of seven-point
stencil as shown below?7:

sz+3 = fi 1 N bfi+2 _‘fi—Q 4 afi+1 — Lo ’
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(3.1)

This is the central difference formulation for the evaluation of the first derivatives on the
interior nodes. The relations that determine the truncation order of this scheme are derived
by using Taylor series expansion of Eq. (3.1). Ounly the eighth-order tridiagonal (3 = 0)
scheme and the tenth-order pentadiagonal (3 # 0) scheme have unique values of coefficients
a, b, ¢, o and [3, and these ones are of the highest order obtainable with Eq. (3.1). The other
lower order schemes should have free coefficients that are not determined completely until
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more constraints are imposed, and these can be used to improve the resolution character-
istics. Analytic and systematic constraints for the determination of the free coefficients are
considered. The nature of these constraints is minimization of the dispersive (phase) errors
in the wavenumber domain. Using these constraints, Kim and Lee! succeeded in optimizing
the compact schemes and showed that the optimized sixth-order tridiagonal (OSOT) and
the fourth-order pentadiagonal (OFOP) schemes are more accurate than any other central

compact schemes. In Ref. 1, the coefficients of the OSOT and OFOP scheme were presented
as

e OSOT Scheme (5 =0):

a = 1.568098211519709, b =0.2716571074522698, ¢ = —0.02257678073547548,
a = 0.4085892691182515.

e OFOP Scheme (8 # 0):

a =1.279672797796143, b =1.051191982414920, ¢ = 0.04475268855213291,
a = 0.5900108167074074, [ = 0.09779791767419070.

These optimum coefficients provide high-order accuracy and maximum resolution charac-
teristics for the central compact schemes, and these schemes are proposed as the OHOC
schemes. The maximum resolution characteristics of the OHOC schemes are compared with
those of other standard central schemes in Fig. 1.
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Fig. 1. Maximum resolution characteristics of OHOC schemes in comparison with other standard central schemes:
(a) second-order central differences, (b) fourth-order central differences, (c) sixth-order central differences, (d) DRP
scheme in space, (e) exact differentiation, (1) standard Padé scheme, (2) sixth-order tridiagonal scheme (c = 0),
(3) OSOT scheme, (4) eight-order tridiagonal scheme, (5) Lele’s fourth-order pentadiagonal scheme, (6) OFOP scheme,
(7) tenth-order pentadiagonal scheme.
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3.2. Compact schemes on near-boundary nodes

In this section, an analytic optimization of the non-central near-boundary compact schemes
is considered for accurate computations in a domain with non-periodic boundaries. The
OHOC schemes use seven-point stencil on the interior nodes. Thus three kinds of near-
boundary schemes are required on three nodes (i =0, 1 and 2) from the boundary (i = 0).
The near-boundary compact differences can be formulated as

3
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where, all the 3; ;’s should be equal to zero for the tridiagonal schemes. These formulations
are, of necessity, non-central differences and their error characteristics are both dispersive
and dissipative. The two kinds of errors are analyzed simultaneously in the wavenumber
domain by the Fourier analysis and the errors can be minimized by the analytic optimization
methods, which are similar to those in Ref. 1 for the central compact schemes. The relations
to determine the truncation orders of Egs. (3.2)—(3.4) can be derived by using Taylor series
expansion. In the following subsections, optimum values of the coefficients a; ;’s, Bi’s
and a;;’s are found to obtain maximum resolution characteristics and high accuracy of the
near-boundary compact schemes.

3.3. Fourier analysis of errors

The dispersion and dissipation errors of Egs. (3.2)-(3.4) are analyzed in the wavenumber
(w) domain. The Fourier analysis provides an effective way to quantify these errors and
resolution characteristics of the differencing schemes, so that this quantification would be
further used to guide an analytic optimization of the schemes. The Fourier transformations
of the left and right sides of Eqs. (3.2)-(3.4) are expressed simply as

k[A(k) +iB(k)|f = [C(k) +iD(k)]f , (3.5)

where, £ (scaled wavenumber) = wAz and ¢ = y/—1. The functions 4, B, C and D in
Eq. (3.5) are specified for each schemes as

o 1 =0

A(k) = —ap1sin(k) — Bo2sin(2k) ,

B(k) =1+ ag cos(k) + B2 cos(2k),
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3
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j=0
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From Eq. (3.5) with these functions, the scaled modified wavenumber (%) as a function of
the scaled true wavenumber (k) for the near-boundary compact schemes are derived as

(k) = A(r)C(k)+ B(k)D(k) N _A(k)D(k) — B(k)C(k)

[A(k)]2 + [B(k)]2 TTARPE B (3.6)

The modified wavenumbers for the non-central compact schemes can be divided into the
real and imaginary part, while those for the central compact schemes consist of only a real
term. The real and imaginary term in Eq. (3.6) express the dispersion and dissipation error
characteristics respectively. The modified wavenumber defined in Eq. (3.6) is used for error
analysis of the near-boundary compact schemes. To ensure that the Fourier transformation
of the finite difference scheme is a good approximation of that of partial derivative, the
modified wavenumber should coincide with the corresponding true wavenumber (% = k) in
as wide a range of wavenumbers (i.e., 0 < k < 7) as possible. As the modified wavenumber
deviates from the true wavenumber, finite difference errors are produced.
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3.4. Minimization of errors

For the quantification of the dispersive and dissipative errors, an integrated error (weighted
deviation) for the near-boundary compact schemes is defined as (see also Refs. 1, 2 and 17):

E 5/ I = &|PW(k)dr
0
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where W(x) is a weighting function, and 7 is a factor to determine the optimization range
(0 < 7 < 1) under consideration. The weighting function in Eq. (3.7) would make the
equation analytically integrable and the integrand to be weighted on the high wavenumber
range (near 7) where a lot of the dispersive and the dissipative errors exist. The integrated
error (E) defined in Eq. (3.7) is a function of the coefficients a;;’s, 3;;’s and a; ;’s. It is
necessary to find the optimum values of the coefficients that would minimize the integrated
error. The conditions that make ‘E’ a local minimum value are as follows:

OF
=0 3.8
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Equations (3.8)—(3.10), which can minimize the integrated error, provide the constraints to
obtain the optimum coefficients of the near-boundary compact schemes, in addition to the
relations that determine the truncation orders.

3.5. Weighting function

The weighting function ‘W (x)’, proposed in this paper, can be chosen to make Eq. (3.7)
integrable, and also to weight the integrand in Eq. (3.7) on the high wavenumber range
close to m by multiplying an exponential term as

W (k) = {\/[A(r)]2 + [B(r)]2e"}2. (3.11)

The result of weighting the integrated error to be in the high wavenumber range as opposed
to the low wavenumber range is that the dispersive and the dissipative errors in the high
wavenumber range can be more greatly reduced through the optimization procedure.

3.6. Optimization ranges

The optimization ranges for the near-boundary schemes should be adjusted to obtain max-
imum resolution characteristics of the schemes, i.e., by controlling the range factor r, the
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largest value of deviation |Re(%) — | in the well-resolved range should be reduced to below
0.5% of the corresponding true wavenumber for tolerable accuracy.

As shown in Ref. 1, the effective optimization range factor for a scheme is dependent
on the truncation order of the scheme. Once a suitable truncation order for a scheme is
found, an optimization range factor for the scheme can then be determined. In Ref. 1, the
truncation orders of the optimized central compact schemes were found by applying them
to actual computations. The suitable truncation orders for the near-boundary compact
schemes are found through the same procedure in the present work. With the truncation
orders specified, the effective optimization range factors for the near-boundary compact
schemes are determined as:

(i) Tridiagonal Schemes
(a) i = 0 : second order : 7= 0.401,
(b) i = 1: fourth order : r = 0.622,
(c) i=2: sixth order : r=0.881.

(ii) Pentadiagonal Schemes
(a) i = 0 : second order : 7= 0.653,
(b) i = 1: fourth order : r = 0.625,
(¢) i =2 : fourth order : r = 0.871.

3.7. Optimum coefficients

The optimum coefficients a; ;'s, i ;’s and a;;’s can be found for each scheme by using the
analytic optimization methods, including the optimization range factors and the weighting
function of Eq. (3.11). The constraints, Eq. (3.8)-(3.10), to minimize the integrated error
and the relations to determine the truncation orders provide a system of linear algebraic
equations by which the optimum coefficients are found. In this paper, the coeflicients are
presented for each near-boundary compact scheme as:

(i) Tridiagonal Schemes
(a) i = 0 : second order :
agg = —2.673444389108146, ag.1 = 1.468066764967325,
ap2 = 1.382688702485047, ap s = —0.1773110783442254,
a1 = 2.701510934904742.

(b) i =1 : fourth order :
a1 = —0.5088675754573845, a1 = —0.7029878533366753,
a12 = 1.040385365448375, a1 3 = 0.1867472036506759,
ar4 = —0.01527714030499072, a1 = 0.1532048781838751,
a1 = 0.7237110491082636.

(c) i =2 : sixth order :
azp = —0.013127263621621, a1 = —0.6038029221734134,
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a9 = —0.4395154246847092,
a4 = 0.1010303485585628,
an 1 = 0.2234544771621557,

(ii) Pentadiagonal Schemes
(a) i = 0 : second order :

ag,o = —2.955167457862964,

ap = 4.280932270348171,

ap1 = 4.573217321968533,
(b) i =1 : fourth order :

a1 = —0.6437555190815847,

ai 2 = 1.3930800694 7385,

ay 4 = —0.05598104493406903

aq,2 = 0.04640652276099101,

1= 2 : fourth order :

asg = —0.1476189781906417,
az s = —0.1822518186408425,
as 4 = 0.29761855559004,
B2.0 = 0.04025164856292263,
az3 = 0.6599987763156845,

.
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a2 3 = 0.96090920472974,
az 5 = —0.005493942808558833,

ap 3 = 0.5530910456756884.
ap1 = —1.631750382194947,
ap,3 = 0.3059855697097409,

Bo2 = 2.274853545662085.

a1 = —0.2155624124985647,
a1 3 = —0.4777810929596313,
a1 = 0.2043562086111263,
B3 = —0.337432463538152.

az; = —0.6598461743464279,
as 3 = 0.6860603976309968,
a5 = 0.006038017956875419,
a1 = 0.4492362230014781,
Ba,4 = 0.1050090455293296.
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Fig. 2. Maximum resolution characteristics of the optimized near-boundary compact schemes: (a) dispersive

characteristics, (b) dissipative characteristics: (1) second-order tridiagonal scheme on ¢ = 0, (2) fourth-order tridi-
agonal scheme on ¢ = 1, (3) sixth-order tridiagonal scheme on ¢ = 2, (4) second-order pentadiagonal scheme on
i = 0, (5) fourth-order pentadiagonal scheme on ¢ = 1, (6) fourth-order pentadiagonal scheme on i = 2, (e) exact

differentiation.
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These optimum coefficients provide high accuracy and maximum resolution characteris-
tics for the non-central compact schemes, and these schemes are proposed as the optimized
near-boundary compact schemes. The optimized near-boundary compact schemes are com-
bined and used with the OHOC schemes to evaluate the first derivatives accurately in the
whole computational domain. The maximum resolution characteristics of the optimized
near-boundary compact schemes are presented in Fig. 2.

The imaginary part of & expresses the dissipation error characteristics, i.e., the stability
of the optimized near-boundary compact schemes. In Fig. 2(b), the curves in the positive
range are stable and those in the negative range are unstable. It is shown that the second-
order tridiagonal scheme on i = 0 can be unstable, while the other optimized near-boundary
compact schemes are all stable. In actual computations, however, it does not lead to
remarkable unstableness by using the ASD terms.

4. Physical Boundary Conditions
4.1. Boundary conditions for OHOC schemes

When the first derivatives are evaluated accurately on near-boundary nodes by the op-
timized near-boundary compact schemes, correct physical boundary conditions should be
imposed to yield high-quality wave solutions. The feasibility of implementing the phys-
ical boundary conditions for the OHOC schemes is investigated. In the present work.
the characteristics-based boundary conditions and the free-field impedance conditions (see
Ref. 14) are considered as the physical boundary conditions on an inviscid wall and non-
reflecting radiation boundaries. Linear and nonlinear wave propagation and radiation is
simulated by the OHOC schemes with the physical boundary conditions.

4.2. Inviscid wall

For the present work, Thompson’s inviscid wall boundary conditions are used for computa-
tions in a domain with wall boundaries. Thompson decomposed the Euler equations into
wave modes of definite velocity and then specified boundary conditions for the incoming
waves.®? The amplitudes of the outward propagating waves are defined entirely from the
variables inside the computational domain, while those of the inward propagating waves
are specified as the boundary conditions. The procedures for implement these boundary
conditions are described fully in Ref. 9.

4.3. Non-reflecting radiation

In a one-dimensional problem, the solution of the Euler equations can be constructed by
means of the three sets of characteristics. The information concerning the solution is trans-
mitted in space and time by these three characteristics. Thus, the characteristics provide
a way to formulate the physical boundary conditions, and these can be the correct bound-
ary conditions for the one-dimensional problem. However, one important drawback in the
characteristics-based boundary conditions is that there are no true characteristics in two- or
three-dimensional problems. As an approximation, one may ignore the multi-dimensionality
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of a problem at a boundary, and treat the problem as if it is locally one-dimensional with
the direction normal to the boundary. The idea of Thompson’s approach is that the one-
dimensional characteristic analysis can be performed by considering the transverse terms as
a constant source term. For the radiation or outflow boundary conditions, this approxima-
tion has been found to lead to significant non-physical reflecting waves when the incident
angles of the outward propagating waves are oblique to the boundary, or when there is a
strong mean flow tangent to the boundary.'®

For the present work, the characteristics-based radiation boundary conditions are im-
proved for non-reflecting acoustic radiation. On the radiation boundary, the free-field
impedance conditions are imposed to obtain the fluctuations of velocity and pressure, while
the density is evaluated by Thompson’s characteristics-based non-reflecting boundary con-
ditions. The free-field impedance conditions can improve the non-reflecting characteristics
of the radiation boundary conditions. The free-field impedance conditions are: (1) the
acoustic wave radiating through the far boundary is nearly cylindrical or spherical, (2) the
acoustic wave is thought to be locally planar with a non-dimensional acoustic impedance of
1, and (3) the radiating process is locally isentropic. These are expressed by the following
relations:

G -
ui‘adlal = l—pl i (4 1)
p=ayp (4.2)

where, p', p’ and u],4;, are the fluctuations of density, pressure and radial velocity, respec-
tively. (p, and a, are the ambient density and the speed of sound respectively). These
relations are used as the non-reflecting radiation boundary conditions for the present com-
putations in accordance with the density fluctuation obtained by Thompson’s non-reflecting
boundary conditions.

5. Applications to Linear and Nonlinear Waves

5.1. Linear waves

The linear acoustic wave propagation and radiation due to a vibrating piston is simulated in
axisymmetric coordinates. The conservative forms of axisymmetric Euler equations are used
for the computations. The schematic diagram of the problem considered here is described
in Fig. 3. It is a problem provided by the ICASE/LaRC Workshop on Benchmark Problems
in Computational Aeroacoustics.'® The problem is suitable for verifying the effectiveness
and accuracy of the optimized near-boundary compact schemes with the physical boundary
conditions. The results of computations by the OSOT and the OFOP schemes are presented
in Figs. 4 and 5 respectively. It is shown that the numerical solutions are in good agree-
ment with the analytic solutions in the overall domain. The acoustic waves radiated well
through the far-field boundaries with little reflecting waves, and propagated well along the
inviscid wall keeping the wave fronts undistorted. However, it is expected that a long-time
computation without imposing an analytic boundary condition (see Ref. 2) may produce
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Fig. 3. Schematic diagram for the linear acoustic wave radiation problem: piston velocity v = 10~ sin(7t/5).
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Fig. 4. Solutions of axisymmetric linear acoustic wave propagation and radiation by the OSOT scheme (t/At = 450):
(a) pressure contour ( : numerical, - - - - : analytic), (b) pressure fluctuation plot along y-axis (z = 0), (c) pressure
fluctuation plot along z-axis (y = 0).

considerable reflecting waves, because the evaluation of density on the radiation boundaries
is still based on the characteristics which have drawbacks in multi-dimensionality.

5.2. Nonlinear waves

An initial value problem is solved for the simulation of nonlinear acoustic wave propagation
and radiation. The conservative forms of two-dimensional Euler equations are used for
the computations. The numerical oscillations caused by the nonlinearity can be effectively
removed by the addition of the adaptive selective damping (ASD) terms (see Refs. 4, 5 and
15) in the right hand side of Eq. (2.1). The results of computations by the OFOP scheme are
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Fig. 5. Solutions of axisymmetric linear acoustic wave propagation and radiation by the OFOP scheme (t/At = 450):
(a) pressure contour (—— : numerical, - - - - : analytic), (b) pressure fluctuation plot along y-axis (x = 0), (c) pressure
fluctuation plot along z-axis (y = 0).
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Fig. 6. Computation of nonlinear wave propagation and radiation by the OFOP scheme: pressure contours.
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Fig. 7. Computation of nonlinear wave propagation and radiation by OFOP scheme: pressure plot along z-axis
(y=0).

presented in Figs. 6 and 7. With the non-reflecting radiation boundary conditions imposed,
the computations are continued until the shock front passes through the far-field boundary.
producing little reflecting waves. It is shown that the non-reflecting radiation boundary
conditions considered here are used effectively for computations of the nonlinear wave as
well as the linear wave.

6. Conclusions

The non-central near-boundary compact schemes are successfully optimized in the wave-
number domain to achieve maximum resolution characteristics. Analytic optimization
methods are devised to minimize the dispersive and the dissipative errors of the near-
boundary compact schemes. The optimized near-boundary compact schemes are effectively
combined with the OHOC schemes for actual computations in a domain with non-periodic
boundaries.

The characteristics-based boundary conditions and the free-field impedance conditions
are proposed as the physical boundary conditions on an inviscid wall and non-reflecting
radiation boundaries. These physical boundary conditions are used for the OHOC schemes
to present high-quality numerical solutions. The linear and nonlinear wave propagation
and radiation are accurately simulated by the OHOC schemes with the physical houndary
conditions. In this way, the feasibility of implementing the physical boundary conditions
for the OHOC schemes is investigated in this paper.
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