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Abstract

When fluid flows at a certain speed over an open cavity, large pressure fluctuation is produced.
This fluctuation acts as an acoustic source and induces the damage of the stored instrumentation
or the structure. The physical phenomena of rectangular open cavities with lids are numerically
investigated in this paper. Two-dimensional compressible Navier-Stokes equations are computed
with high-order and high-resolution numerical schemes. The characteristics of cavity resonance
and acoustic propagation are analyzed according to the geometric variation of lids existing on the
edges of the cavity. The lids change the resonance frequency, sound pressure level, and directivity of
acoustic propagation. This also induces the transition of cavity resonance mode. Cross-correlation
analysis and the integral form of Rossiter’s equation are used to analyze the transition of Rossiter’s
mode and explain the sudden change of resonance frequency. The present results provide further
understanding of cavity resonance and the effects of lids geometry.
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1 INTRODUCTION

When fluid flows at a certain speed over an open cav-
ity, large pressure fluctuation is produced by the im-
pinging of a free shear layer on the downstream edge
of the cavity. Cavity noise is induced by this fluctu-
ation. The point of impingement becomes a source
of acoustic energy, which propagates to the front wall
of the cavity and interacts with the free shear layer.
If the frequency and the phase of the acoustic energy
coincide with the instabilities of the shear layer, reso-
nance can occur. The energy entering the shear layer
at the leading edge is amplified as it is transported
to the downstream edge where it interacts. Through
these steps, one cycle of a feedback loop is completed.
In the case of a vehicle, very loud and uncomfortable
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noise is generated at an opened sunroof and windows
when a vehicle runs at a certain speed. In the case
of an airplane, noise is created at the landing gear
wells during take-off and landing, and at weapon bays
during fighting. These noise sources can lead to high-
pressure fluctuations near the walls, which may dam-
age stored instrumentation or the structure itself.

Aeroacoustic characteristics in an open cavity have
been studied extensively.[1-7] Original Schlieren pho-
tographs of an open cavity were obtained by Krish-
namurty.[2] The first description of this feedback pro-
cess is credited to Rossiter[3], who developed a semi-
empirical formula to predict measured resonant fre-
quencies. Tam[4] developed a linear mathematical
model to predict the frequencies. Recent experiments
conducted by Cattafesta[5] have underscored the com-
plicated nonlinear interaction of different modes, and
the possibility of mode switching. Colonius[6][7] have
investigated the flow over a rectangular cavity for a
range of Mach numbers, cavity aspect ratios, upstream
boundary layer thicknesses, and Reynolds numbers.
Shieh[8] compared two- and three-dimensional turbu-
lent cavity flows by numerical simulation.

Despite this body of research, most studies have
only focused on simple rectangular cavities, while the
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general cavity is rectangular with lids at each edge
like a Helmholtz resonator. Aircraft landing gear
wells, weapon bays, and automobile sunroofs have this
shape. As such, the aim of this study is to analyze
the physical phenomena of rectangular open cavities
with lids. The characteristics of cavity resonance and
acoustic propagation are analyzed according to the ge-
ometric variation of lids existing on the edges of the
cavity. The sudden change of resonance frequency can
be explained by the transition of Rossiter’s mode.

First, the flow and acoustic fields are numerically
simulated. In order to analyze the strongly coupled
feedback interaction between flow and acoustics, non-
linear unsteady compressible Navier-Stokes equations
are solved by high-order and high-resolution schemes.
In order to analyze the transition of Rossiter’s mode,
cross-correlation analysis and the integral form of
Rossiter’s equation are used. The cross-correlation
shows the characteristics of wave propagation in space
and time, and the cross-spectral density, which is de-
fined as the Fourier transform of the cross-correlation
function, shows the variation of amplitude ratios and
phase angles as a function of frequency. The integral
form of Rossiter’s equation is designed to develop the
accuracy of the original Rossiter’s equation by intro-
ducing two parameters, effective length and new phase
lag, and can predict resonance frequency precisely in
various conditions.

2 GOVERNING EQUATIONS AND
NUMERICAL METHODS

The governing equations are unsteady compressible
Navier-Stokes equations. The flux vector form of the
governing equations may be expressed as

0Q O0FE OF
ot Odxr Oy
where Q is the vectors of the conservative variables,
E and F are the Euler fluxes, and is a source term
that consists of the viscous flux derivatives. All the

components of Q, E, F, and have been fully described
in numerous papers[9][10] and textbooks.

High-order and high-resolution numerical schemes
are applied to the present computation in a structured
grid system to analyze the strongly coupled feedback
interactions between the flow and the acoustics. The
optimized fourth-order penta-diagonal (OFOP) com-
pact finite difference scheme[9][10] is used for eval-
uating the flux derivatives. OFOP is an explicit
scheme optimized for achieving maximum resolution
characteristics. Combined with high-order finite dif-
ference schemes in space, the low dissipation and dis-

persion Runge-Kutta[l1] scheme is used for integrat-
ing the governing equations in time. The adaptive
nonlinear artificial dissipation model[12] is also used
to remove unwanted numerical oscillations and imple-
mented only at the last (fourth or sixth) stage of the
Runge-Kutta marching in order to minimize compu-
tational costs. Characteristic boundary conditions[13]
are used for accurate and robust calculation. Non-
reflecting inflow/outflow and no-slip wall conditions
are imposed effectively at the boundaries. Moreover,
the buffer zone technique[14] is employed in a region
near inflow/outflow computational boundaries.

In reference 15, the benchmark problem of category
6 in the third computational aeroacoustics (CAA)
workshop[16] is studied to validate the accuracy of the
numerical methods used in this study. The problem
given is to calculate the frequencies and the sound
pressure level in dB at the center of the left wall as-
sociated with the flow of air over a door gap cavity
that is the shape of rectangular cavity having a lid at
the leading edge. Reference 15 shows that the pre-
dicted SPL spectrum is in good agreement with the
experiment in the overall frequency range. The re-
sults demonstrate that the numerical methods used in
this paper can simulate the flow-acoustics resonance
phenomena of a cavity with lids and accurately pre-
dict the resonance frequency and the sound pressure
level.

3 EFFECTS OF LID GEOMETRY

The flow and acoustic fields of a cavity are studied
according to the variation of lid geometry in this sec-
tion. Schematic diagrams of the cavity configuration
and computational domain are shown in figure 1. The
upstream laminar Blasius boundary layer is specified
along the inflow boundary, and it is characterized by
the momentum thickness (6) of the boundary layer
at the cavity leading edge. The Reynolds number
(Reg = Uxo8/v) is based on the free-stream veloc-
ity (Uso), the momentum thickness (¢), and the kine-
matic viscosity in the ambient flow (v). The free-
stream Mach number is M. The cavity geometry
is specified by momentum thickness relative to cav-
ity depth (8/D), and cavity length relative to depth
(L/D) which is called the aspect ratio of the cavity.
Lid geometries are specified by their length (W7, W3)
and thickness (H). Opening length (O) is defined as
O = L — Wy — Ws,. The length variables of the lid
are non-dimensionalized to W1 /D, Wy /D, H/D, and
O/D.

In this study, the upstream velocity profile and the
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Fig.1: Schematic diagrams of the cavity configuration
and computational domain

aspect ratio of the cavity are the same for all simu-
lations, and the simulation conditions are My, = 0.5,
L/D = 2,0/D = 0.04, and Rey = 200. Under the
given conditions, a simple rectangular cavity with-
out a lid shows a typical shear layer mode.[15][17]
Three series of cavity geometries are numerically sim-
ulated. The first is cavities having twin lids (W7 /D =
Wy /D) of same thickness (H/D = 0.05) and differ-
ent length. The second is cavities having twin lids
(Wi/D = Wy/D) of different thickness and same
length (W1/D = W,/D = 0.5). The third is cavities
having the same opening length (O/D = 1) and dif-
ferent opening position. Through these simulations,
the effects of lid length, lid thickness, and opening
position are analyzed.

3.1 Effects of Lid Length

The effects of lid length are studied in this section.
The cavities have twin lids on each edge, which means
the two lids have the same thickness (H/D) and length
(W1/D = Wy/D). The lid thickness is constant at
H/D = 0.05 for all cases, and the lid length varies
from Wy /D = Wo/D =0 to Wy/D = W5/D = 0.75.
The geometric parameters of each case are shown from
case WO to case W6 in table 1. Case WO has no
lid, and case W6 have the longest lids. The Strouhal
number (St) achieved from the far-field acoustic signal

Case | H/D Wi/D Ws/D O/D | St=fL/Usx
WO 0 0 0 2 0.66
W1 0.05 0.125 0.125 1.75 0.63
W2 0.05 0.25 0.25 1.5 0.59
W3 0.05 0.375 0.375 1.25 0.59
W4 0.05 0.5 0.5 1 0.53
W5 0.05 0.625 0.625 0.75 0.41
W6 0.05 0.75 0.75 0.5 -
H1 0.05 0.5 0.5 1 0.53
H2 0.1 0.5 0.5 1 0.53
H3 0.15 0.5 0.5 1 0.53
H4 0.2 0.5 0.5 1 0.52
H5 0.25 0.5 0.5 1 0.30
H6 0.3 0.5 0.5 1 0.30
P1 0.2 0 1 1 0.28
P2 0.2 0.25 0.75 1 0.30
P3 0.2 0.5 0.5 1 0.52
P4 0.2 0.75 0.25 1 0.30
P5 0.2 1 0 1 -

Table 1. Dimensions of lid parameters and resultant
Strouhal number for each case

is also shown in table 1. The most important feature of
these cases is that the Strouhal number (St) becomes
smaller as the lid length becomes longer. For W6,
steady mode occurs.

Figure 2 shows the instantaneous vorticity (w =
Ov/0x — Ou/dy) contours of case WO and W4. 20 lev-
els contours are drawn between the non-dimensional
vorticity (wD/Us), -7 and 3. Case WO shows the typ-
ical shear layer mode of a rectangular cavity having no
lids. [15][17] Vortices generated from the leading edge
convect downstream in the shear layer and impinge
on the downstream edge. This impingement induces
large pressure fluctuation, which becomes the major
acoustic source. Some part of the collapsed vortex
enters the inside of cavity and forms a rotating flow
which interacts with the vortices in the shear layer.
Although case W4 also shows shear layer mode, the
vortex strength and the interaction between the vortex
in the shear layer and the vortex inside the cavity are
relatively weak compared to those of case W0. Be-
cause the opening length is short, the vortex in the
shear layer cannot develop to be as strong as that
of case WO before collapse. Therefore case W4 in-
duces weaker pressure fluctuation than case W0 and
this cavity is relatively quiescent.
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(b) Case W4

Fig.2: Vorticity contours at two instants (20 levels
between non-dimensional vorticity, wD /Uy = —7 and
3)

Fig.3: Streamlines of case W6

The streamlines of case W6 are shown in figure 3.
No vortex is generated in the shear layer because the
length of the cavity opening is too short. A weak
vortex occupying the left inner half of the cavity is in-
duced by the velocity of the shear layer at the opening
of the cavity, which re-induces another vortex occupy-
ing the right half of the cavity. Flow around this cav-
ity maintains a perfectly steady state and no sound is
generated from this cavity.

3.2 Effects of Lid Thickness

The effects of lid thickness are studied in this ses-
sion. Cavities have twin lids on each edge of the cav-
ity (Wy/D = Wy/D). The lid thickness varies from
H/D = 0.05 to H/D = 0.3, and the lid length is the
same, W1 /D = Wy/D = 0.5, for all cases. The ge-
ometric parameters are shown from case H1 to case
H6 in table 1. The Strouhal number (St) achieved
from the far-field acoustic signal is also shown in ta-
ble 1. The most important feature is that there is a
large difference in the Strouhal number between the
two groups. The first group is H1, H2, H3, H4, and the
second group is H5, H6. Although the Strouhal num-
ber of the first group is about 0.53, that of the second
group is 0.30. It is anticipated that there is a mode
transition between H4 and H5, and this is discussed
in detail in the section dealing with mode transition.

In figure 4, the acoustic fields are compared between
case WO and case H4 in order to identify the lid ef-
fects on acoustic generation and propagation. Fig-
ure 4 shows instantaneous views of the acoustic field
over the entire domain except the buffer zones. Dark
contours represent expansion and light contours rep-
resent compressions. The acoustic waves generated
from the cavity are radiated well to far-fields without
dissipation. In figure 4(a), the vortex impingement on
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Fig.4: Acoustic fields of entire domain except the
buffer zones

the downstream edge becomes the dominant acoustic
source, and the acoustic waves generated from this
propagate to the forward-upper direction. The acous-
tic wave propagating to the upstream direction has
a higher wave number than the wave to the down-
stream direction because of the free-stream velocity
(Mo = 0.5). In figure 4(b), there are two dominant
acoustic sources. The first is the same as that of figure
4(a). The downstream edge, the vortex impingement
point, becomes the acoustic source and acoustic waves
propagate to the forward-upper direction. The second
is the up and down oscillation at the opening. The
shape of case H4 is similar to a Helmholtz resonator
and the existence of lids induces additional up and
down oscillation at the opening. Therefore, this oscil-
lation becomes the second acoustic source and acous-
tic waves propagate in the upper direction.

3.3 Effects of Opening Position

The effects of opening position are studied in this sec-
tion. Cavities have different lid length on the each
edge of the cavity (Wy/D # Wy/D). Cases P1, P3
and P5 are forward opening, central opening, and
backward opening, respectively. The lid thickness
and opening length are the same for all cases, at
H/D = 02 and O/D = (L — Wy, — Ws)/D = 1.
The geometric parameters of each case are shown from
case P1 to case P5 in table 1. The Strouhal number

(St) achieved from the far-field acoustic signal is also
provided in table 1. The most important feature is
that there is a large difference in the Strouhal number
(St) between case P3 and the others. Although the
Strouhal number of cases P1, P2 and P4 are about
0.30, that of case P3 is 0.52. It is anticipated that
there are mode transitions between cases P2 and P3,
and between cases P3 and P4. These are discussed
in detail in the section concerning mode transition.
Another feature that should be noted is that steady
mode occurs in case P5.

(b) Case P3

—

(c) Case P5

Fig.5: Vorticity contours at an instant (50 levels be-
tween non-dimensional vorticity, wD/Us = —7 and
3)

The instantaneous vorticity contours (w = dv/0x —
Ou/0y) for the cases of different opening positions are
shown in figure 5. 50 levels contours are drawn be-
tween non-dimensional vorticity (wD/Us), -7 and 3.
The opening length is the same for all cases, but the
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strength and frequency of pressure fluctuation are dif-
ferent according to the opening position. The left wall
of case P1 and the right wall of case P5 suppress the
circulation of the vortex occupying inside the cavity
because of the wall boundary effect. The right wall of
case P5 suppresses the circulation more than the left
wall of case P1, because flow fluctuation of the down-
stream edge is stronger than that of the leading edge.
Therefore the resonance of case P3 is the strongest
among these three cases. Case P5 is the weakest and
finally becomes the steady mode.

4 ANALYSIS OF MODE TRANSITION

There is a sudden change of Strouhal number between
cases H4 and H5 in the assessment of lid thickness
variation. In addition, there are sudden changes be-
tween cases P2 and P3 and between cases P3 and P4 in
the assessment of opening position variation. In this
section, the cause of the sudden change of Strouhal
number is analyzed through a cross-correlation anal-
ysis and the integral form of Rossiter’s equation.

The cross-correlation is the time average of the
product of two signals with time delay. When one
point is fixed and another point is moving in some
area, the cross-correlation shows the characteristics of
wave propagation in that area. Moreover, the cross-
spectral density, which is defined as the Fourier trans-
form of the cross-correlation function, shows a varia-
tion of amplitude ratios and phase angles in that area
as a function of frequency. The cross-correlation func-
tion R(z1,x2,7) between two points, x1 and x2, is
given by the following equation:[15]

R(z1,29,7) = Elq(x1,t)q(x2,t + 7)] (2)

where ¢ represents the primitive variable (velocity,
density, and pressure) and can be expressed as a func-
tion of space (z1 or x2) and time (¢). 7 is the time lag
between the signals of two points, ¢(z1,t) and g(x2,1).
E[] denotes the ensemble averaged value of the quan-
tity in square brackets. The characteristics of wave
propagation can be analyzed by Eq. (2).

Rossiter’s equation is frequently used as a standard
to calculate the frequency of cavity resonance, which
is then compared with numerical and experimental re-
sults to demonstrate their accuracy. Rossiter’s equa-
tion is

L L n—_p;

—+ —=—n=1,2,3,--- 3
Uc+aoo fn " T ()

where L is the cavity length from the leading edge

to the downstream edge, U, is the vortex convection
speed, and as is the free-stream acoustic speed. n is
an integer which denotes Rossiter’s mode, and f, is
the frequency of the n-th mode. 3 is the phase lag,
which is defined as the phase difference between the
vortex and acousic wave at the downstream edge. Eq.
(3) can be rewritten as follows.

Sty=dnk_ _n=b

U  Murip "= h2% @

St = fnL/Us is the Strouhal number of the n-
th mode, Uy is the free-stream velocity, and My, =
Us/aoo is the Mach number of free-stream. k is
a constant defined as the ratio of the vortex con-
vection speed (U,) to the free-stream velocity (Us),
k=U./Us.

The left-hand side of Eq. (3) represents the time
needed for one period of cavity resonance mechanism.
The first term is the time needed for vortex convection
from the leading edge to the downstream edge, and
the second term is for acoustic propagation from the
downstream edge to the leading edge. It is assumed
that the vortex convects downstream at a constant
speed U,, and the acoustic wave propagates upstream
at the speed of sound a... [ is universally used as 0.25.
k varies for each case, because it is determined by
fitting Eq. (4) into the experimental results; generally
0.56 is employed.

Although this Rossiter’s equation can be easily ap-
plied to many cases, it cannot provide exact frequency
because it roughly approximates some parameters.
Hence, to obtain more precise frequency, the mech-
anism of cavity resonance is investigated and two pa-
rameters, effective length and phase lag, are obtained
by intensive study of flow field and wave convection
around an open cavity. The integral form of Rossiter’s
equation[15] is derived by using these parameters and
this equation can predict the resonance frequency pre-
cisely in various conditions. The integral form of
Rossiter’s equation is

ve
1 1
-+ dl(along vortex convection path)
va \u  a—u

_n-p
- f

an:172a37"' (5)

where VG and VC denote the vortex generation
point and the vortex collapse point. a and u are local
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acoustic speed and vortex convection speed, respec-
tively. The left-hand side is integrated along the path
of vortex convection from the vortex generation point
to the vortex collapse point. This length, from the
vortex generation point to the vortex collapse point,
is defined as the effective length. n is an integer which
denotes Rossiter’s mode, and f, is the frequency of the
n-th mode. Phase lag 3 is defined as the phase differ-
ence of pressure between the vortex collapse point and
the acoustic source point. The numerical simulation
data are used to calculate this equation.

4.1 Mode Transition of Different Lid
Thickness
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Fig.6: Cross-correlation result of pressure when z; is
fixed at (x/D,y/D) = (1,0) and x2 is moving from
(x/D,y/D) = (0,0) to (z/D,y/D) = (2,0) along x
direction. (C'C[p|: cross-correlation of pressure)

As noted above, there is a sudden change in the
Strouhal number between case H4 and case H5 when
lid thickness is varied. Cross-correlation analysis (Eq.
(2)) and the integral form of Rossiter’s equation (Eq.

(5)) are used in order to analyze the mode transition
and explain the reason of sudden change. Figure 6
shows the results of the cross-correlation for pressure
of cases H4 and H5, when z; is fixed at (z/D,y/D) =
(1,0) and =y is moving from (x/D,y/D) = (0,0)
to (z/D,y/D) = (2,0) along the z direction. In
this coordinate system, the leading edge and the
downstream edge of case WO, the rectangular cav-
ity having no lid, are defined at (x/D,y/D) = (0,0),
(x/D,y/D) = (2,0), respectively. Therefore in case
H4 and case H5, the locations of the leading edge
and the downstream edge are (x/D,y/D) = (0.5,0)
and (x/D,y/D) = (1.5,0), because the lid length is
W1/D = Wy/D = 0.5. The actual variables of the
cross-correlation function are zo and 7 because z7 is
fixed at a point.

In figure 6, the the results of the cross-correlation
for pressure (CC[p]) are shown according to the two
non-dimensional axes xo/D and Tas/D. This shows
periodical characteristics in 7 direction, because the
flow patterns of cases H4 and H5 are the shear layer
mode, which has periodical cycle. The period of case
H4 is shorter than that of case H5, which constitutes
the same result as that the Strouhal number of case
H4 is higher than that of case H5 in table 1.

The slope of the ridgeline, as presented in figure
6, represents the direction and speed of wave convec-
tion. Gentler slope means faster convection speed,
because z-direction of figure 6 is non-dimensional
length (z2/D) and y-direction is non-dimensional time
(Taso/D). When the domain of xzo/D is roughly di-
vided into three regions, z2/D < 0.5, 0.5 < z2/D <
1.5, and 1.5 < z2/D, the fluctuation of acousic wave
is dominant in front (z2/D < 0.5) and behind (1.5 <
x2/D) the cavity and that of the flow is dominant
near the cavity 0.5 < z3/D < 1.5. Thus the convec-
tion speeds of each region are u — a (z2/D < 0.5), u
(0.5 < z9/D < 1.5), and u+a (1.5 < z2/D). Figure 6
shows a negative velocity in the region of zo/D < 0.5
and the fastest velocity in the region of 1.5 < z3/D
because the free-stream Mach number (M) is 0.5.

In the region of the cavity opening (0.5 < x2/D <
1.5), the slope of case H4 is roughly constant from
x2/D = 0.8 to /D = 1.5. The vortex generated
from the leading edge is developed and separated from
the shear layer of the leading edge at z2/D = 0.8. This
vortex convects downstream with constant speed until
collapsing at the downstream edge, x2/D = 1.5. Al-
though the slope of case H5 also changes at xzo/D =
0.8, it does not show constant like case H4, because
the vortex of case H5 is too weak to separate from
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the shear layer of the leading edge. When the slopes
of cases H4 and H5 are compared in the region be-
tween x2/D = 0.8 and z2/D = 1.5, the slope of case
H4 is gentler than that of case H5, which means the
vortex convection speed of case H4 is faster than that
of case H5. As can be obtained in figure 5, the left
and right walls of the opening suppress the rotation
of the vortex inside the cavity. As the lid thickness
increases, the lid induces more suppression and the
convection speed of the vortex in the shear layer de-
creases. This convection speed of the vortex directly
affects the Rossiter’s mode, n, in Eq. (3).
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Fig.7: Phase variation of cross-spectral density for
pressure at resonance frequency

The phase of cross-spectral density for pressure is
shown in figure 7. The cross-spectral density func-
tion is defined as the Fourier transform of the cross-
correlation function, as shown in figure 6, and shows
an amplitude ratio and phase angle as a function of fre-
quency along the wave propagation. Figures 7(a) and

7(b) show the phase variations of pressure for cases
H4 and H5 at the resonance frequency of each case.
In table 1, the resonance frequencies of cases H4 and
H5 are St = 0.52 and St = 0.30, respectively. Be-
cause this cross-correlation is calculated when z1 is
fixed at (x/D,y/D) = (1,0), the phase of the cross-
spectral density should be zero at z2/D = 1. How-
ever, for convenience of interpretation, figure 7 repre-
sents the relative phase as that of the leading edge,
(2/D,y/D) = (0.5,0).

In figure 7(a) and 7(b), the phase differences be-
tween the leading edge (z2/D = 0.5) and the down-
stream edge (z2/D = 1.5) are about 720 degrees and
360 degrees, respectively, which means cases H4 and
H5 correspond to the second mode (n = 2) and first
mode (n = 1) of Rossiter’s equation (Eq. (3)). The
concepts of resonance mechanism used in Rossiter’s
equation imply the total phase change must be a mul-
tiple of 360 degrees during one period of cavity res-
onance loop, in which the vortex in the shear layer
convects downstream and the acousic wave generated
from the downstream propagate upstream. Figure 7
shows only the phase change of vortex convection from
the leading edge to the downstream edge and can-
not predict the mode of Rossiter’s equation exactly.
However, it is possible to roughly predict the mode,
because the first term of the left-hand side in Eq.
(3), corresponding to the vortex convection term, is
much larger than the second term corresponding to
the acoustic propagation term.

From the results of cross-correlation and cross-
spectral density, it is roughly shown that there is a
transition of Rossiter’s mode between case H4 and H5.
The integral form of Rossiter’s equation (Eq. (5)) is
analyzed to obtain the exact Rossiter’s mode.

The left hand side of Eq. (5) can be calculated by

using the numerical simulation data. To determine (3,
which is defined as the phase difference between the
vortex collapse point and the acoustic source point,
the acoustic source point must be known. Figure 8
shows the root mean square (RMS) contours of pres-
sure around the cavity opening. The point having the
maximum value of p,.,s on wall becomes the dipole
acoustic source. Although the maximum value of Py,
appears at (z/D,y/D) = (1.5, —0.04) below the down-
stream edge in case H4, it appears just at the down-
stream edge in case H5. The pressure signals of the
vortex collapse point and the acoustic source point are
compared in figure 9. Although the two signals have
almost the same phase in case H4, there is a phase lag
of 90 degrees in case H5. There is no phase lag when



Numerical Study on Mode Transition of An Open Cavity with Lids 663

051

P Me )
0.0050
0.0045
ol ‘. 0040
0.0034
Q 0.0029
] 0.0024
051 0.0019
0.0014
0.0008
y . | . e 0.0003
0 05 1 15 2
x/D
(a) Case H4
05r P...Mp.2)
0.0066
0.0059
o e 0.0052
0.0044
Q 0.0037
= 0.0029
-05F 0.0022
0.0015
0.0007
| . . . | 0.0000
173 0.5 1 15 2
x/D
(b) Case H5

Fig.8: RMS (root mean square) contours of pressure
around cavity

the acoustic source exists inside the cavity, and there
is the phase lag of 90 degrees when acoustic source
exists at the downstream edge. This is the same phe-
nomenon as the phase lag of simple rectangular cavity
in reference 15. Thus 8 = 0 can be adopted for case
H4, and 8 = 0.25 for case H5 because 90 degrees cor-
responds to 0.25 times of one period.

The results of Eq. (5) are shown in table 2. The pre-
dicted Strouhal numbers are compared to the original
Rossiter’s equation (Eq. (3)) and the exact Strouhal
number obtained directly from the far-field acoustic
signals of the numerical simulation. In table 2, the
predicted Strouhal numbers of Eq. (5) are shown in
front of parentheses and those of the original Rossiter’s
equation (Eq. (3)) are shown in parentheses. In
case H4, the predicted Strouhal number of the second
mode is 0.53, which shows good agreement with ex-
act Strouhal number, 0.52. In case H5, the predicted
Strouhal number of the first mode is 0.29, which also
shows good agreement with the value of exact Strouhal
number, 0.30.

The results of the cross-correlation analysis and the
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Fig.9: Signals of pressure fluctuations at the vortex
collapse point and at the acoustic source point

integral form of Rossiter’s equation clearly show that
case H4 is the second mode of Rossiter’s equation, and
case H5 is the first mode. Because the left and right
walls of the opening suppress the rotation of the vortex
inside the cavity, the thick lid induces the convection
speed of the vortex in the shear layer to become slow.
The slow convection speed then induces the transition
of Rossiter’s mode from the second mode to the first
mode.
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Case | S Stin=1) St(n=2) St(n=3) | Stezact
H4 | 0 |027(0.33) 0.53(0.77) 0.80(1.20) | 0.52
H5 | 0.25 | 0.20(0.33) 0.67(0.77) 1.15(1.20) | 0.30
P2 | 0.25 | 0.20(0.33) 0.66(0.77) 1.04(1.20) | 0.30
P3 | 0 |0.27(0.33) 0.53(0.77) 1.80(1.20) | 0.52
P4 | 0.25 | 0.30(0.33) 0.71(0.77) 1.11(1.20) | 0.30

Table 2. Comparison of the predicted Strouhal number by using integral form of Rossiter’s equation (Eq. (5))
and exact Strouhal number (the predicted Strouhal number of the original Rossiter’s equation (Eq. (3)) is
shown in parenthesis.)

4.2 Mode Transition of Different Opening
Position

There are sudden changes of Strouhal number between
case P2 and case P3 and between case P3 and case P4
when the opening position is varied. In the same man-
ner as the previous section, cross-correlation analysis
(Eq. (2)) and the integral form of Rossiter’s equa-
tion (Eq. (5)) are used in order to analyze the mode
transition and explain the sudden change.

Figure 10 shows the phase variation of cross-spectral
density for pressure at the resonance frequency for
each case. In table 1, the resonance frequencies of
case P2, P3, and H4 are St = 0.30, St = 0.52 and
St = 0.30, respectively. In figure 10(a), the phase
difference between the leading edge (z2/D = 0.25)
and the downstream edge (z2/D = 1.25) is about
360 degrees. And those of figures 10(b) and 10(c)
are about 720 degrees and 360 degrees. These results
mean that case P2 and case P4 correspond to the first
mode (n = 1) and case P3 corresponds to the second
mode (n = 2). As noted above, the left and right walls
of the opening suppress the rotation of the vortex in-
side the cavity. In the case of a central opening, case
P3, the suppression of the rotating vortex inside the
cavity is the weakest and the convection speed of the
vortex in the shear layer is the fastest. Therefore, the
Rossiter’s mode of case P3 is higher than that of the
other cases.

The integral form of Rossiter’s equation (Eq. (5))
is analyzed to obtain the exact Rossiter’s mode. To
determine (3, figure 11 shows the RMS (root mean
square) contours of pressure around the cavity open-
ing. Although the maximum value of p,,.s appears
below the downstream edge in case P3, it appears just
at the downstream edge in cases P2 and P4. As the
same phenomenon in figure 9, there is no phase lag
for case P3, when the acoustic source exists inside the
cavity, and there is the phase lag of 90 degrees for
cases P2 and P4, when acoustic source exists at the

downstream edge. Thus 5 = 0.25 can be adopted for
cases P2 and P4, and § = 0 for case P3.

The results of Eq. (5) are shown in table 2. In
case P3, the predicted Strouhal number of the second
mode is 0.53 and shows good agreement with the ex-
act Strouhal number, 0.52. In cases P2 and P4, the
predicted Strouhal numbers of the first mode are 0.29
and 0.30, which also show good agreement with the
exact Strouhal numbers.

These results clearly show that case P3 is the second
mode of Rossiter’s equation, and cases P2 and P4 are
the first mode. Because the left and right walls of the
cavity suppress the rotation of the vortex inside the
cavity, the central opening, case P3, induces a higher
speed of vortex convection in the shear layer than the
other cases. This high convection speed induces the
transition of Rossiter’s mode from the first mode to
the second mode.

5 CONCLUSIONS

The physical phenomena of rectangular open cavities
with lids are numerically investigated in this paper.
The characteristics of cavity resonance and acoustic
propagation are analyzed according to the geometric
variation of lids present on the edges of the cavity.
The existence of lids changes the resonance frequency,
sound pressure level, and directivity of acoustic prop-
agation. The lid induces additional up and down os-
cillation at the opening and this becomes an acous-
tic source propagating to the upper direction. As
lid length becomes longer, Strouhal number becomes
smaller, and steady mode occurs when the lid length
is longer than a certain length. As lid thickness be-
comes thicker, the transition of Rossiter’s mode oc-
curs from the second mode to the first mode between
case H4 and case H5. For varying opening position,
the central open cavity, case P3, shows larger fluctu-
ation than the others, and the backward open cavity,
case P5, shows steady mode. There are mode transi-
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tions between cases P2 and P3, and between cases P3
and P4. These phenomena can be explained by the
wall boundary effect, which suppresses the rotating
flow inside the cavity and induce the vortex convection
speed in shear layer to become slow. Cross-correlation
analysis and the integral form of Rossiter’s equation
are used to analyze the transition of Rossiter’s mode
and explain the sudden change of resonance frequency.
The result of the cross-correlation analysis shows the
wave convection speed and phase variation in space
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and time. The left and right walls of the cavity sup-
press the rotating flow inside the cavity and change
the vortex convection speed. The mode transition oc-
curs because of this change in convection speed. The
integral form of Rossiter’s equation predicts Strouhal
number precisely, and shows the mode transition. The
present results provide further understanding of cavity
resonance and the effects of lid geometry.
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