The University of Southampton
University of Southampton Institutional Repository

Direct numerical simulation of transitional noncircular buoyant reactive jets

Direct numerical simulation of transitional noncircular buoyant reactive jets
Direct numerical simulation of transitional noncircular buoyant reactive jets
The near field dynamics of transitional buoyant reactive jets established on noncircular geometries, including a rectangular nozzle with an aspect ratio of 2:1 and a square nozzle with the same cross-sectional area, are investigated by three-dimensional spatial direct numerical simulations. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field due to buoyancy effects. Simulation results and analysis describe the details and clarify mechanisms of vortex dynamics of the noncircular buoyant reactive jets. The interaction between density gradients and gravity initiates the flow vorticity. Among the major vorticity transport terms, the gravitational term mainly promotes flow vorticity in the cross-streamwise direction. For the baroclinic torque, it can either create or destroy flow vorticity depending on the local flow structure. The vortex stretching term has different effects on the streamwise and cross-streamwise vorticity. Streamwise vorticity is mainly created by vortex stretching, while this term can either create or destroy cross-streamwise vorticity. Under the coupling effects of buoyancy and noncircular nozzle geometry, three-dimensional vortex interactions lead to the transitional behavior of the reactive jets. Simulations also show that the rectangular jet is more vortical than the square jet. The rectangular jet has a stronger tendency of transition to turbulence at the downstream due to the aspect ratio effect. Mean flow property calculations show that the rectangular buoyant reactive jet has a higher entrainment rate than its square counterpart.
0935-4964
183-198
Jiang, X.
008a11fa-f330-4355-b5c6-2878d1ab0f5c
Luo, K.H.
1c9be6c6-e956-4b12-af13-32ea855c69f3
Jiang, X.
008a11fa-f330-4355-b5c6-2878d1ab0f5c
Luo, K.H.
1c9be6c6-e956-4b12-af13-32ea855c69f3

Jiang, X. and Luo, K.H. (2001) Direct numerical simulation of transitional noncircular buoyant reactive jets. Theoretical and Computational Fluid Dynamics, 15 (3), 183-198. (doi:10.1007/PL00013288).

Record type: Article

Abstract

The near field dynamics of transitional buoyant reactive jets established on noncircular geometries, including a rectangular nozzle with an aspect ratio of 2:1 and a square nozzle with the same cross-sectional area, are investigated by three-dimensional spatial direct numerical simulations. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field due to buoyancy effects. Simulation results and analysis describe the details and clarify mechanisms of vortex dynamics of the noncircular buoyant reactive jets. The interaction between density gradients and gravity initiates the flow vorticity. Among the major vorticity transport terms, the gravitational term mainly promotes flow vorticity in the cross-streamwise direction. For the baroclinic torque, it can either create or destroy flow vorticity depending on the local flow structure. The vortex stretching term has different effects on the streamwise and cross-streamwise vorticity. Streamwise vorticity is mainly created by vortex stretching, while this term can either create or destroy cross-streamwise vorticity. Under the coupling effects of buoyancy and noncircular nozzle geometry, three-dimensional vortex interactions lead to the transitional behavior of the reactive jets. Simulations also show that the rectangular jet is more vortical than the square jet. The rectangular jet has a stronger tendency of transition to turbulence at the downstream due to the aspect ratio effect. Mean flow property calculations show that the rectangular buoyant reactive jet has a higher entrainment rate than its square counterpart.

This record has no associated files available for download.

More information

Published date: 2001

Identifiers

Local EPrints ID: 23096
URI: http://eprints.soton.ac.uk/id/eprint/23096
ISSN: 0935-4964
PURE UUID: 15b7a6b9-b31e-44ca-8276-8affa442c293

Catalogue record

Date deposited: 28 Mar 2006
Last modified: 15 Mar 2024 06:43

Export record

Altmetrics

Contributors

Author: X. Jiang
Author: K.H. Luo

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×