ENGINEERING
ANALYSIS with
BOUNDARY
ELEMENTS

www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements 28 (2004) 733-745

Evaluation of various schemes for quasi-static boundary
element analysis of polymers

Stavros Syngellakis™, Jiangwei Wu

Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Received 6 October 2003; revised 12 January 2004; accepted 27 January 2004

Abstract

The behaviour of polymers under quasi-static load is analysed by various boundary element schemes. Linear viscoelasticity, for which the
correspondence principle applies, is assumed. The problem is first solved in the Laplace transform domain with the time-dependent response
determined by numerical inversion. A solution is also obtained directly in the time domain using fundamental solutions for unit step load
excitation. Two alternative time-domain schemes, applied until recently only to dynamic problems, are adapted to quasi-static conditions.
Both are based on a reciprocity relation involving Riemann convolutions and use fundamental solutions for a Dirac impulse excitation. The
second of those schemes, however, uses only the Laplace transforms of these fundamental solutions, which are directly formed from the
corresponding elasticity solutions and thus not specific to the viscoelastic model used. Rapid derivation of time-dependent fundamental
solutions for general standard linear solids enhaﬁ;ccf'sftkt;hé’;applicability of time domain methods. Computer codes based on the different
algorithms are developed and applied to benchmark problems in order to assess their relative accuracy, versatility and efficiency. The various

BEM predictions are generally consistent and reliable.. The nu'mérical instability of the last, so called, mixed method is minimised through

appropriate choice of modelling parameters.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The demand of high quality materials in engineering
design has led to an increasing use of polymers due to their
high strength to weight ratio and to their corrosion
resistance Although polymers offer these advantages
over traditional metallic materials, their characteristic
time-dependent behaviour may lead to excessive creep
and/or failure. Thus, the study of long-term polymer
component behaviour under various loading conditions is
becoming increasingly important.

Polymers are materials behaving according to a
constitutive model known as viscoelasticity, which accounts
for the dependence of stress and strain on time. In order to
study the response of viscoelastic solids to arbitrary,
external, time-dependent loads, a numerical analysis is
normally needed. Whereas the finite element method (FEM)
remains the most popular numerical method for solid

* Corresponding author, Tel.: +44-23-8059-2844; fax: +44-23-8059-
3230/4813.
E-mail address: ss@soton.ac.uk (S. Syngellakis).

0955-7997/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.enganabound.2004.01.008

material analysis, more recently, the boundary element
method (BEM) has been developed as an effective
alternative for the solution of a wide range of
problems. Although many studies on the application of
BEM to static or dynamic viscoelastic problems can be
found in the literature, a systematic assessment of the
relative merits or limitations of the various possible schemes
is apparently missing.

There are two established approaches to linear
viscoelastic quasi-static analysis by the BEM. The first
method [1] uses the correspondence principle to generate an
associated elastic problem, which is solved in the Laplace
transform domain and the result is inverted numerically so
that the solution in the time domain is obtained.
This numerical inversion adds to the computational cost
and may have a detrimental effect on overall accuracy if not
performed with care. The transform domain scheme has,
however, the advantage of relying on the fundamental
solutions of the corresponding elasticity problems, it is
therefore, conceptually easy to combine it with various
types of solid analyses and a wide range of material models.
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The second, direct method [2] involves a formulation
based on a boundary integral equation in the time domain.
The BEM solution is obtained by a step-by-step time
integration scheme. This direct time domain method
could be more efficient than the transform domain
method but requires the identification or determination of
time-dependent fundamental solutions specific to the solid
geometry and the adopted viscoelastic model. The need for
such solutions has restricted the applicability of time
domain BEM approaches.

A more recently proposed method [3] seems to combine
the advantages of the previous two, solving the problem in
the time domain but relying on the fundamental solutions
in the Laplace domain. The application of this mixed
method to dynamic problems raised some stability and
accuracy issues, which have not been fully addressed.

This paper focuses on quasi-static BEM analyses of
polymers by the two established schemes mentioned above
as well as two alternative time-domain formulations,
originally applied to dynamic problems only. Both new
schemes are based on a reciprocity relation involving
Riemann rather than Stieltjes convolutions and rely on
fundamental solutions for Dirac delta function
excitations. The second of those schemes is an extension
of Schanz’s mixed method [3] to quasi-static problems.
Numerical techniques are proposed for the rapid derivation
of time-dependent fundamental solutions for general
standard linear solids (SLS) under both step (Heaviside)
and Dirac impulse excitations. Thus polymer behaviour can
be more accurately represented and the versatility of time
domain methods is greatly enhanced.

Computer codes based on different algorithms are
developed and applied to benchmark problems in order to
assess their relative accuracy and efficiency. The degree of
agreement between various BEM predictions and exact
solutions is examined. The applicability of the mixed
method to almost any material model is explored through an
investigation into the parameters controlling its accuracy
and stability. Schemes for possible extension of the
methods to account for more complex viscoelastic models
are briefly discussed.

2. Viscoelastic models

The constitutive equations of linear viscoelasticity are, in
accordance with Boltzmann’s principle, of hereditary
integral type

t

de '
0y = Gu@ey0) + | Gyt — D—2dr )
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where 0y, €5 are the stress and small strain tensors,
respectively, and G(?) the relaxation moduli in the general
case of an anisotropic medium. Adopting the notation for

the Stieltjes convolution of two functions [4], Eq. (1) can be

more concisely written

oy = Gy * dey 2

g

In the case of an isotropic medium characterised by the
bulk and shear relaxation moduli K (¢) and u(z), respectively,
constitutive relations (2) are reduced to

85 = 2u(1) * dey(0), O = 3K(@) * dey (1) 3)

where s; and e; are, respectively, the deviatoric stress
and strain tensors. An alternative form to constitutive Eq. (3)
is [4]

e = J(1) * dsy(0), ey = B(1) * doy (1) “)

where J(¢) and B(r) are, respectively, the shear and bulk
creep moduli.

A commonly used rheological model is the generalised
SLS [5]. It can be formed by connecting in series a Hookean
spring and N Kelvin models, or by connecting in parallel a
spring and N Maxwell models. The resulting viscoelastic
equations are of differential operator type

N N
prtDnSij = Z qleneij,
n=0
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=0

n=0

(&)

where D" is an operator representing the nth time derivative
and pt, g5, p?, q%, are material constants, which can be
related to the elastic moduli and viscosities of the spring and
individual Kelvin or Maxwell elements making up the SLS
model [5]. The solution of differential Eq. (5) under
relaxation or creep conditions leads to the determination
of the time-dependent relaxation or creep moduli, respect-
ively. Thus, Prony series expressions for shear relaxation

wo) = po+ > i exp(— f) ©6)
=1 J
and shear creep
Z t
J(t)=J0+j:Zle[1 - exp(—rj)] 7

are obtained from the generalised Maxwell and Kelvin
models, respectively.

3. Field equations

Introducing the small strain—displacement relations into
the constitutive Eq. (1) and substituting the latter into
the stress equations of equilibrium yields a system of
integro-differential equations

]
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where f; is the body force per unit volume. The problem is
complemented by the boundary conditions

ui(t) = i, (t) on I o (On; = pi() on I (&)

where #;(f) and p;(¢) are, respectively, prescribed boundary
values of the displacement and traction while n is the
outward unit normal vector to the boundary I'= Iy + I,.

Given two viscoelastic states (u;,p;,f;) and (u},p;,f),
satisfying the boundary value problem described above,
the reciprocal relation [4]

Jpﬁdufdfﬂ-] f,»*dufdQ=J ui*dp;‘dr—kj uxdfs dQ
r 0 r o
(10)

can be derived. The validity of the alternative reciprocity
principle

Jp,*u?df-l—J ﬁ*ufdQ=J ui*pfd['—i-J w*f d0
r 1?) r o
(11)

involving Riemann rather than Stieltjes convolutions can be
similarly proved.

4. Correspondence principle

Taking the Laplace transform of both sides of
constitutive Eq. (1) gives

e A o L.
0y = sGyu€u = Gijutu (12)

where s is the Laplace domain parameter and a bar over a
symbol indicates the transform of the corresponding
variable. By transforming also the equations of
equilibrium (8), the strain—displacement relations, as well
as the boundary conditions (9), a complete correspondence
is established between the elastic and viscoelastic problem.
Thus a linear viscoelastic problem can be solved in the
transform domain for any range of values of the transform
variable s by the same methods as those applicable to the
corresponding elasticity problem in which the field
variables are replaced by their Laplace transforms and the
elastic constants are replaced by their equivalent functions
according to Eq. (12). In the end, it is, of course, necessary
to invert the transforms so obtained to solutions in real time.
This, so called, correspondence principle has been applied
to generate BEM solutions in the transform domain but also
to obtain the fundamental solutions for particular
viscoelastic models, which are subsequently used in BEM
time domain formulations.

Taking the Laplace transform of both sides of Eq. (3)
and introducing the Young’s modulus E; and Poisson’s
ratio v, in the transform domain, the relations

E - E
=L 3k= L
141, 142y,

25 3)

are valid according to the correspondence principle.
Thus, time-dependent uniaxial tension or compression

modulus E(¢) and Poisson’s ratio 1(f) can be obtained as

the inverse Laplace transforms of the relations
3K — 2
23K + )

9sakK y
(+3K)" "

The correspondence principle can also be applied to
determine creep moduli from respective relaxation moduli
and vice versa.

E, =sE= (14)

= sV =

5. BEM formulations
5.1. Laplace transform domain

If the correspondence principle is applied to a quasi-
static problem, a BEM solution can be developed from the
boundary integral equation in the Laplace transform
domain

Kl = L,[I"%(S)MZ;(S) — i (s)py(H1dI+ Jnfiuz dQ s)

where k;=0.58; in the case of a smooth boundary, and
(uj,py) is the elastic fundamental solution for displace-
ments and tractions in which, however, the elastic
constants have been replaced by the corresponding
functions in the transform space according to Eq. (12)
or Eq. (14). The calculated Laplace transforms of
boundary or domain variables can be numerically inverted
back to time-dependent functions using any of the
available numerical inversion methods.

5.2. Time domain—Stieltjes convolution

In this case, the boundary integral equation can be
obtained directly from the reciprocal relation of linear
viscoelasticity, Eq. (10). This is achieved by choosing the
system (uf,p;,f;) to coincide with the fundamental
solution of the viscoelastic problem, that is, the
displacements u; and tractions pj; generated by step unit
body forces

fi = 8;8(x — HH(1)

where §; is the Kronecker delta, d(x — &) the delta
function and the Heaviside step function. For a point ¢ in
th

e interior of £2. Ea. (10) then becomes
tne mierior or &7, 4. { es,

1V uiln OCLUN

u(E) = L i, 1) * (%, & 1) — i, ) * dpix, & 1T

+ Jﬂfi(x, 1) * du;;-(x, & ndf (16)

By taking the source point £ in Eq. (16) to the boundary,
the boundary integral equation in space and time is derived as

Kyui() = jr(pi * duz — Uk dpj})dr—i— Jﬂfi * du;‘j a2 A7
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Taking into account a property of the Stieltjes convolution
[4], the boundary integral Eq. (17) is transformed to

Ku (1) = Jr(u;; *dp; — pfj *du)dl+ J{)fi * du;;» d2 (18)

The fundamental solution required in the above time
domain formulation can be obtained by an inverse Laplace
transform operation. This has been carried out in several
special cases but also for general Kelvin or Maxwell SLS
models [5].

5.3. Time domain—Riemann convolution

The fundamental solution [uj(x — & 1), p(x — & 1)], due
to the Dirac unit impulse

.ﬁ=5ﬁm—8&ﬂ‘ (19)

is introduced as one of the viscoelastic states into the
reciprocal relation (11). This leads to

KX u(t) = J[‘(u; *p; — p}; *u)dl+ Jnf,- * u:; d2  (20)

that is, an alternative boundary integral equation in the
time domain. The convolution in the right-hand side of
Eq. (20) is due to the possible dependence of k; on the
Poisson’s ratio, which, in turn, may be time-dependent.
As in the previous time domain formulation, the
fundamental solution is obtained by applying the
correspondence principle and inverse Laplace transform.
A relatively simple procedure for evaluating the par-
ameters of the time-dependent parts of the fundamental
solutions for both Heaviside and Dirac excitations is
described in Appendix A.

5.4. Mixed formulation

A special scheme, originally applied to dynamic
problems [3], combines time domain integration with the
Laplace transforms of the fundamental solutions
This scheme is based on boundary integral Eq. (20) in
which convolution integrals are approximated by a
quadrature originally proposed by Lubich [6,7].
This approximation is briefly outlined in Appendix B.
If time 7, is divided into K equal intervals Az so that
tx = KAt, a convolution integral, such as u}; * p;, in Eq. (20)
may be approximated by

Wi, & 1) * Py, 1) = Y ol H(x, & Anpy(x, kAD);
k=0

n=01,...K

where the integration weights «j; depend only on the
Laplace transform ; according to the general relationships
(B3) or (B4) given in Appendix B. Thus a time stepping
procedure can be formulated directly in the time domain,
although only the Laplace transforms of the fundamental

solutions are used, that is, a viscoelastic boundary element
formulation is achieved in the time domain without
requiring the knowledge of the relevant time-dependent
fundamental solution.

6. Boundary element modelling

Constant boundary elements with mid-element nodes
were used in the present BEM formulations in both the
transform and time domain. Thus, over an element I,
the following approximation is adopted

pi(x, 1) = pj(1) 1)

where u{(?) and pj(z) are the time-dependent nodal values
of displacement and traction, respectively. A BEM
solution for the Laplace transforms of u;(¢) and pf(z) is
based on boundary integral Eq. (15) and thus proceeds in
exactly the same manner as the corresponding elastic
problem.

Time domain formulations based on integral Egs. (17),
(18) or (20) require also modelling of time dependence as
well as a suitable choice of material model. It was assumed
that the boundary variables u;(x,f) and p;(x,t) are linear
with respect to time ¢ within a small time step
At =t,—t.1. The general SLS model was adopted
since through it, polymer behaviour can be described with
sufficient accuracy. It is shown in Appendix A, how
fundamental solutions for this model can be obtained
when relaxation functions are given by expressions in the
form of Eq. (6). The time domain formulations were thus
based on the viscoelastic fundamental solutions given by
Egs. (A15) and (A17).

Assuming zero body forces, boundary integral Eq. (18)
was thus transformed to

ui(x,1) = ui (1),

N K N
Kij(f)ul(.l()(é’): z I-]J-"(K)(é:)+ Z Z U;’(K_“(f)
n=0

k=1n=1

Xexpl—Bultk — t)](exp(—B,Ar) — 1]

M K M
XA D LT

m=0 «=1m=1

Xexpl—a,,(tx — t)ll(exp(— o, AL,) — 1]
(22)

where
1O (X) = u;(x,1,0)

pSK>(X):pi(X’tK)

E
Pr9o= Lpg’(x, Hud (x)dl= " ui™ L pix,6dll
e=1 e

E
U;z(K)(g) — JF”Z(X’ f)pgk)(x)d[': Zipl?(") Jr u;}(X, odIr
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with E representing the number of boundary elements and
ui(x,8),pij(x,§) the spatial parts of the fundamental
solutions as defined in Appendix A. Placing the source
point at each boundary node results in the matrix equation

N ' K ¢ N i
Cu® =3 U0+ 3 I3 U expl—p 1 —10)

n=0 k=1 "“n=1

M
Xexp(~ o)~ 1]p = 3 P Ou

m=0

K M
- Z{ > P Vexpl—a,(ix — 1]
k=1 “m=1
X{(exp(—aAr,) — 1]}u<“> 23)

where u® and p are one-dimensional arrays containing,
respectively, the nodal values of boundary displacement and
traction at time z,. It is evident from Eq. (23) that the
boundary displacements and tractions can be determined at
any time z=ty if they are known at all previous times.
At t=0, the boundary integral Eq. (17) governs only the
initial elastic response due to any non-zero initial values of
the boundary or loading conditions. At any other time r=1,
(step k), the respective unknown boundary values can be
obtained from Eq. (23) with the current boundary conditions
and the additional terms depending only on the solution at
the previous steps. A step-wise procedure is thus
established which advances the solution until the final
time step is reached. ‘

After the unknown boundary values of the linear
viscoelastic problem are determined, the displacements
and stresses at internal points can be calculated.
Internal displacements can be determined from Eq. (22)
having set k; = §;. The expressions giving the internal
stresses in terms of the boundary displacements and
tractions are

o(&1) = Di,y(x, & 1)+ dp(x, dl’
r
- Jr Ski(x, &1) * duy (x, )dI”
+ Jnfk(x, 1) * dD}y(x, £ A0 24)

As mentioned earlier, the time-dependent stress kernels
appearing on the right hand-side of Eq. (24) can be derived
from the respective elastic stress kernels by applying the
correspondence principle and inverting the resulting
equations from the transform domain to real time domain.

The same modelling was applied to the boundary integral
Eq. (20) based on the reciprocity relation (11) and Dirac unit
impulse. In the case of constant boundary elements, the
source point is never a corner point, therefore the
convolution on the right-hand side of Eq. (20) can be
ignored. Linear time dependence of boundary variables over
At results in more complex expressions for the convolution

integrals than in the previous formulation, which involved
time derivatives of the displacement and traction. These
expressions are considerably simplified if a small, constant
time step At is adopted. With this simplification and body
forces ignored, Eq. (20) is transformed into the following
matrix equation

cu® = (0’ + A iU" p®
2 n=1
K N
+AY {Z U" exp[— B.(K — K)At]}p(K)

k=1 Un=1

AI[ZU" exp(— BnKAt)] ©

(w2 E e
m=1

K=1( M
- At Z {Z P” exp[—a,,(K — K)At]}u(")

k=1 Um=1

AI‘I:ZP’”exp( a KAZ)] ©

which can be solved by the same time-step procedure as that
applied to Eq. (23).

Finally, the numerical algorithm for the mixed method is
obtained by inserting the boundary models (21) in Eq. (20)
assuming no source points at corners and zero body forces.
This gives

E

)= | [ w0+ pioar

e=1
- Jr pi(x, &0 *ui (ndl ] (25)

Applying the quadrature formula proposed by Lubich to
the integral Eq. (25) results in the following boundary
element time-stepping formulation for n = 0, 1,..., K,

n E
ilt) = - D[ 5" (& Anpf oy
k=0 e=1

— g, Anyus ()| (26)
with the spatial integration incorporated into the weights
7" and &" according to

. 1 &, YD
mEan =134 j ,,[x g 1 ]dF(x) @7

. 1<, &
¥ =3 g [ i|xe it larw o

and all parameters appearing in the above expressions
defined in Appendix B. All convolutions were approximated
using the third-order backward differentiation formula, that
is, with P = 3 in Eq. (B2). Recalling that the spatial and time
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dependence of the fundamental solutions can be separated
according to Eq. (A1), expression (27) can be simplified to

(&A1) = a,(ADF(&) + b,(ADGH(H
where -

RO = | fin8aro. G = | gyx, I

and

1<
a@n= 1 3 5a B2
=0

At

1
b= 34 "B[Z(f;l]

The expression for (15‘;” can be simplified in a similar
manner. The algebraic system of Eq. (26) can be solved for
successive values of n, starting from n =0, that is, the
solution at ¢ = 0. ’

The algorithms described in this section were
implemented through MATLAB and FORTRAN programs.
Comparison of MATLAB and FORTRAN outputs provided an
additional check on the accuracy of programming. MATLAB
was found more user-friendly but also slower than
FORTRAN. In anticipation of complex applications of
viscoelastic analysis involving repeated calculations or
iterative schemes, robust and fully validated FORTRAN
programs were developed for all formulations from which
all results presented in Section 7 were obtained.

7. Numerical results and discussion
7.1. Comparison of the methods

The accuracy and effectiveness of the schemes described
in Section 5 was assessed through the benchmark problem
shown in Fig. 1 A thick wall cylinder under uniform internal
pressure p(z) over its inner boundary L, (radius a) is
reinforced by an elastic ring at its outer boundary L,
(radius b). Initially, no traction or gap is assumed between
the cylinder and the ring. Provided the edges of the cylinder
are fixed, radial traction and displacement at the outer
boundary satisfy the relation

Eh
prb,1) = mur(b, 1)
where £ is the thickness, E, the Young’s modulus and v, the
Poisson’s ratio of the elastic ring. The same problem was
solved in previous independent assessments of Laplace
transform [1] and time domain [8] schemes.

The numerical values used for the various parameters
were: a=6, b=20, h=1mm, E =207 GPa, and
v =0.25. A step load p = 100 MPa was applied at time ¢ =
0. The adopted viscoelastic material model bore some

ELASTIC RING

VISCOELASTIC
CYLINDER

Fig. 1. Thick wall cylinder reinforced by an elastic ring.

resemblance to a real polymer as reported in the literature
[9] namely, elastic in bulk deformation with K = 2070 MPa
and viscoelastic in shear. A rough three-term Prony series
approximation was fitted to the experimental creep data and
subsequently converted to the shear relaxation modulus

p(t) = 609.90 + 118.79 e~ %1% 4 57,494 737

+27.346 ¢ 7% (MPa) (29)

The fundamental solutions as well as the exact solution
of this problem, corresponding to the adopted viscoelastic
model, were derived for both plane strain and plane stress
conditions, by applying the correspondence principle to the
associated elastic solutions.

Taking advantage of symmetry, only one quarter of the
cylinder was analysed. Meshing and symmetry conditions
were applied along internal boundaries so that circumfer-
ential stresses and radial displacements could be obtained
directly from the boundary solution. This strategy also led to
a geometrically more complex and computationally more
demanding problem for testing the developed algorithms.
The three meshes used with all methods are shown in
Figs. 2—4, where Np is the number of boundary elements.
In the first two meshes, boundary elements of variable
length were used along internal boundaries for improving
accuracy around corners. All methods were applied with the
time step kept constant at Ar=50s. In the transform
method, time histories were obtained by Schapery’s
inversion method [1]. The mixed method was applied with
N =150, L = 80 and p = 0.95.

Tables 1-3 show the average error for all three boundary
element meshes and the time step adopted. It can be
observed first that the Laplace transform and the two time
domain methods produce extremely consistent results.
The accuracy of the mixed method is generally close to
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10 15 20
x (mm)

Fig. 2. Boundary element mesh with Ngg = 160.

that of the other three apart from certain initial values. In
such cases, better agreement between methods can be linked
to smaller element size. Most results are in very good
agreement with the exact analytical solution. Large
percentage errors are only noted at locations where the
actual value of the result is very small. The accuracy of the
results clearly depends on the element size but also on
the proximity of the calculation point to a corner. This
suggests refining the mesh around corners as well as
increasing the number of boundary elements for improving
accuracy. Tables 1-3 are based on results obtained under

2074

154

\g/lo-1
~

0 T + i
0 5 10 15 20
x (mm)

Fig. 3. Boundary element mesh with Ngg = 220.

20

0 5 10 15 20
x (mm)

Fig. 4. Boundary element mesh with Ngg = 275.

plane strain conditions but analyses performed under plane
stress gave results with very similar trends.

The mixed method provided a stable solution for up to
4000 s. Beyond this time, the solution began to oscillate
until, eventually, becoming highly unstable. For this reason,
no mixed method results for = 5000 s are given in the
tables. Increasing the time step to Az = 100 s prolonged the
stable solution time but did not remove the instability
problem, which is further investigated in Section 7.2. This
time step change did not have any noticeable effect on the
absolute or relative accuracies of all other methods.

7.2. Assessment of the mixed method

The convergence problems associated with the mixed
method prompted further investigation into the effects of
parameters that may affect performance. The geometry and
loading of the analysed example were the same as those
described in Section 7.1, but the material model slightly
simpler, i.e. SLS in shear according to

w() = 12 + 36 ¢ *¥(GPa) (30)

and elastic in bulk deformation with K = 128 GPa, as
previously adopted for the same problem [8]. Plane strain
conditions were again assumed. A coarser uniform mesh
consisting of 88 boundary elements was adopted to increase
computational efficiency since the focus here was on
solution convergence rather than accuracy.

The effect of the time step At on accuracy was first
examined and found to be significant. In contrast, however,
to the direct time domain method, reducing At did not
necessarily improve the results. The optimum Ar value is
apparently linked to the boundary element size as already
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Table 1

Comparison of the methods based on circumferential stress at various times and locations (Ngg = 160 ,Ar = 505)

(r—a)l(b — a) Time (s) Exact solution (MPa) Relative error (%)
Laplace domain Time domain (Heaviside) Time domain (Dirac) Mixed method
0.007 0 70.336 1.58 1.58 1.58 1.36
1000 67.557 1.51 1.54 1.50 1.45
3500 66.230 1.48 1.49 1.48 1.51
5000 66.140 1.49 149 1.48 N/A
0.037 0 60.002 -0.62 -0.62 —-0.62 —0.84
1000 57.392 -0.62 —-0.61 —0.62 —-0.68
3500 56.146 -0.62 —0.62 -0.62 —0.62
5000 56.061 -0.62 —-0.62 —0.62 N/A
0.558 0 ' 2.923 —1.64 —1.64 —-1.64 —4.68
1000 1.244 -397 —-4.03 —-4.00 -5.80
3500 0.442 —11.35 —11.33 —11.42 -11.89
5000 0.388 —12.60 -12.90 -13.04 N/A
0.975 0 —5.354 5.49 5.49 5.49 7.03
1000 —6.898 4.39 4.39 4.40 4.70
3500 —17.634 4.00 4.00 4,01 4.01
5000 —17.685 3.96 398 3.99 N/A

pointed out in applications of the method to dynamic
problems [3]. Whatever the choice of the Az, it was never
possible to achieve a stable solution over the whole
predefined total time 7 = KAt. The stability of the method
was measured in terms of the percentage of this total time
during which the solution remained stable. First, parameter
L was varied from 20 to 100, while p and K remained
constant at 0.85 and 101, respectively. The larger the L, the
greater was the proportion of stable solution time, which
reached 62% of 1 for certain results but improved only
marginally for further increases of L. The effect of

Table 2

parameter p was also examined keeping L,K and At
constant at 50, 101 and 0.5 s, respectively. The closer the
value of p to unity, the longer was the stable solution time
but again it only reached 49% of tx for p = 0.95.

Since At affects only the accuracy but not the stability of
the solution, it is possible to achieve results over a longer
period by adopting different values of Ar. This is
demonstrated in Fig. 5 where the circumferential stress at
r=13.5mm is plotted versus time. The solution with
At = 1 s is clearly more accurate than that obtained using
At =5s but diverges at around 50s. The solution with

Comparison of the methods based on circumferential stress at various times and locations (Ngg = 220, At = 50 s)

Re]aﬁve error (%)

(r—a)(b—a) Time (s) Exact solution (MPa)
Laplace domain Time domain (Heaviside) Time domain (Dirac) Mixed method
0.004 0 71.726 2.52 2.52 2.52 2.30
1000 68.924 2.35 2.39 2.34 2.29
3500 67.587 2.28 2.29 2.27 2.24
5000 67.496 2.28 2.28 2.27 N/A
0.011 0 68.876 —0.53 —-0.53 —-0.53 -0.75
1000 66.121 -0.57 -0.56 —-0.57 —0.62
3500 64.806 —0.58 —-0.58 —-0.58 -0.60
5000 64.717 —0.58 —0.58 ) —-0.59 N/A
0.562 0 2.779 —346 —3.46 —3.46 —6.65
1000 1.102 —8.64 - —8.70 —8.67 —-10.69
3500 0302 -31.41 -31.38 -31.52 —-32.30
5000 0.248 —37.75 —38.21 —38.42 N/A
0.989 0 —-5.512 —0.58 —0.58 —0.58 0.91
1000 -7.053 -0.29 -0.30 —0.28 0.01
3500 -7.789 -0.20 -0.20 -0.19 -0.15
5000 -7.839 -0.21 -0.20 -0.19 N/A
0.996 0 —5.594 —-347 -347 —-3.47 —1.98
1000 —-7.134 —-2.24 -2.29 —2.24 -1.95
3500 —7.869 —1.86 -1.87 - 1.85 -1.77
5000 -7.919 —1.85 —1.84 —1.83 N/A
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Comparison of the methods based on circumferential stress at various times and locations (Ngg = 275, At = 50 s)
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(r—a)b-a) Time (s) Exact solution (MPa) Relative error (%)
Laplace domain Time domain (Heaviside) Time domain (Dirac) Mixed method
0.007 0 70.336 1.07 1.07 1.07 0.86
1000 67.557 1.02 1.05 1.02 0.96
3500 66.230 1.00 1.01 1.00 0.98
5000 66.140 1.01 1.01 1.00 N/A
0.036 0 60.344 —-0.74 -0.75 —0.75 —-0.97
1000 57.728 —-0.74 -0.74 -0.75 -0.80
3500 56.479 —-0.74 -0.74 -0.75 -0.76
5000 56.395 —-0.74 -0.74 -0.75 N/A
0.536 0 3.677 —-0.41 —041 —0.41 —2.85
1000 1.985 —0.88 -0.32 -0.90 —-2.03
3500 1.178 - 1.59 —1.58 —-1.61 -1.81
5000 1.123 —1.55 -1.65 - 1.70 N/A
0.579 0 2252 -0.69 -0.69 -0.69 —4.62
1000 0.584 —3.06 -3.17 —-3.12 —-6.92
3500 -0.212 8.98 8.93 9.13 10.24
5000 —0.266 6.67 7.10 7.30 N/A
0.964 0 -5.228 1.08 1.08 1.08 2.65
1000 -6.774 0.86 0.86 0.86 —1.45
3500 —-7.512 0.78 0.78 0.79 0.82
5000 —7.562 0.76 0.77 0.78 N/A
0.993 0 —5.554 —-0.65 —0.65 -0.65 0.84
1000 —7.095 —-0.23 -0.25 -0.22 0.07
3500 —7.830 —0.11 -0.11 -0.10 —0.04
5000 —7.880 -0.12 -0.11 -0.10 N/A

At = 5 s prolongs the stable solution time without signifi-
cantly affecting accuracy at later times.
The performance of the mixed versus the time domain

associated with the mixed method (see Tables 1-3). The

applied internal pressure is here ramped from zero to its

methods was also assessed in relation to the initial loading
conditions. It was shown in Section 7.1 that for a step load at

t =0, the initial response was, in general, accurately

p) =

predicted by all methods with the more severe discrepancies

Circumferential Stress (MPa)
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maximum value according to

t = 100/a
t > 100/a

—_ e} —

——+——  Mixed Method, =1 s
Mixed Method, =5 s
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20

40 60

Time (s)

80 100

Fig. 5. Stress at r = 13.5 mm in thick wall cylinder under step loading.
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35

Circumferential Stress (MPa)

' o ——-%-—— Time domain (H) - =100 MPa/s
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5 - ...b: .........................
,0'.
0 t T T t
0 5 10 15 20 25

Time (s)

Fig. 6. Stress at » = 13.5 mm in thick wall cylinder under ramped loading.

The results for the circumferential stress at » = 13.5 mm,
for two values of a, are shown in Fig. 6. It is seen that the
mixed method captures very accurately the smooth initial
stress variation in contrast to the time domain solution based
on Stieltjes convolution, which appears to generate a
significant initial deviation.

Finally, the mixed method was applied to a geometrically
simpler example involving an infinite viscoelastic plate with
a circular hole of 3 mm radius whose edge is subjected to a
step pressure of 100 MPa at ¢t = 0. The material model
remained the same, i.e. with a shear relaxation modulus

given by Eq. (30) and a constant bulk relaxation modulus
K = 128 GPa. The critical parameter in this case was the
number of boundary elements, which varied from 36 to 360.
The values of the other input parameters were kept constant
at At = 0.5, K = 101, L = 50 and p = 0.85. Fig. 7 shows
the time variation of the radial displacement at » = 50 mm
for two values of Npg. The accuracy of the result is seen to
improve with increasing number of boundary elements but
with the stable solution time becoming gradually shorter.
For Ngg = 360, the solution became unstable from the
second solution step.

0.6
g
=
=
[
E
L
8
&
A
T e e ——————————
B
o —o— Mixed Method, Np:=36
o . : —+— Mixed Method, Np;=180
LU ‘ """"""""""""""""""" Exact Solution |77
0.1 : ; ; ;

Time (s)

Fig. 7. Displacement at r = 50 mm in infinite space with a hole under step internal pressure.
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127 mm

“NA

Fig. 8. Centrally cracked long strip.

7.3. Cracked strip

The performance of Laplace and time (Heaviside)
domain methods was also compared in the case of a long
strip with a central crack under uniform lateral extension
This was a model of a specimen used for studying crack
propagation in a viscoelastic solid [10]. Accounting for
‘symmetry with respect to both x and y axes, only one quarter
of the plate was analysed as shown in Fig. 8. The material
was assumed to have a constant Poisson’s ratio v = 0.4 and
a SLS behaviour in shear

w(®) = 1.057 + 154.3 ¢ >'(MPa) 31

This material model represents only roughly the time
dependence of the material tested by Mueller and Knauss
[10] giving the quoted extreme values of relaxation modulus
at =10 and t'= co. A lateral extension u, = 0.2 mm was
uniformly applied along the edge y = 17.46 mm. The BEM
model consisted of 534 boundary elements the majority of
which were located in the neighbourhood of the crack tip.

The results for the time-dependent stress concentration
factor K;(r) shown in Fig. 9 were obtained using

K;(r)y= ]i_r}g Oy (r, )V 27r 32)

where r = x — 30 (mm) is the distance from the crack tip.
The limit on the right hand side of Eq. (32) was identified by
linear regression since, theoretically, the corresponding
expression can be approximated by a straight line near r =
0. Although the agreement between the two BEM solutions
at ¢ = 0 is very good, considerable deviation is observed at
later times. This can be attributed to the choice of range and
values for the Laplace transform parameter s. The extreme
BEM time domain results K;(0) = 20.89 and K;(c0) =
0.1420 N mm > are comparable to the respective approxi-
mate theoretical predictions for an infinite strip K;(0) =
22.72 and K;(0) = 0.1545 N mm > [10].

8. Discussion and conclusions

The transform domain method was shown to be as
accurate as the time domain methods and is certainly more
versatile since it can be adapted to any type of viscoelastic
model. However, it requires the transform inversion and the
associated choice of range and distribution of the transform
parameter, both having a strong influence on the accuracy of
the final results. This was more evident in the results of the
cracked strip problem featuring singular, strongly time-
dependent stress fields. Increasing the number of transform
domain solutions imposes a heavy computational penalty on
the final output especially when the solution needs to be
applied iteratively.

25

— — — Laplace domain

Time domain (H)

................................................................................................................

1.5 2.0 2.5

Time (s)

Fig. 9. Stress intensity factor for the strip problem.
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The two time domain methods provide almost identical
results and it is surprising that only that based on Stieltjes
convolutions has so far found wide applicability among
BEM developers at least for quasi-static problems. Since

these methods yield directly time histories of results, they.

are potentially more efficient than the transform domain
method. Another advantage of the time domain methods is
that they can handle more easily inputs of complex time
histories of boundary conditions. They are, therefore, a
more rational choice for solving geometrically or materially
non-linear problems. However, the time-dependent funda-
mental solution for the adopted viscoelastic model must be
available. It was shown that such solutions can be generated
with relative ease provided the material can be represented
as a generalised SLS of either Kelvin or Maxwell type.

It is true, however, that more economical polymer
modelling can be achieved using, for instance, fractional-
order time derivatives. In such a case, it may be impossible
to find a convenient form of the appropriate fundamental
solution. This disadvantage can be overcome by applying
the mixed method [3], which requires only the knowledge of
the Laplace transform of the fundamental solution. The
latter is easily obtained via the correspondence principle.
Through applications to quasi-static problems, ranges of
parameters guaranteeing the stability of the mixed method
were identified. Initial assessments of its potential have
shown that its accuracy and stability depend on appropriate
choices of the approximation parameters A¢, p and L, as well
as element size. The effect of these parameters should be
explored further through applications to both quasi-static
and dynamic problems before this method can be accepted
as a valid versatile alternative to the other three in most
practical cases.

There is considerable scope for increasing the potential
of the BEM methods to solve complex viscoelastic
problems. The first step would be to develop and test
three-dimensional algorithms and then enhance their range
of material modelling. This will extend their applicability
to complex, industry-oriented problems. One such chal-
lenging area is fracture mechanics associated with
geometry changes and high stress concentration possibly
leading to the onset of non-linear viscoelastic behaviour,
which would require additional modelling parameters and
impose significant modifications to the existing BEM
algorithms.

Appendix A. Time-dependent fundamental solutions
for standard linear solids '

The Laplace transform of the viscoelastic time-depen-
dent fundamental solution due to a unit step or Dirac load
can be written in the general form

iy(s) = A(s)fy(x — & + B(s)g;(x — & (AD)

where the spatial functions f; and g; are obtained from the
corresponding elasticity solutions. For two-dimensional
problems, they are given by

fom o;Inr (A2)
v 8
Ty

L (A3)

where r = |x — &. The functions A(s) and B(s) correspond
to constant coefficients in the elastic solutions usually
expressed in terms of the shear modulus and Poisson’s ratio.
If isotropic viscoelastic behaviour is characterised by the
shear and bulk relaxation moduli, the appropriate
expressions for A(s) and B(s) are obtained using Eq. (14)
as follows,

(1) Plane strain

Bo)= i([jg(;i:)r f S;)z](sn A%
(ii) Plane stress

A= 2sa1;f<l;<>([ss?f<ts§lis/)1](s>] (A0

B(s) = sﬂ@(s)[;li(ss))+ ()] A

where fi(s) and K(s) are the Laplace transforms of the
viscoelastic shear and bulk relaxation moduli, respectively;
a=2 for the fundamental solution due to a
Heaviside step impulse; a =1 for that due to a Dirac
delta impulse.

If expressions for viscoelastic bulk and shear relaxation
moduli are adopted according to the generalised Maxwell
SLS model, Eq. (6), their Laplace transforms would be
given by

_ Ho
— A8
Als) = = +ZS+T_1 (A)
_ K,
R(s)= =2 +Y (A9)
) = S+TKI

Substituting Eqs. (A8) and (A9) into Eq. (A6), gives
expressions of the form

PR Y LLB I

= +
a— N i a—1 .
s 12.:0 bt S Jr s+ B

where the coefficients a;,b; are functions of the
material parameters u;, 7., K, 7x;, N =2P+ 0, and

(A10)
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—B1, — By, ..., — By are the N roots of an algebraic equation
of degree N, bys" + by_ "' + ... + bys+ by = 0.

If B; are distinct, for =2, the coefficients Y=
0,1,...N) are determined from

Y= lim (s+ B)) Zk 0 aks
j

s——pB; Szk o

with By = 0. For a = 1, the coefficients vy, are obtained
from

(A11)

aN
Yo = bN
N-1 a
(S + Bj) Zk=0 [ak lbk]sk (AIZ)
¥ = lim
J s—=—B; ZQ’ZO kak

Thus the inverse transform of A(s) is,

N
A®) = [818(0) + 8101+ Y e (A13)

n=1

The same procedure can be applied to Eq. (A7) to
obtain the inverse transform of B(s), which has a similar
form to that of A(s) given by Eq. (A10), but with a,
and y, replaced by different sets of coefficients d, and
Y., Tespectively, which are also functions of the material
parameters. Making these substitutions into Egs. (A11)
and (A12), the inverse transform of B(s) can be
obtained as

N
B() = xo[81a8(t) + S3a] + D xu e P (A14)

n=1
Substituting expressions (A13) and (Al4) in the inverse
transform of Eq. (Al), the viscoelastic fundamental
solution for the displacement due to either a Dirac
(a=1) or a Heaviside (a=2) step impulse is
obtained as

N
[8128(1) + 8aJuiy(x, & + > ufi(x, e P

wp(x, &1) =
n=l1
(A15)
where
(X, & = Yufi(%, O + X,84(X, (A16)

All other time-dependent viscoelastic fundamental
solutions for traction, stress and strain components can
be obtained in the same form by the same procedure.
In particular, the fundamental solution for traction can
be expressed in the form

M
[81a8() + S lpj(x, O + D pii(x, He '

m=1

pix, &0 =

(A17)

Appendix B. Convolution quadrature

A convolution integral y(¢) = f(¢) * g(t) can be numeri-
cally approximated by the finite sum

YnAt) = w, (AngkAr),
k=0

where the quadrature weights w, are the coefficients of the
power series

)-

and ¢(z) is a complex polynomial function, which needs to
satisfy certain stability conditions. Lubich suggests as
appropriate choice for y(z) the P-order backward differen-
tiation formula

n=0,1,.,N

Z oAD" (B1)

m=0

P

)= %(1 -2"  P=12..6 (B2)

m=1

It is clear from Eq. (B1) that w, is given by

— _1_ Y(Z) —n—1
w,(AT) = - f[ AL ] dz (B3)

where C is the contour of a circular region of radius p within
which (z) is analytic. The integral on the right hand-side of
Eq. (B3) can be approximated by a sum, so that

wn(At) = Zf[ XD o (B4)

where

2l
&= peXP( 2 )
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