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Abstract

One of the primary objectives of the operation of an incineration plant is to maximise
throughput. However, increasing throughput can intensify the loading on the gas-
clean-up system and also cause a violation of operational constraints. This may
result in penalty costs due to excessive pollution emissions and the need for increased
maintenance. Therefore a multi-objective strategy is required to optimize plant
operation in terms of economic goals and environmental and operational constraints.

This paper discusses an supervisory level optimization scheme, using Multi-Objective
Genetic Algorithms (MOGA), for a waste incineration plant, which will allow cer-
tain parameters to be adjusted for maximum throughput, whilst keeping within
emission and operational constraints. The optimization procedure is independent of
plant construction and waste stream input and is applied in this case to the model
of a municipal solid waste incineration plant, incorporating a moving grate.
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1 Introduction

Incineration is increasingly being used to dispose of various waste streams in-
cluding municipal, hazardous and clinical waste. Benefits can be found from
the reduction in waste volume, destruction of hazardous constituents and the
energy that is recovered from the process (Swithenbank et al., 2000). The
higher level supervisory control of a waste incineration plant is typically left
to the the decisions of a human operator. This is a distinct task from the au-
tomatic low-level control loops that regulate dynamic behaviour and provide
dynamic disturbance rejection (see for instance Chen et al. (2002)). Decisions
by the operator are based on experience and often rely on limited knowledge of
the process (about the usual operating points). Decision support tools, which
aid the operator, have been shown to be beneficial (particularly in related sys-
tems such as coal-fired power stations (Kalogirou, 2003)). However, a method-
ology for effective decision support is currently lacking in waste incineration
plant performance optimization.

The objectives that must be considered to assure optimal performance may be
grouped by three categories: the maximization of economic performance (e.g.
throughput), minimization of products of environmental concern (e.g. NOx,
dioxins and carbon-in-ash) and to ensure that operational constraints are not
violated (e.g. regarding temperature levels and oxygen concentration within
the combustion chamber). The task of optimizing waste incineration plant
performance is complicated by the trade-off that must occur when attempt-
ing to improve conflicting objectives. For instance maximizing throughput
conflicts with minimizing emissions and performing within operational con-
straints. Such a multi-objective problem has no single solution that optimizes
performance across all objectives. Rather a range of solutions will be obtained
according to the specified optimization criteria, each with a unique trade-off.

Multi-Objective Evolutionary Algorithms (MOEAs) (Fonseca and Fleming,
1995; Coello, 1999) are highly suited to problems where a range of optimal
solutions are available. The use of genetic algorithms in combustion plant per-
formance optimization (with a single objective) has been promoted in Chu
et al. (2003). The advantage of using a multi-objective approach is that an
optimal trade-off can be found in terms of all objectives of importance. The
MOEA uses a population of potential solutions which can spread along the
multi-objective trade-off surface. This gives high flexibility to the incinera-
tion plant operator: the benefits and penalties associated with all potential
decisions can be transparently assessed. This allows the operator to make an
informed choice based on current operational rquirements.

It is possible to use an approach that combines mulitple objectives into a sin-
gle cost function with appropriate weights for each objective (see for instance



Canning et al. (1998)). However, the selection of weights is not necessarily
intuitive and more importantly limits the operator to a single solution with
no knowledge of decision consequences for any other operational conditions.
Therefore MOEA has been selected in this investigation as a tool that has
advantages in application to waste incineration plant optimization. In partic-
ular, a well-known MOEA, the Multi-Objective Genetic Algorithm (MOGA)
(Fonseca and Fleming, 1993), with the ability to handle varying levels of con-
strained objectives, is applied to the problem.

The MOEA requires information on the effects of different operational condi-
tions in order to direct the search. This means that a model of the plant must
be available to test each set of input conditions. Combustion plant modelling
has been successfully accomplished using neural networks (Stopford et al.,
1998; Chang and Chen, 2000; Hao et al., 2001). Data driven methods are well
suited to incineration plant modelling because whilst the underlying physi-
cal functions governing behaviour are constant across all plants, each plant
behaves in a unique way. Therefore operational data, which can be routinely
collected at all plants, is ideally suited to describe such individual behaviour.
The relationships that need to be captured are often non-linear, which partic-
ularly motivates modelling using neural networks. In the case of this investi-
gation Radial Basis Function networks (Broomhead and Lowe, 1988; Liu and
Kadirkamanathan, 1999) are used to model the incineration plant.

In order to design and demonstrate the method, data was obtained from a
physical model: Fluid dynamic Incinerator Code (FLIC) (Yang et al., 2002),
developed in the Sheffield University Waste Incineration Centre (SUWIC).
This model provided a well-understood, controlled test problem where the
design and analysis of the optimization tool could be effectively accomplished
without the additional complications and expense of using and collecting real-
world data.

This paper aims to show the suitability of using MOEAs in optimizing waste
incineration plant operation and to provide a decision support tool for plant
operators where trade-offs in plant performance objectives may be transpar-
ently perceived. The use of MOGA in solving this problem is illustrated on
a model of a Municipal Solid Waste (MSW) incinerator, with a set of typical
optimization decision variables and objectives.

Section 2 provides a brief review of MOGA. Section 3 explains the RBF mod-
elling procedure used and section 4 explains the FLIC model. The application
of MOGA is presented in section 5 and finally the investigation is concluded
in section 6.



2 The Multi-Objective Genetic Algorithm (MOGA) with constraint
handling

The consideration of multiple objectives in evolutionary based search algo-
rithms has received much interest, with a number of algorithms having been
proposed including MOGA, Niched Pareto Genetic Algorithm (NPGA) (Horn
and Nafpliotis, 1993), Nondominated Sorting Genetic Algorithm (NSGA) (Srini-
vas and Deb, 1994) and Strength Pareto Evolutionary Algorithm (SPEA) (Zit-
zler and Thiele, 1999). These algorithms and variations thereof comprise the
basis of the most popular MOEAs currently in use. For a review and compari-
son, which is beyond the scope of this paper see (Coello, 1999; Purshouse and
Fleming, 2001).

The commonality that links these methods is the use of Pareto-optimal rank-
ing strategies and the use of techniques such as niching that aids in spreading
the solutions along the Pareto-optimal front. The method that is utilized in
this paper is a modification of MOGA that incorporates a methodology to
handle constraint information (Fonseca and Fleming, 1998) and hence is par-
ticulary well suited to the case of waste incineration. MOGA has been often
utilized in the area of control engineering (Fleming and Purshouse, 2002) and
in particular has been applied in the combustion-related area of gas turbine
engine performance optimization (Chipperfield and Fleming, 1996).

Multi-objective optimization methods are required to be used when there is a
problem that incorporates objectives that conflict and hence require a trade-
off in the solution. The solution or decision variable vector, x will often be
comprised of a number, m of adjustable parameters:

X = [T1,Z2, ..., Tm) (1)

The cost of one solution over another can be assessed by an objective function,
which in the multi-objective case will be comprised of n evaluation functions,
each related to a single objective:

f(X) = [fl(xl)a f?(x2)> v )fn(xn)} (2)

where x; C x for j = 1,...,n: each objective may only be dependent on a
subset of the full range of decision variables.

The task in a multi-objective optimization is to find the set of decision vari-
ables that minimizes (2) according to some criteria. This is most often accom-
plished in MOEAs by comparing solutions in terms of Pareto-optimality: a
solution is said to be part of the Pareto-optimal set if it not dominated (or
out-performed) by any other solutions in terms of one or more objectives. A



solution x* can be said to be Pareto-optimal if:
filx*) < fi(x) V x€X foratleast one i € {1,...,n} (3)

where X comprises the full set of all possible decision variables. Solutions
can be ranked relative to each other using the concept of Pareto-dominance
(Goldberg, 1989):

(1) The dominant solutions are selected (in terms of Pareto-optimality).

(2) This dominant set of solutions is ranked highest and then removed from
the full solution set.

(3) The procedure is repeated until all solutions have been ranked.

The MOGA is a method of search that can be used to solve (3), which is
based on the Darwinian principle of ‘survival of the fittest’. A random initial-
ization of solutions within the search-space leads to a multi-objective rank-
ing, stochastic selection and crossover process that produces new individuals.
These individuals can be thought of as the offspring of their predecessors. The
fitter individuals within a population will have a higher chance of reproducing
leading to their desirable characteristics being propagated through the search.
The steps involved in the MOGA algorithm can be stated as (for more details
see (Goldberg, 1989; Fonseca and Fleming, 1998)):

(1) Initialise candidate solutions.

(2) Evaluate candidate solution performance using the objective function.

(3) Rank solutions according to the given multi-objective ranking procedure.

(4) Perform fitness sharing between individuals to prevent dominance by one
group of solutions.

(5) Select solutions for reproduction using a stochastic sampling method that
is weighted by their fitness (e.g. stochastic universal sampling) to form
the Parent set.

(6) Apply mating restriction to the Parent set to prevent the occurence of
lethals.

(7) Recombine Parent solutions to produce the Offspring solution set.

(8) Select the new candidate solution set from some combination of the Par-
ent and Offspring set.

(9) Return to Step 2 and repeat until the termination criteria is satisfied.

Ranking that is solely based on Pareto-optimality gives equal weighting to
each objective. In real-world problems certain objectives may be more impor-
tant to satisfy than others. For instance many process plants will have hard
constraints, violation of which will result in an emergency shutdown. A fea-
ture of the MOGA approach used in this investigation is the multi-objective
ranking procedure, which gives the user the ability to articulate a preference
for solutions beyond mere Pareto-optimality. Goal values, g are used to specify
desired levels of performance (utilizing a priori knowledge), which the opti-



mization must seek to satisfy:

g= [91,92;-'-,%] (4)

where there is a goal value for all n evaluation functions and

f(x) <g (5)

Additionally, integer priority levels, p can be assigned to each individual ob-
jective to specify which are most important to satisfy.

P:[p1,]92>-~,pn] (6)

Objectives that have hard constraints are assigned the highest priority level.
Softer constraints can be assigned lower priorities according to operational
requirements. This goal and priority information can be used to perform a
relative ranking of the solution set. This ranking procedure can be explained
by the comparison of two candidate solutions, x; and x5:

(1) Initially the performance of x; is compared to x5 in terms of the highest
priority objectives where goals values (for x;) are not met.

(2) If the solution x; out-performs x, in terms of unsatisfied goals then it is
said that x; dominates x, and is ranked relatively higher.

(3) If all goals are satisfied at the current priority level (or are violated to the
same degree) then the next lower level priority objectives are considered
and step 2 is repeated.

(4) Finally, if all goals at all priority levels are found to be satisfied and
therefore the dominance of x; over x5 cannot be decided using this infor-
mation, then the lowest priority level objectives are compared in terms
of Pareto-optimality.

BEach solution can be compared to all other solutions in this way leading to a
relative ranking of the entire population. This comparison basis is referred to
as preferability and more details can be found in (Fonseca and Fleming, 1998).
The significance of this ranking procedure is that solutions that most closely
satisfy higher level priority objectives have a greater chance of propogating
through the search.

3 Evaluating Plant Performance using Radial Basis Function Net-
works

An optimization study requires a way of testing and hence comparing poten-
tial solutions to find the best set according to the defined criteria. In this
case a Radial Basis Function (RBF) network (Broomhead and Lowe, 1988)



is used to evaluate the performance of the plant under different operational
conditions. RBF networks are two-layer feed forward networks that are able
to approximate any continuous non-linear function to an arbitrary accuracy
(Bishop, 1995).

Given a set of of multi-input, multi-output data with m inputs, n outputs and
N pairs of input and output training data vectors:

xt:{x(lt),xét),...,:cg)}, t=1,...,N (7)
yi — {ygt);yét))"wyg) ) t= 17"'7N (8>

where x; is an input vector and y, is an output data vector. Output data
can be transformed so that predictions are made more robust by ensuring
that they are made within limits that are physically possible. In this case a
sigmoidal transformation is used:

1
= —ln(——1), i=1,....n 9)
i y'(t)

If z; can be said to be dependent on x; then they can be related by a fixed
functional mapping:

ze = f(x) (10)
In the case of an RBF network the input data set undergoes a non-linear
transformation before mapping to the output via a set of weights. Specifically,
a Gaussian RBF was used in this investigation of the form:

x; — ¢i||? ,
¢j(xt):exp(_%)) J :17"'7p (11)
where o is the width of each RBF, c; is the centre of the 4 RBF. There will
be p basis functions in total:

D(xy) = [@1(x1), Pa(xt), - - - 7¢p(xt)] (12)

The expression relating inputs and outputs can therefore be stated as follows:
flxe) = W (x) (13)

where W is the set of weights. The optimum set of weights, W* can be found
analytically from the least squares solution (due to the linear relationship
between z and W):

W* = (07d) 1Tz, (14)

The user must define the structure of the network such as the number of
RBFs, location of centres and widths of RBFs. A computational search may
be performed to assist in the network structure selection (see for instance
(Billings and Zheng, 1995; Liu and Kadirkamanathan, 1999)).
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Fig. 1. Diagram of a typical municipal solid waste incinerator

4 Physical Model of a MSW Incineration Plant: FLIC

An MSW incinerator is required to thermally treat usual household waste
such as cardboard, wood, glass, food wastes and tin cans etc. The operation
of a typical moving grate, MSW incinerator is a simple process: mixed waste is
picked up from a storage bin by a grabber and dropped down a chute that leads
onto the burning bed. The waste is agitated along by a moving grate system
(or by rollers). Primary air is fed from underneath the bed and secondary
air into the region above the burning bed to further aid in combustion of
particles carried up in the gas stream (see figure 1). The general process can
be described as:

Waste — Volatile(C,,H,, COs, H0, 05, CO, etc.)
+ Char

(15)

FLIC (Yang et al., 2002) provides a comprehensive model of all variables (both
input and output) of significance concerning the operation of the burning bed
in a moving grate incinerator. FLIC utilizes transport equations governing
flow, heat transfer and combustion of the solid and gas phases to describe the
burning bed region. The individual equations governing the reactions are too
numerous to list here and require detail beyond the scope of this paper, how-
ever, the interested reader may refer to (Yang et al., 2002) for more informa-
tion. The combustion process can be summarized as follows (with appropriate
mathematical model for each stage):

(1) Evaporation of moisture from the solid waste
(2) Waste devolatilization



Table 1
Set of input-output variables that can be set/predicted within the FLIC model

Inputs Outputs
Moisture content of waste Carbon-in-ash
Calorific value of waste Carbon Monoxide
Waste feed rate Nitrous Oxides
Residence time Sulfurous Oxides
Primary air flow rate Solids’ temperature
Grate speed distribution Gas temperature
Bulk density of waste Hydrogen Chloride
Primary air distribution Oxygen
Secondary air flow rate Heavy metals

(3) Combustion of volatiles
(4) Gasification of char

with further models governing:

(1) Turbulent fluid flow

(2) Heat transfer in the gas-phase

(3) Heat transfer in the solid phase
(4) Radiation heat transfer in the bed

The differential equations contained within the models listed above are solved
by iterative numerical methods, where the representation of the space of the
burning bed is divided in many small sections forming a grid. The variables of
interest are solved across this grid at the discrete points of intersection, where
grid lines cross (also known as nodes). The only requirement for the solution
of the model is that the boundary conditions at the input side of the grid are
known, such as initial temperatures and waste composition.

A range of input and output variables can be described in the model and a
typical selection of interest are shown in table 1. It should be noted that any
of the variables listed in table 1 can be used in the optimization; the inputs
comprise the decision variables, which must be adjusted for optimum opera-
tion. Objectives that define performance of the plant can be taken from both
inputs and outputs, for instance minimization of emissions such as NO, and
SO, (output variables) and maximization of waste feed rate (an input vari-
able).



5 Performance Optimization of an Industrial MSW Incinerator

This performance optimization study investigates the use of MOGA applied
to the model of an industrial MSW incineration plant. The following sections
report on the problem definition, plant modelling and performance optimiza-
tion.

5.1  Problem definition

The task was defined as follows; To find the set of parameter values for the
operational input variables:

(1) Waste feed rate, ¢
(2) Residence time, z,

that give optimal performance in terms of the following objectives:

(1) Maximising waste feed rate, f1(x1)
(2) Minimising carbon-in-ash, fa(x2)
(3) Performing within temperature constraints, f3(xs)

where x; = [zf] and x, = x3 = [z}, z,].

The decision variables and objectives chosen to illustrate the optimization
method comprise only a small subset of possible objectives that impact on
plant performance. Each objective is chosen as a representative of the the
three objective categories of concern outlined in the introduction: economic,
environmental and operational.

The maximization of waste feed rate is necessary to ensure profitability. Min-
imization of unburnt carbon in the combustion ash (carbon-in-ash) gives a
measure of the reactivity of the bottom ash collected from the incinerator:
high values of carbon-in-ash engender penalty costs when sent to landfill (if
over certain limits), conversely nonreactive ash may be used in the construction
industry, thereby creating a positive economic return. Temperature is chosen
as an operational variable to constrain, which is a typical consideration in the
operation of all waste incineration plants: excessively high temperatures may
cause damage to the combustion chamber increasing maintenance costs; too
low temperatures are undesirable for thorough burn-out of the waste. Peak
solids’ temperature was chosen as an indicator of the trend of temperature
throughout the bed for different operating conditions.

10



Table 2
FLIC model parameters

Input Variable Value
Moisture content (of waste) 41%
Fixed Carbon 7.7%

Volatiles 44.8%

Lower calorific value 12049kJ /kg
Bed length 7.4m
Grate speed distribution Uniform
Number of primary air inlets 13
Primary air flow rate (per inlet) | 31.3Nm?3/min

5.2 Incineration Plant Modelling

The FLIC model was initially set up to the physical specification and usual
waste content of a particular Japanese MSW incinerator; a selection of values
can be seen in table 2. All input variables were set to realistic values for a
certain point of operation. The two decision variables investigated here (waste
feed rate and residence time) were then varied within fixed limits about this
point while other inputs were kept constant.

In the usual operation of an incineration plant primary air flow rate, as well as
other variables, would be adjusted by the plant operator based upon factors
such as maintaining the best fuel/air ratio. However, such variables were left
to a constant value in this investigation as they are decision variables that are
not included within the model and are not significant as regards illustrating
the method of search. The important thing to note is that in a plant-wide
optimization all variables of significance should be included to ascertain the
best performance conditions. '

A set of output data comprising carbon-in-ash, and peak solids’ temperature
was generated for a range of input data comprising waste feed rate and resi-
dence time from the FLIC model. The particular training and validation sets
used are shown in figure 2. RBFs were centred on each training data point
(appropriate in this case because of the approximately regular grid of data
points (Powell, 1987)).

Two separate networks were trained (on normalised data) to predict values of
carbon-in-ash and peak solids’ temperature separately, which simplified the
modelling procedure (widths of the basis function were adjusted to 0.4 and 3
respectively). The prediction surface was tested on the validation data with
root-mean-squared-error (RMSE) = 0.45% for the carbon-in-ash prediction
values and RMSE = 2.70 Kelvin (K) (5.86% ) for temperature prediction

11
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Fig. 2. RBF model training and validation data

values.

Figure 3 shows that carbon-in-ash varies in an approximately quadratic way
at low residence time across all values of feed rate. This relationship changes
as residence time increases to one that is approximately linear, with a slight
increase in carbon-in-ash towards increased feed rate. The peak solids’ tem-
perature appears to have a more complex relationship with residence time and
feed rate. The major trends can be explained by examining different relative
combinations of these input conditions and consideration of further simulation
parameters:

(1)

Low residence time and low waste feed rate: low residence time means
that waste quickly passes through the burning bed and in conjunction
with low feed rates this implies that there is only a thin layer of waste
(and therefore fuel) on the bed. The volume of primary air is kept con-
stant for all conditions throughout this investigation and therefore there
is an excess of air (in this region), which leads to a damping effect on
temperature and reduced burnout of the waste, hence high carbon-in-ash
and a fall in peak solids’ temperature.

Low residence time and high waste feed rate: under such conditions there
is a large volume of waste passing quickly through the bed which has
a direct negative impact on the efficiency of combustion, e.g. the depth
of the bed is large therefore radiation through the bed is poor and there
would be a relative lack of primary air for the amount of waste. This leads
to poor burn-out of the waste and high carbon-in-ash. The extra fuel that
is available (resulting from higher feed rate) compared to the lower feed
rate values is able to utilize what was previously excess air therefore
higher temperatures result. However, this amount of air is not sufficient
for perfect combustion conditions, in which case you would expect to see

12
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even higher temperatures.

High to low residence time: figure 3 shows that carbon-in-ash falls with
increasing residence time. This is simply explained as the waste has longer
time to burn on the bed. The main trend in figure 4 shows that there
is a rise then fall in temperature as the residence time increases. The
drop in temperature at low residence times can be attributed to excess
primary air. The fall in temperature towards higher residence time can be
attributed to the increasing depth of the burning bed; heat energy must
be radiated through a larger volume of waste and therefore temperature
drops.

High residence time and low to high waste feed rate: waste spends a long
time on the burning bed allowing thorough combustion of the waste,
hence low carbon-in-ash. The quadratic relationship appearing at lower
residence time gradually shifts to a linear relationship with the increase
in residence time. It appears therefore that residence time dominates the
relationship with burn-out of the waste; in the limit as residence time is
increased the waste will undergo thorough burn-out regardless of the feed
rate, resulting in low carbon-in-ash.

Optimization results

The significant MOGA parameter values set in this investigation are shown
in table 3; the MOGA was implemented using a multi-objective ranking mod-
ification of a Genetic Algorithm tool box for MATLAB (Chipperfield et al.,
1994). A large population size was used in an attempt to fully cover the op-

13
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Table 3
MOGA search parameters
Parameter Value
Number of generations 100
Population size 200
Crossover rate 0.7
Crossover function Intermediate recombination
Generation gap 1.0
Selection function Stochastic universal sampling
Population encoding Real-valued
Selective pressure 2.0
Mutation probability 0.1

timal front. The number of generations was set to 100 as a robust cut-off
after a preliminary analysis of the apparent convergence rate: Figure 5 shows
a comparison of the Pareto-front (in terms of minimizing carbon-in-ash and
maximising feed rate) found after the initialization of solutions, 10 and 100"
generations (note that the figure is zoomed for clarity and therefore certain
intial solutions are not shown, which come outside the figure limits). It is ap-
parent from this figure that there is little difference between the solutions at
the 10" and 100%" iteration implying swift convergence. It should be noted
that the true Pareto-optimal front is unknown in this problem and therefore
only a relative assessment of convergence can be made as opposed to an abso-
lute comparison. Further parameters such as cross-over rate were heuristically
adjusted with experimentation.

14
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carbon-in-ash at various iterations throughout the search

5.8.1 Maximising Waste Feed Rate and Minimizing Carbon-in-Ash

Initially waste feed rate and carbon-in-ash were investigated in the optimiza-
tion procedure, using Pareto-optimal ranking. The solution converged as ex-
pected to values of high residence time and a range of feed rate values (see
figure 6). Figure 5 clearly shows the trade-off that is experienced between
attempting to maximise feed rate and minimize carbon-in-ash.

The secondary significance of figure 5 is in the gap between regions of the
solution: this shows that there is a region where feed rate can be increased
(between 5200kg/hr and 6300kg/hr) and no significant degradation in per-
formance is suffered in terms of carbon-in-ash. This can be attributed to the
fact that the central region of operation, where there is a gap in solutions,
coincides with pre-tuned values of other operational parameters, which were
kept constant during the investigation. The implication is that in the region
of tuned operating points carbon-in-ash is burnt out to a constant level. As
the feed rate increases the carbon-in-ash level rises, due to poor combustion
resulting from the lack of air. As the feed rate decreases it is seen that carbon-
in-ash also falls. This may be attributed to the stoichiometric point shifting:
at mid-feed rate and mid-residence time (the pre-tuned operating point) there
is the same amount of fuel on the bed as at low feed rate and high residence
time. At a constant air supply the stoichiometric point will shift with these
changing conditions, improving burn-out to the region in which it moves to.

In waste incineration plant operation, a priori knowledge is usually available
concerning desired levels of performance. Therefore it is helpful to include this
in the search procedure in the way discussed previously via solution ranking
using goal and priority information. Therefore goal values were set for feed
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rate to maximize beyond, g; and carbon-in-ash, g, to minimize below.

g1 = 7000kg /hr
g2 = 6%

Priority levels for feed rate, p; and carbon-in-ash, p, were kept equal as both
variables are arguably equally desirable to optimize (p; = py = 0). The opti-
mization was then repeated using ranking based on the preferability method
(Fonseca and Fleming, 1998).

The results of the search are shown in figure 7. It is apparent that the region
of the optimal front shown in figure 5 has been reduced to lie only in the area
above the feed rate goal. There is a significant gap in the solution between
7200kg/hr and 7500kg/hr. With reference to figure 4 this can be explained
as follows: there is a temperature rise towards the region of highest feed rate
and highest residence time. This accounts for the lack of rise in carbon-in-ash
(higher temperatures imply improved combustion therefore improved burn-out
of waste).

5.3.2  The effect of operational constraints on optimization decisions: peak
solids’ temperature

The optimization for finding maximum feed rate and minimal carbon-in-ash
was repeated with the addition of upper and lower temperature limits. Such
limits in plant operation are often classed as hard constraints where violation
results in a plant shut-down. The satisfaction of temperature limits was there-
fore classed as a higher priority objective, ps over feed rate and carbon-in-ash
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Fig. 7. Preferred optimization solutions (based on goal and priority information) for
maximising waste feed rate and minimizing carbon-in-ash

(p1 = p2 = 0 and p3 = 1). The upper, gs, and lower, g3 temperature lim-
its were defined to lie in the central region of operation (usually plants are
required to operate away from extremes) and were specifically chosen as:

g3y = 1615K
g3 = 1605 K

The results from the optimization show that all preferred solutions lie within
the temperature goal bounds (figure 8) and the carbon-in-ash and waste feed
rate solutions are shifted from the initial study (section 5.3.1) accordingly
(figure 9). It is apparent from figure 9 that the optimal front is attempting to
find the region in the lower right portion of the graph where both carbon-in-
ash and feed rate goals are satisfied. However, the front does not cross into
this preferred region (due to the temperature being too low in that area of
operation) and therefore the solutions are strung across from low feed rate
and high carbon-in-ash, to high feed rate and high carbon-in-ash.

There is a steep increase in the carbon-in-ash at feed rates between 6500kg/hr
and 7000kg/hr. This corresponds to the constrained temperature band enter-
ing the region of low residence time and high feed rate (the resulting increase
in carbon-in-ash for these conditions can be seen in figure 3 and is explained
in section 5.2).

A feature of the results between feed rates of 4000kg/hr and 6500kg/hr is
the gap in solutions; these show regions where increases in feed rate can be
made with only a small penalty in increasing carbon-in-ash and occur mainly
in two sections: either side of the mid-region of operation from 4200kg/hr
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Fig. 9. Preferred optimization solutions (based on goal and priority information) for
maximising waste feed rate, minimizing carbon-in-ash and constraining peak solids’
temperature: in terms of waste feed rate and carbon-in-ash

5250Kg/hr and from 5500kg/hr to 6500kg/hr. The mid-region, where a swifter
increase in carbon-in-ash is seen (relative to feed rate change), may appear to
contradict the results in figure 5 where it was assumed that a small deviation
about the ‘tuned’ operating point causes only a small change in the output.
However, it is actually because of this insensitivity (of carbon-in-ash variation)
to changes in feed rate about the mid-point that this occurs: figure 10 shows
that temperature contours coincide with carbon-in-ash contours immediately
above and below the mid-region of feed rate operation (note that the residence
time scale is inverted to provide easy comparison with figures 3 and 4). This
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Fig. 10. Preferred optimization solutions in terms of waste feed rate and residence
time, showing contours of temperature constraints and contours of carbon-in-ash

shows why there are gaps in the solution: solutions are able to move along
temperature contours in the direction of increasing feed rate without suffering
a penalty in increasing carbon-in-ash. However, in the central region (between
feed rate values of 5000kg/hr and 5500kg/hr) the carbon-in-ash contours do
not coincide with the temperature contours. Therefore solutions are forced by
the temperature constraints across increasing levels of carbon-in-ash.

The implication of these results is that the relationship between feed rate,
residence time and temperature is approximately constant (in the region of
the optimization solutions) and can be explained as follows: a decrease in
residence time results in waste leaving the bed faster and therefore an increase
in feed rate is required to maintain the same amount of fuel on the bed and
hence a certain temperature. The further implication is that the relationship
between feed rate, residence time and carbon-in-ash varies in a more complex
way: as stated earlier the reason for a central carbon-in-ash region that does
not vary with changes in feed rate is probably due to the fact that conditions
for optimum combustion (in terms of fuel/air ratio) are met in this region and
slight deviations about this point still produce good burn out of the waste.

6 Conclusion

An optimization scheme for improving the operation of a generic waste in-
cineration plant has been designed using a multi-objective evolutionary algo-
rithm (specifically MOGA). The method was illustrated on the model of a
MSW incineration plant (where the modelling was accomplished using radial
basis functions). In this investigation a subset of typical important opera-
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tional parameters and objectives were utilized to demonstrate the method.
The approach will allow for extension to any further variables deemed use-
ful to include (such as minimization of NO, and SO, ), providing a potential
plant-wide optimization procedure. It may also be applied, given suitable data,
to any type of waste incineration facility.

Results from the simulation studies have demonstrated how the inclusion of
additional constraints or objectives may lead to a different solution region; this
often appears to take the form of distinct regions. The technique of Pareto-
optimal ranking combined with goal and priority information has been shown
to be ideally suited to this type of problem where a number of conflicting
operational considerations must be taken into account by the plant operator.
In conclusion, the use of MOGA to improve waste incinerator operation facil-
itates a robust plant-wide optimization procedure, across a non-linear search
space linking multiple decision variables, objectives and constraints that can
be easily interpreted by a plant operator and used to improve performance.
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