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Abstract

Model predictive control (MPC) solves an optimization at every sampling instance to achieve commanded set points and control
objectives subject to constraints on control inputs and system states. Such online optimization can incorporate many important
factors to enable the control of systems subject to faults, changing dynamics, changing control objectives, failed control inputs and
large disturbances. Reconfigurable flight control is one such application where the capabilities and flexibility of optimization-based
control methods can be fully utilized and exploited. This paper presents formulations and experimental evaluations of various MPC
schemes applied to a realistic full envelope non-linear model of a fighter aircraft. Investigations are carried out by exploring a variety
of scenarios of fault and disturbance combinations along with modified and robust formulations of online constrained optimization.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One principle objective of control system design is to accommodate faults and changes in underlying system
dynamics while achieving tracking and regulation of performance variables. A modern fighter aircraft is a complex
system with many non-linearities affecting its dynamics over the flight envelop. Depending on the flight parameters
such as airspeed, angle of attack (AoA) and altitude, the dynamics of the aircraft change significantly. In realistic
scenarios such as high-amplitude manoeuvres and high AoA flights, stall-induced non-linearities and abrupt changes in
dynamic behaviour pose hard problems to underlying control and stabilization systems. Furthermore, many modern
agile fighters are inherently unstable and the control system must augment stability to such an unstable airframe so
that the pilot can benefit from high agility and manoeuvrability (Pratt, 1999). At the same time, increased agility
should not overly increase the pilot’s workload.

In addition to the above factors, fault tolerance to system and component failures is a desired feature of modern
flight control systems. An aircraft is controlled by the deflection of aero-surfaces such as canards and elevons.
Common faults that can arise are failures of sensors measuring critical aircraft parameters (such as body rates and
aerodynamic angles), and failures of actuators affecting the control surfaces. The conventional approach to achieving
fault tolerance to such failures is through physical redundancy. Essentially, the control and measurement channels are
duplicated in hardware and, for flight control systems triple or quadruple redundancy is relatively common. The major
disadvantage of such physical redundancy is increased cost and complexity. Replicated channels also add weight to the
aircraft and increase maintenance requirements. To overcome these and other difficulties, the concept of reconfigurable
control has been developed. Reconfigurable control is based on the principle of exploiting inherent redundancies
within system dynamics, i.e. analytic redundancy (Maybeck & Stevens, 1991; Patcher & Miller, 1997; Bodson, 1997).
For example, input redundancy is often possible where a controlled variable of the dynamic system can be affected by
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more than one system input. Then, based on the dynamic models of the system, a suitable method can often be devised
to accommodate loss of a control input by a suitable combination of other inputs. The severity of such faults in system,
of course, increases in the case of battle damages. Here the partial or complete loss of aerodynamic surfaces may occur.
A reconfigurable control architecture should also effectively and efficiently accommodate such fault scenarios.
Some challenges for reconfigurable flight control system (RFCS) design have been identified (Bodson, 1993) as:

® After a fault occurs, strong cross couplings between modes usually appear. The aircraft loses its symmetry after
surface damage (i.e. damage to body, wings or movable surfaces) and conventional simplified separated longitudinal
and lateral direction control approaches may not be applicable.

e Under fault conditions, the dynamics of an aircraft can change significantly. Hence, trim values and the system A
and B matrices (i.e. linearized dynamic model) used by the controller change after failures. Thus, the continuous use
of a non-linear or adaptive control algorithm is required.

® The system may be highly unstable, leaving very little time for control reconfiguration. This demands extremely
efficient online identification and controller redesign algorithms.

e After an aircraft has sustained damage to a surface, its ability to produce the required control forces and moments
degrades. Hence, the demands on healthy and available actuators (i.e. deflection and deflection rates) will increase.
This also aggravates the control saturation problem (Patcher, Chandler, & Mears, 1995).

A reconfigurable controller should be capable of redistributing and co-ordinating available control effort during
system failures among the aircraft’s remaining effective control surfaces, such that satisfactory flight performance is
retained if at all possible. Modern fighter aircraft usually have multiple control surfaces, each of which is capable of
independent movement. Controller reconfiguration should therefore exploit such redundancy to achieve acceptable
performance. Perhaps the most significant difficulty in designing control laws for a damaged aircraft is accounting for
non-linearities. High-amplitude manoeuvres and damaged aero-surface conditions render small perturbation
linearizations of aircraft dynamics unreliable. Hence, an RFCS requires a continuous parameter identification
technique. This is similar to indirect adaptive control (Eberhardt & Ward, 1999; Ward, Monaco, & Bodson, 1998). The
online parameter identification estimates stability and control derivatives of the aircraft for use by the control law.

Online system identification coupled with model predictive control (MPC) design is a promising starting point for such
control reconfiguration schemes. Tight tracking requirements usually call for an effective high open-loop gain that can
lead to actuator saturations and state limit violations. Such hard limits on the system severely limit the achievable
performance of linear controllers designed using conventional optimal control methods (such as LQR, H., and u
synthesis) and may cause instability in a feedback stabilized linearly stable control system. However, unlike linear control
design methods for RFCS, MPC can directly accommodate system input and output constraints (Markerink, Bennani, &
Mulder, 1997). Related work includes RFCS designs presented in Eberhardt and Ward (1999) and Ward et al. (1998). As
discussed previously, under fault conditions when some of the control inputs malfunction, more demands are placed on
other healthy inputs to accommodate the functionality of failed inputs while achieving appropriate tracking responses to
commands. Due to these increased demands, the problem of control input saturation becomes more pronounced and
frequent. Hence, a realistic reconfigurable control methodology must consider such hard saturation limits during online
redesign of the control laws. Actuator rate saturation is another dominant feature that must be considered in such control
redesign. The ability to incorporate input and state constraints directly in the control algorithm is a unique feature of
MPC. Explicit handling of constraints in online controller redesign reduces the need for tuning and manual intervention.
This attribute also reduces the need for ad hoc ‘safety jackets’ and other software layers to handle problems such as
integrator wind-up and daisy chaining of actuators. Also, if MPC uses a linear system model for prediction and
optimization, results from linear system theory can be readily applied to the synthesis and analysis procedures. Recent
developments in interior-point (IP) algorithms (Rao, Wright, & Rawlings, 1997) and active set methods (Bartlett,
Wachter, & Beigler, 2000), coupled with significant improvements in onboard computing hardware are making the issues
related to computational complexity of online optimization gradually diminish. One desired feature of reconfigurable/
adaptive control algorithms is the ability to use (or account for) uncertainly in the online parameter estimates. Aircraft
dynamics are expected to be highly non-linear and uncertain under severe failure conditions. Hence, the reconfigurable
control algorithm should be robust to unmodeled and/or uncertain dynamics (Bodson, 1993).

The outline of this paper is as follows. The aircraft simulation model and background information are discussed in
Section 2. The experimental set-up and required control objectives are then summarized in Section 3. In Section 4, MPC
theory with its reconfigurable control capabilities and appropriate formulations from the point of practical implementation
are derived. Experimental results are presented in Section 5. Various MPC formulations from Section 4 are tested for
combinations of faults, disturbances and model uncertainties evaluating strengths and drawbacks of each. Conclusions are
drawn in Section 6.
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2. Description of aircraft model

A full flight envelope, non-linear, six degrees of freedom simulation model of a small rigid fighter aircraft is used for
the experimental work presented in this paper. The model data is available from the Aeronautical Research Institute of
Sweden (FFA, URL http://www.foi.se/admire). It is designated as ADMIRE (Aero data Model in Research
Environment) and it incorporates the Generic Aero data Model (GAM) originally developed by Saab AB. ADMIRE
also includes a full non-linear engine model, sensor models and actuator dynamics along with actuator position and
rate limits. The aircraft configuration for the model data is of delta-canard type as shown in Fig. 1. It is similar but
slightly larger in dimensions to the SAAB JAS Gripen. ADMIRE is implemented in the Matlab/Simulink environment
as C S-functions. The flight operational region for ADMIRE is upto Mach number 1.2 (~400 m/s) and an altitude
upto 6000 m. The envelop for AoA is upto 30° and for sideslip angle upto 20°. As the airspeed (V) increases, the
envelop limits placed on aerodynamic angles and control surface deflections decrease due to structural and
acrodynamic reasons. The variations in envelop characteristics are also shown in Fig. 1.

The bare aircraft model associated with GAM has 12 internal states which are airspeed (V,;), two aerodynamic
angles—AoA and sideslip, three rotational body rates (p,g,r), three rotational angles and three linear displacements.
Available control effectors are left and right canard, four leading edge flaps (grouped together), four elevons (left and
right, inboard—outboard; LIE, LOE, RIE, ROE), rudder and a thrust setting. The model is also equipped with thrust
vectoring capabilities in the Y and Z-axis (dz,, dz,). Atmospheric turbulence enters the model in the form of external
disturbances. Depending on the amount of fuel loaded, certain combinations of the mass and inertia coefficients can be
set as a baseline configuration before the start of simulations. The nominal case simulations assume 60% fuel load
along with default mass and inertia parameter values. A detailed description of such adjustments and parameters is
available in the ADMIRE documentation (Backstrom, 1997). The dynamic states of the bare airframe model define a
flight condition and are inter-related with a set of 12 first-order non-linear differential equations. These equations are
defined in the conventional manner. The aircraft aero-data model consists of aero-data tables, interpolation routines
and aero-data algorithms. This is a standard way of performing aerodynamic modelling today. Based on the current
Mach number and other suitable aircraft states, various aerodynamic coefficients are calculated using aero-data tables
and associated interpolation algorithms. The final six aerodynamic coefficients corresponding to total aerodynamic
forces and moments along three translational and three rotational axes are then obtained. The geometry reference data
is used to convert force and moment coefficients into forces and moments. The geometric data corresponds to wing
areas, mean chord lengths and span. These acrodynamic coefficients, forces, moments and engine thrust contributions
are then substituted in differential equations to propagate the states further in time using numerical integration. A
detailed discussion of such aerodynamic modelling can be found in Etkin and Reid (1996). Contribution of
atmospheric disturbances to total aerodynamic forces and moments is also considered in a similar manner. The
available atmospheric inputs are three translational body axis wind disturbances and a rotational contribution around
the longitudinal axis. For the simulation studies the body axis reference frame is considered. Engine thrust calculations
are based on similar data tables which interpolate thrust using altitude and Mach number along with throttle settings.
First-order lag dynamics are added to the engine model to represent time taken to accelerate/decelerate the rotating
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Fig. 1. Delta-canard configuration of aircraft model in ADMIRE data set and its envelop and validity.
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Table 1
Configuration-specific values used in the ADMIRE simulations at 0.45 Mach and 3000 m
Trimmed flight data Envelop limits Control design limits Rate limits on actuator deflections
Vair 147.86 m/s Roll rate +50° to —50°/s Canard 50°/s
Altitude 3000 m Pitch rate +25° to —25°/s Elevons 50°/s
Alpha 3.66767° Yaw rate +25° to —25°fs Rudder 50°/s
Canard 0.01256° AocA +30° to —25° +20° to —15° dz, 20°/s
Elevon 0.0998° Sideslip +20° to —20° +5°to —5° dz, 20°/s
Throttle 0.07520 Canard +25° to —55° +15° to —33°
Mass 9100 kg Elevons +30° to —30° +18° to —18°
Fuel 60% Rudder +30° to —30° +20° to —20°

Horizontal thrust vanes dz, +10° to —10° +10° to —10°

Vertical thrust vanes d. +15° to —15° +15°to —15°

parts of engine. The dynamic models for sensors take different forms depending on the measured quantity. For air data
sensors such as airspeed, AoA and sideslip, first-order lag dynamics are considered. For inertial sensors measuring
body rates and accelerations, second-order lead lag dynamics are used. Aero-surface actuator dynamics are
represented with first-order lag models. The sign of the actuator deflections follows a standard right-hand rule. A
positive deflection means movement of control surfaces towards the base of the aircraft. Some important
configuration-specific values of ADMIRE are specified in Table 1. For control design purposes, the sensor and
actuator dynamics are not considered, hence the control laws are expected to be robust to such ignored dynamics.

Trimming and linearization routines are provided with the ADMIRE model set. The non-linear simulation model
can be trimmed at a desired flight condition of Mach number, altitude and AoA. The trimming routine performs a
non-linear search and optimization to find various deflections of control surfaces and a thrust setting which maintain
the flight condition in a steady manner. The linearization facility is then used to obtain a small perturbation linear
model of the bare aircraft around trimmed flight condition. Such a linear model is then used for control system design
and further analysis.

3. Experimental set-up

The nominal flight condition considered for the experiments reported in this paper is Mach number 0.45 at an
altitude of 3000m. This is an unstable point in the pitch axis and a likely condition during a segment of combat
mission. At the start of each simulation run, the non-linear aircraft model is first trimmed at this flight condition. The
control design is based on a reduced-order linear model using six states of the aircraft which are: Vi (airspeed), AoA
(«), sideslip (B), p (roll rate), ¢ (pitch rate) and r (yaw rate).

The control inputs are left and right canards, left and right inboard and outboard elevons, rudder, and, vertical and
horizontal thrust vectoring deflections. As there is only one engine for propulsion, reconfiguration for velocity control
is not considered. The reconfigurable MPC is expected to provide inner loop stability and command augmentation
system which can tolerate various faults while maintaining acceptable command tracking performance.

A block schematic of various components within the experimental set-up is shown in Fig. 2. The Atmospheric
Disturbance Model block uses Dryden wind turbulence models. The turbulence is considered as a stochastic process
defined by the standard Dryden velocity spectra and is implemented by passing band-limited white noise through
appropriate forming filters as described in Etkin and Reid (1996). In addition to baseline turbulence, triangular shape
wind gusts active in vertical and lateral axis are also considered.

The Stick Shaping and Non-linear Compensation module accepts stick commands from the pilot. The pilot
commanded pitch rate (¢.), wind axis roll rate (p,,.)and sideslip angle (f¢) are shaped through stick filters and limited
according to structural limits and failure information. This block also contains non-linear compensations that are
needed for the turn co-ordination (i.e. minimum coupling of rolling and yawing motions in a steady turn; see, e.g.
McLean, 1990). As the velocity vector (wind axis) roll rate is commanded, commands for both body axis roll rate and
body axis yaw rate are generated. All these command signals are then passed through low-order system models that
specify handling qualities required. The standard flight handling qualities specifications are used to define the
objectives of the proposed reconfigurable control strategies. A damaged aircraft is often significantly less symmetric
(and therefore less decoupled) than the original one. The control objectives hence need to be adjusted according to
damage conditions. The military aircraft handling qualities standard specifies lower-order equivalent system (LOES)
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algorithm. To implement online system identification like functionality, Model Change Logic modifies the linear
dynamic models of the aircraft used by MPC according to flight conditions and fault descriptions. The trimming and
linearization routines were used to obtain a number of linear models at different flight conditions based on changes in
Mach number, altitude and AoA around the starting point of 0.45 Mach and 3000 m. The Model Change Logic selects
an appropriate model depending on the measured flight conditions, then changes it according to fault and uncertainty
settings and finally updates it after FDI delay for the use of MPC algorithm.

4. Reconfiguration strategies using MPC

The linearized aircraft dynamics can be represented by the following time varying non-homogeneous continuous
time linear differential equations:

X(1) = A(Dx(2) + B(Du(t) + b(1), M

where A,(t) are stability derivatives, B.(r) are the control derivatives and (¢) is a bias that includes higher-order terms
and accelerations due to non-equilibrium or off-trim conditions. x € R” and u € %™ are the state and control vectors,
respectively. For the studies considered here, full state measurements are assumed. Measurement noise is not explicitly
considered and the existence of a suitable Kalman state estimator is assumed. The continuous time model is discretized
appropriately for controller design.

The principle behind MPC is based on the repetitive minimization of cost function:

H, -

Vik) = ,Zl 1%k + 11k) — Tk + 1)1 + Ijzol Atk + 1) 17 (2a)
subject to constraints

2k + 1) = Ax(k) + Ba(k), (2b)
X(klk) = x(k), (2¢)
tenin(1) < (1) < ttmax (/) Where k<l <k + H, — 1, @d)
Anin (D) < Au(l) < Awtax (/) where k<I<k + H, — 1, Au=uwuy, — ug_1, (2e)
Xmin(1) < X()) < Xmax(D) where k + 1<I<k + H,, 2

where T is the future state target trajectory vector, Q and R are weights independent of time k and, H, and H, are
prediction and control horizons, respectively. The target trajectory is generated based on a given set point or command
reference. The MPC algorithm drives the predicted state over the prediction horizon, towards the target trajectory and
yields a sequence of future control inputs. It is also assumed that the dynamic system defined by the model (4,B) is
controllable. The controllability condition is required to ensure that the MPC optimization solved at each step is
feasible in the nominal case. This optimization can be cast as a quadratic programming (QP) problem. To ensure a
well-posed optimization problem, the constraints defined on control inputs and states must be consistent and convex.
Such a restriction guarantees a convex feasible region containing the origin. The controllability and convexity
conditions remained valid during all the simulation studies presented in this paper.

The MPC strategy can accommodate various failures in the following manner (Huzmezan & Maciejowski, 1998):

® A minor fault in an actuator, such as limited deflection, can be represented as a change in position limits used by the
MPC optimization algorithm. If an actuator floats it can simply be represented by making the corresponding
column of B matrix zero. If there is an actuator hard-over, it can be represented by removing the corresponding
column of B and adding a constant disturbance of magnitude b, x uy where uyis the stuck actuator position and byis
the corresponding column of B matrix.

e Faults such as the loss of an aero-surface or damage to the wings or body will necessarily change the aircraft’s
dynamics. Employing a system identification module, 4 and B matrices representing changed aircraft dynamics can
be determined (see Monaco, Ward, & Bird, 1997; Ward et al., 1998). The MPC algorithm uses this new model as its
internal model for the prediction and further optimization.

¢ In cases when the damage and failures are severe, the parameters used in the MPC algorithm, such as prediction and
control horizons or state and input weightings may be changed. More advanced MPC algorithms capable of
guaranteeing stability and robustness are of interest in such cases. Such formulations are presented in this paper.
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5. MPC formulations for fault tolerant and reconfigurable control
5.1. Tracking formulation with integral error augmentation

To achieve zero error set point or command tracking in the presence of model uncertainties and disturbances, it is
necessary to augment integral error states to the state space model of the aircraft. The MPC uses the augmented state
equation for prediction calculations and subsequent optimizations.

5.2. Soft constraints

A major practical problem with the MPC formulation of Eq. (2) is that the constrained optimization may become
infeasible. Assuming well-posed constraint conditions, the infeasibility can occur because of unachievable targets due
to restrictions on control inputs and states, limited control moves due to short horizons, excursions into the infeasible
region due to uncontrollable disturbances and, large plant-model mismatch (i.e. uncertainty in dynamic models).
Hence, when implementing MPC, it is essential to take steps either to avoid posing an infeasible problem or to have an
alternative method of computing an appropriate control signal. Constraint softening is one method of avoiding
infeasibilities. A soft-constraints-based approach to handling any infeasibility involves the introduction of slack
variables. Slack variables are defined such that they are non-zero only if the corresponding constraints are violated. In
a soft-constrained MPC, violations of the state constraints are usually allowed. Additional terms penalizing these
violations are introduced into the objective function. From a practical perspective, keeping the state constraints tight is
not appropriate because of the presence of noise, disturbances and numerical errors. However, the saturation limits on
control input variables are, in principle, hard and cannot be softened.

5.3. Zone regions

The standard MPC formulation assumes that all variables of the state vector have a reference trajectory. If some
state variables do not have any explicit reference command, the simplest formulation is to assume a zero reference
trajectory. However, in most applications, exact values of such states (even if non-zero) are not important, so long as
they remain within specified boundaries or zones. For flight control applications, variables such as AoA are usually not
commanded but must be restricted within certain ranges due to aerodynamic considerations. In exceptional conditions,
such as large disturbances, these ranges might be violated. The zone regions may also be necessary for over-specified
systems. If there are too many input and output constraints, the system may not be able to meet all the set points/
commanded references simultaneously. If a set point is changed to zone region, the performance specifications are
slightly relaxed. Introducing zone regions for appropriate variables thus increases the probability of a system meeting
the specifications for other commanded variables (Wang, 2002). A further advantage of using zone regions in
multivariable/multiobjective systems arises due to the possibility of reference trajectories for different outputs possibly
being inconsistent with each other. For example, in the case of flight control, AoA and pitch rate variables are closely
inter-related and any command tracking of pitch rate demands a certain AoA profile that depends on the aircraft’s
longitudinal dynamics. Attempting to keep perturbations in AoA to a minimum whilst following a certain pitch rate
command can introduce conflicting objectives. Such a control problem can greatly benefit by the formulation of a zone
region for AoA. The zone-based MPC is reformulated in terms of soft constraints assigned to the zone region
violations.

5.4. Stabilized predictions

A naive application of the MPC to an unstable system can lead to severc numerical problems in evaluating the
prediction equations. The prediction equations involve computing A', hence for unstable systems and large values of i,
some elements of A’ may become extremely large relative to others and also relative to elements in lower powers of A.
Hence, finite precision computer arithmetic can sometimes lead to incorrect results. As demonstrated by Rossiter,
Kouvaritakis, and Rice (1998), the optimization solved on the basis of such predictions can be highly ill-conditioned
and the solution will be far from optimal, resulting in instability and a lack of robustness. An effective way to prevent
this anomaly is to pre-stabilize the prediction equations. The standard MPC prediction equation assumes that the
system is operating in ‘open-loop’ and control signals are computed as deviations from a nominal value. Furthermore,
at the end of control horizon, input signals are assumed to remain constant thereafter. Clearly, there is a plenty of
scope to explore this baseline ‘do-nothing’ control policy. A straightforward strategy is to assume state feedback as a
baseline controller to which MPC control signals are added. The introduction of state feedback has multiple
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implications as it provides an effective framework for robust MPC design (Kothare, Balakrishnan, & Morari, 1996). If
the state feedback makes system stable or matrix 4 nilpotent, numerical and ill-conditioning problems associated with
open-loop unstable predictions are also avoided. The pre-stabilization is also an effective tool to guarantee nominal
closed-loop stability using the MPC controller (assuming the existence of a feasible solution to the constrained
optimization). Many modifications of MPC that guarantee stability, usually introduce additional constraints or
modify the objective function with appropriate terms. Some of these methods and corresponding implementations
involve adding terminal inequality constraint sets at the end of prediction horizon. Such an optimization can be
implicitly reformulated in terms of pre-stabilization instead of explicit stability constraints (Rossiter et al., 1998).
Stability proofs of such formulations are given in Keerthi and Gilbert (1988) Rawling and Muske (1993) and
Maciejowski (2002).

Pre-stabilization also offers significant benefits when disturbances are present in the system. This holds true for both
stable and unstable systems (and a similar argument applies to modelling of uncertainties as well). The use of stabilized
predictions attempts to keep the online constrained optimization feasible and reduce conservatism in optimal control
moves by counteracting to the adverse effects of disturbances and model uncertainties. This is because, in open-loop
due to baseline ‘do-nothing’ control policy, the effect of disturbances is passively suffered and as a result, the
uncertainty produced by the disturbances grows (accumulates) with time over the prediction horizon. Hence, the
control input calculated on the basis of such contrived predictions can be conservative as well as pessimistic about the
actual feasibility of the online constrained optimization (Bemporad, 1998). Assuming a base-line stabilizing state
feedback controller, consider a state feedback gain K, as

Kk +ilk)+q, i=0,... Hy—

d x(k +ilk 0, i . 3
K,k + i), i>H, and x(k + ilk) — i— 00 (3a)

alk + ilk) = {

As the baseline feedback controller remains active after H,, it must also satisfy related control constraints. Hence,

the MPC control moves must bring the state at the end of horizon within a terminal region, such that the baseline

control law remains valid thereafter. To maximize this terminal set, the feedback gain can be chosen to be one that

merely pushes the unstable modes inside the unit circle. The cost of the baseline control is then added to MPC cost

function as x(k + Hulk)TQ - x(k + Hulk) where, @ is the terminal penalty matrix computed by solving an appropriate
Lyapunov equation as described in Lee (2000).

5.5. MPC algorithm solution

Assuming, Ax=A-ByK,, state equation for the system with integral error augmentation as in Fig. 3 can be written

as
xk+1)] _ [4¢ 0] [x(0]  [By Br 0
o]~ (G 2] [Go) [0 ] [0 s ] mao G
new new new new hew B
x(k+1) A4 x(k) By By 2

In order to obtain the sequence of control inputs, Eq. (2) needs to be solved while taking into account the issues
discussed in previous subsections. To achieve this, the performance objective, system dynamic equations and
constraints are formulated as a QP problem. Assuming the availability of the current measured state, x(k), previously
applied input, #(k—1), and fault information from actuators, uy, at instance k, the state equation can be expanded over

Rt
) Model g w, =y .
Predictive »O 'I_B.ﬂ—a\ » I ;@—-—»
Controller 4 4
Tracked
Outputs
K,
+

)6
s

Fig. 3. Pre-stabilization-based MPC configuration.
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the prediction and control horizons and rewritten in matrix form as
X(k) = yx(k) + IR (k) + Y pup(k) + OQ(k) (4a)
with
X() =[xk +1k)" - e+ HJI)T - e+ Hk),
Q=[gkl)" gk + 1K) §le+2107 - Gle+H,— 1R,
—Bz ] _BF T
‘4
Hy~1 | H,—1
A'B A'B
y=lam| mo | B o | B
A | Hy—1 H~1
B Z AIBZJ Z A'Br
L =0 L i=0 J
" By 0 e 0 7
Hu"HM .
A"y A"By ... Y A'By
0= i=0
H,—-H,
A" By ARy ... Y A'By
L =0 )
Similarly, the outputs can be described as
Uy(k) = Yxx(k) + Yypup(k) + Y rR.(k) + ®Q(k) (4b)
with
"0 - - -
k- 0
—KB —KB
_KA F 2
—K[ABr + Br] —K[AB, + B,]
Yy= | K& » Yur= r »Yr= [ ’ ,
' Hoe=2 He—2
| —K A" ~K Y A'Br —K Y A'B,
L i=0 | L i=0 |
rx 0 0 e 07
—KBy 1 0 - 0
®=|-KABy  -KBy I Po0y,
| -KA"~2B, —KA% By —KA"™ B, ... 1]

where K=[K;, 0] is the feedback matrix for new integral error augmented state. The differential outputs are written as

AUy(k) = Ex(k) + Y prR(k) + Y pupur(k) + Yu(k — 1) + AQ(k) (4c)
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with AUy(k) = [da(k|k)"  [datk + 10T - Ak + H, — 110715,
[—K 7 K 7 o 7 F—I
—K[A - 1] —KBr -KB, 0
—KA[A -1 —~KABy ~KAB, 0
E=| _kaa-n |° Vr=|_kag, Y= |_kag, |0 Y=o |
| —KA" 4 -1 | | —KA"2By | | —KA72p, | L0
[ 0 0 0 0]
—[KBy +1] I 0 0 0
—K[4 - 1]By —[KBy +1] I 0 0
A= —KA[A — 1By —K[4 1By ~[KBy +1] I 0|
| —KA" 4~ 1By —~KA"™ [A-1By ~KA"™[4-1By —KA"™ S[4-1By ... 1]

Set point/tracking variables and zone region variables are defined as y,,= Cy, x and y,,=C., x, respectively. Slack
variables are defined as, y,,>yy=¢=y,—yg and y,,<yr=>&=y;—y,,. The cost function in Eq. (2) then becomes

V(k) = [CspX (k) — Tsp(K)]" Qsp[CspX (k) — Tsp(k)] + Uy (k) 'RU y(k) + [|E®)I,
where Cgp and E(k) are defined as

Csp = diag[Cyp, Cop, - Cyyl,

E(k) = [atk + 1T &+ 21007 - ik + H )T,

Czr, Qsp and R are defined in similar manner with C,,, Q, and R. The modified MPC optimization problem then
becomes

Ig(ig V(k) = Qk)"[0TCL.QspCsp® + PTRPIQ(K)

+2Q(0)T[@TN(k) — 0T C5pQspesp(K)]
+ N(K)TRN(,) + &5, (k) Qgpip ()
where N(k) = Yyx(k) + Y rRyp(k) + Y yrup(k)
and g (k) = Tsp(k) — Csp[Px(k) + IR, (k) + Y pup(k)). (4d)

The above cost function needs to be minimized subject to the constraints in Eq. (2). The constraints can be expanded

over the horizon and expressed in compact form as
AUy(k) Uy(k)
[P s]

=Y ]

1

X(k)
}so and [T g][ }so, (4e)
1

where the matrices P, s, F, f, I" and g are derived from the corresponding constraint boundaries expanded over the
horizons (see Maciejowski (2002) for details). Expressing these in terms of Q(k), the constraint equations become

PA —P[Ex(k) + YDRRsp(k) + Ypyrup(k) + Yuy(k — Dj—s

Fo ~F[Yxx(k) + YrRy,(k) + Y yrup(k)] — f

Tre Qo)< | ~T[Px(k) + Y rup(k) + MNR,,(k)]—g R (4f)
Czr® —ep(k)

~Czr0 —&r(k)

where eg(k) and er(k) are predicted zone error violations defined similar to &g,(k). The first two lines in Eq. (4f)
represent hard actuator rate and position limits. The third line represents state constraints. These constraints are
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softened and, as described in Kerrigan and Maciejowski (2000), an /; or /., norm-based constraint violations must be
used to make penalty functions exact with finite values of penalty weights.

5.6. Target recalculations

For most constrained systems, perfect tracking is usually unachievable in spite of sufficient degrees of freedom in
underlying dynamic equations. This happens because, the input and output constraints do not allow the system to
reach all output target values exactly. Such unachievable targets must be adjusted with target recalculations at every
time step before the MPC optimization (Muske, 1995). The target recalculations also offer a safety check for the
commands applied to the MPC algorithm. By recalculating targets (based on a small prior optimization), the
likelihood of MPC demanding excessive control input saturations is reduced when large input commands are to be
followed. Such a scenario can exist in the case of multiple control input failures as the remaining control inputs would
be required to replace the authority of those parts of the system that are no longer functioning. Preventing control
saturations in the case of component/system failures can assist in improving the stability and robustness of the overall
system as shown in Section 5. Consider a pre-stabilized system

x(k + 1) = Axx(k) + B,q(k) + Brug, (5a)

state constraints and input constraints are rewritten as

x
[G J] ]S—gande<—f. (5b)
q
Given an existing command, y,,, new target states, x,, and inputs, ¢, are calculated by solving a small QP as
0 0 Xy
3 T T 5
minx a7 {0 R,} [q,}’ °
C 0 Yu
I-A+B,K, —-B Bru -C, 0| x
subject to : [ u] {x,} =7 and “ [ t} < Y . (5d)
Cy 0 4, Vsp F 0| Lg, —f
G J -g

The equality constraints in Eq. (5d) represent given commands, y,,, and the condition for an equilibrium point at
new target values. If it is not possible to satisfy the equality constraints, a suitable quadratic penalty for the error is also
included in the cost function (5¢c). A simple method of achieving this is to convert the equality constraints into
inequality constraints. A small tolerance band is created around the right-hand side of the equality constraints and
these inequalities are then treated as soft constraints. The zone region constraints are assigned with least penalty
weights for violations. The target value constraint in (5d) is given the highest priority, i.e. the penalty weights for its
violations are the largest among all softened constraints. In these target recalculations, the state and input limit
constraints are not softened.

6. Experimental results

As mentioned in Section 4.1, to meet the tracking performance specifications and rejection of unmodeled
disturbances, integral states for the tracking errors in body rates (p, ¢ and r) are introduced. It is important to note the
use of integral error states for body rates, rather than for AoA and sideslip angle, is more meaningful. This is necessary
for the controller to automatically find new trim values that can stabilize the aircraft along a steady flight path under
fault conditions. For a damaged aircraft, small finite errors in AoA and sideslip might be tolerable but to reduce the
pilot load, it is more important to make body rates zero under steady flight conditions. Also, the non-minimum phase
responses associated with AoA and sideslip can lead to slow oscillations of control surfaces if integral error states for
these variables are used in the control optimization. This is indeed the case, as discovered during the initial simulation
studies (due to lack of space not reported here). A further consideration is the separation of velocity from other state
variables. This is logical as airspeed response times and dynamics are considerably slower when compared to variables
such as p, ¢ and r. Hence, the optimization problem solved online by the MPC without velocity is expected to be better
conditioned and easier to solve. This also addresses concerns such as the MPC controller sometimes achieving a step
decrease command in velocity by decreasing throttle and deflecting some control surfaces (i.e. using drag to reduce
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Table 3
Fault cases used in simulation studies

Case Pilot commands (time) vs. (deg/s) Faults (occurs at 3s) Uncertainty Atmospheric turbulence (speed) and (scale length)

1 p 11-14-17s: +25t0 0 to 25 Rudder: stuck at 10° and, 10%/0.5 or 15%/0.9 No turbulence

OR
q 6-10-13s: +10 to 0 to -7 ROE: stuck at 0° Intensity 3m/s and 525m
2 p 11-14-17s: +5to 0 to -5 LOE: 50% loss of area, 30%/0.9 Intensity 3m/s and 525m
q 6-10-14s: +10 to 0 to —10 LIE: stuck at 2° Triangular wind gust:

Y axis: 7-10-13s: 20m/s peak
Z axis: 11-15-19s: 20m/s peak

3 p 11-14-17s: +25to 0 to -25 All canards and elevons: 10%/0.5 Intensity 3m/s and 525m
OR
q 6-10-13s: +20 to 0 to —15 40% loss of area Intensity 6m/s and 525m

velocity which is clearly undesirable). Initially, airspeed was included as one of the states used by the MPC. To reduce
the likelihood of problems with this formulation a separate auto-throttle was implemented for velocity control.

The actuator position limits are shown in Table 2 and are obtained based on 60% control authority. Hence, the
controller limits on actuator deflections are smaller than envelop limits. The controller limits on AoA and sideslip are
treated as zone regions. To accommodate structural considerations, the controller is also expected to keep body rates
within the limits shown in Table 2. The actual hard limits may be greater; hence all of the state limits are softened by
the MPC algorithm.

Simulation results for pitch rate (¢.) and velocity vector (wind-axis) roll rate (p,,) commands are presented. A
sampling time of 50 ms is employed with a prediction horizon of 15 and a control horizon of nine sample time steps.
The state weights are Q=[1 1 25 450 25] for AoA, sideslip, roll rate, pitch rate and yaw rate respectively and control
weights are R=[80 40 10 20] for canards, elevons, rudder and thrust vectoring, respectively. Integral error weights for
the body rates are Q;=[0.1 1.0 0.1]. These values were obtained after few initial trials runs. However, some guidelines
were also taken into consideration during the selection of the weights. The weights nominally indicate the importance
associated with corresponding variables. To begin with, pitch rate was assigned the highest weight since the aircraft
dynamics are unstable in longitudinal axis. Similarly, AoA and sideslip angle weights indicate a relatively low
importance associated with the actual value of these variables due to corresponding zone region formulations. The
weights assigned to control inputs were adjusted to keep the utilization of all the aero-surfaces nearly equal under
nominal conditions. The values of Q, R and Q; remained unchanged thereafter and no retuning of these weights is
required for the various fault cases presented. Loss of effective area of the aircraft control surfaces is considered and is
simulated by multiplying the corresponding columns of the B matrix (control derivatives) by a constant between 0 and
1. Stuck or runaway actuator faults are also introduced. The uncertainty and identification errors in the A matrix
(stability derivatives) due to these faults are simulated by changing all the elements of 4 matrix at random with a
probability. Similarly, all the elements of the changed B matrix are also perturbed at random with a probability. The
nominal values of such uncertainty are 10% perturbations with a probability of 0.5. MPC uses these 4 and B matrices
as an internal model of the damaged aircraft (assumed to be provided by a system identification module). Such
parametric uncertainty is an unavoidable characteristic of online system identification algorithms and the
reconfigurable controller must be tolerant to these errors. The dynamic models of the aircraft are updated by the
Model Change Logic block based on Mach number, AoA, altitude and faults at intervals of 0.5s. This is equivalent to
a practical scenario where FDI and system identification modules are operating at a sampling rate of 10 times that of
the MPC controller. In effect, a FDI delay of 0.5 s is always present when the faults occur. Table 3 shows the fault cases
implemented for simulation studies.

6.1. Improvements with soft constraints and zone regions

Fig. 4 shows aircraft states and inputs in response to roll rate and pitch rate commands with simulation settings of
Case 1 in Table 3. Initially, simulations without atmospheric turbulence and with 10% model uncertainty are
discussed. Besides indicating reconfigurable control capabilities of MPC, a comparison is made between hard
constrained MPC and MPC with zone regions and soft constraints. The fault considered introduces considerable
asymmetric aerodynamic forces and moments. Since the stuck rudder at 10° position produces a large yawing moment,
sideslip angle deviates from the desired value of zero. When these deviations reach the zone limit of 5°, the hard
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Fig. 4. Aircraft responses to case 1 setting in Table 3: (---) hard constrained MPC, (—) soft constrained MPC, (—) hard constrained MPC with
disturbances and increased model uncertainty.

constrained MPC acts aggressively producing large movements of control surfaces to move sideslip away from the
limits. Such aggressive control action leads to rapid saturation of elevon positions. This also results in considerable
oscillations in roll rate and yaw rate. In particular, the peaks in roll rate and pitch rate responses are highly undesirable
and can lead to acceleration (g) limit violations. Command tracking performance is also severely affected. On the other
hand, MPC with zone regions and soft constraints gives a much better response to the commands. The actuator
deflections and state trajectories are smooth indicating at least Level II (or Level I in pitch axis) handling qualities.

The soft MPC does not cause oscillations when zone limits on sideslip are approached and a slight violation of —5°
zone limit is allowed. Such violation may be unavoidable in presence of the major runaway fault considered in rudder.

In terms of control reconfiguration capabilities, the cross couplings in aircraft dynamics due to the jammed rudder
position at 10° are compensated by asymmetric deflections of canards, elevons and thrust vectoring vanes. Effectively,
by means of optimization, MPC exploits the inherent redundancy within control inputs. The horizontal thrust
deflection acts to counteract the stuck rudder while residual rolling moments induced by the rudder are counteracted
by suitable differential deflections of elevons. A careful observation of the figure also reveals that input and output
deflections are approaching to steady values indicating the stable operation of MPC controller and discovery of new
trim values for new steady flight conditions. The loss of VeIO(:1ty during the manoeuvre is gradually recovered by a
separate auto-throttle controller.

Further, Fig. 4 also shows the simulation results with atmospheric turbulence and increased model uncertainty. The
turbulence and uncertainty settings are shown in Table 3, Case 1. For soft MPC, these changes have no effect on the
responses. But the hard MPC results in increased amplitude oscillations of control inputs as well as in tracked outputs.
Clearly, soft MPC is more robust that hard constrained MPC and hence more suitable for fault tolerant reconfigurable
control.

6.2. Improvements with pre-stabilization

Fig. 5 shows the results for the case 2 scenario in Table 3. This case considers a combination of roll rate and pitch
rate commands, asymmetric faults, high model uncertainty and atmospheric turbulences along with large wind gusts.
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Fig. 5. Aircraft responses to case 2 setting in Table 3: (---) MPC without pre-stabilization, (—) MPC with stabilization, (—) MPC without pre-
stabilization and increased disturbances.

The constraint softening and zone regions are also incorporated in MPC algorithms during this simulation set-up. The
lateral and vertical axis wind gusts act as disturbances on the system. Fig. 5 indicates, the MPC without pre-
stabilization has a poor disturbance rejection capability as the aircraft roll rate response shows a considerable effect of
the lateral axis wind gust starting at 7s. Similarly, the yaw rate response shows an overshoot when the wind gust
reaches its peak at around 10s. On the other hand, pre-stabilized MPC roll rate and yaw rate responses show a much
reduced coupling to the lateral wind gust. Also, the sideslip angle in case of pre-stabilized MPC response returns
quickly inside zone region of —5° and approaches a steady value faster as compared to the response of MPC without
pre-stabilization.

Fig. 6 shows responses of other aircraft variables during the manoeuvre. The advantage of pre-stabilization is more
prominent in these plots. The pitch angle (theta) approaches to steady small positive value, indicating return to a level
flight condition after the end of manoeuvre. Similarly, the airspeed also approaches a steady value. However, the MPC
without pre-stabilization results in an unsteady flight response after the end of manoeuvre as the aircraft pitches down
thereafter. In practice, this means an increased pilot load; since he is required to use more efforts to maintain aircraft in
a steady flight. Figs. 5 and 6 also show aircraft responses when the lateral (Y) axis wind gust has an increased peak
magnitude of 15 instead of 5m/s.

In this situation, the pre-stabilized MPC produced responses slightly different than the ones with a gust magnitude of
5m/s, hence are not shown. On the other hand there is a severe deterioration of responses produced by MPC without pre-
stabilization. The sideslip angle and aircraft body rates show considerable overshoots and oscillations. Clearly, the
handling qualities are below Level II in this case. A prominent effect of the increased wind gust magnitude is visible in
Fig. 6. Without pre-stabilization in MPC, the aircraft is loosing altitude rapidly as it is now pitched down to a steady
angle of —20°. However, with pre-stabilization, the overall aircraft responses to commands are smoother with at least
Level I handling qualities in pitch axis and Level II in lateral axis effectively maintained throughout the simulation run.

6.3. Effect of target recalculations
Finally, results for case 3 are shown in Figs. 7 and 8. The constraint softening, zone regions and pre-stabilizations

are also incorporated during this simulation set-up. Target recalculations mainly play an important role when the
system is pushed to the limits of available control power and allowable state boundaries. The ADMIRE aircraft model
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Fig. 7. Aircraft responses to case 3 setting in Table 3: (---) MPC without target recalculations, (—) MPC with target recalculations.

has a total of 9 control inputs and, hence the available control power is sufficient for manoeuvring under nominal
conditions. As a result, initially the advantages of target recalculations remained undetected when moderate levels of
faults and pilot commands were considered. To reveal the benefits of target recalculations, some extreme combinations of
failures and pilot commands were evaluated. However, care has been taken to maintain realistic fault situations. In case
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Fig. 8. Aircraft responses to case 3 setting and increased disturbances.

3, both canards and all elevons have 40% reduction in their effectiveness. Such failures even though seemingly extreme,
are sometimes possible to take place in real life scenarios. A typical example is loss of pressure in the hydraulic actuation
system of the aircraft. This kind of fault occurs due to leakage or servo valve malfunctioning. The sufficiently high-
amplitude commands for roll rate and yaw rate result in control surface movements close to the saturation limits. As the
faults in this case are symmetric, the left and right surface movements of canards and elevons overlap in Fig. 7. As Fig. 7
shows, the response of MPC without target recalculations is clearly oscillatory and unsatisfactory. To achieve high-
amplitude commands, MPC without target recalculations demands large deflections of control surfaces. This causes
frequent saturations of the available control inputs as the system under this fault conditions is inherently incapable of
attaining such command values with available control power. The handling qualities achieved are well below Level II.
However, with target recalculations, tracked roll rate and pitch rate commands are systematically lowered by solving a
small optimization at every time step prior to the MPC action. Hence, the control demands are smaller and saturation
peaks are less frequent and of smaller durations when compared to MPC without target recalculations.

The handling qualities achieved are at least Level II and sometimes Level 1. Essentially, the target recalculations prevent
the MPC from over-driving the actuators. If the pilot commands are too large for the available control power, new less
demanding commands are generated. In the case of fault tolerant control design, such a feature is desirable as control
saturations in effect mean open-loop operation of the system when there is greater uncertainty present due to the failures.

Fig. 8 shows the responses for the same simulation set-up with increased atmospheric turbulence of 6 m/s. The MPC
without target recalculations clearly leads to unacceptable oscillations in the control loop. The actuators saturate more
frequently and for longer durations. Since during such saturations the system is partially open-loop, increased
disturbances can easily drive the system out of desired operational limits. To counteract these violations, MPC acts
aggressively leading to further oscillations of control inputs and aircraft states. On the contrary, the MPC with target
recalculations produced similar responses when the turbulence intensity of 3 m/s was used. This proves the robustness
to disturbances even in the presence of extreme faults and high-amplitude manoeuvres.

6.4. Computational issues

For the simulation studies in this paper, a sampling time of 50ms is assumed. Though no hardware-in-loop
simulations are performed, some important conclusions can be drawn based on the time required by the MPC block
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within Simulink framework. The simulation studies are carried out on a 1.2 GHz PC. On average, the time spent in
MPC calculations was in the range of 40—55 ms. The MPC computations and the QP code are implemented in the form
of a non-optimized Matlab code. Clearly, an optimized and carefully written C-code can perform much better and
hence it is possible to implement the algorithms presented in a real time environment.

Further, the QP implemented in the presented formulations of MPC can be solved using active set based or IP-based
optimization algorithms. Although a detailed analysis is not yet available, it is worth noting that an IP-based method
offers a significant benefit over the active set method in terms of computation time. This effect is more pronounced
when multiple failures are considered and, due to large commands, available actuators frequently saturate. When such
saturation occurs, the active set method takes more time to find the next feasible set and corresponding control inputs.
On the other hand, the IP method is less sensitive to such effects.

7. Conclusions

A number of formulations for MPC from a reconfigurable control perspective have been presented and considered.
These formulations have been gradually refined in terms of their robustness and stability for performance on a flight
control system. Advantages of using soft constraints, zone regions, pre-stabilization and target recalculation in MPC-
based RFCS design have been demonstrated with results presented from a non-linear 6 DOF aircraft simulation. The
simulation studies show the proposed control formulations performing satisfactorily in the presence of multiple control
input failures as well as severe atmospheric disturbances. Although a significant delay in FDI is introduced along with
the uncertainty in system models used by the controller, the MPC formulations show not only robust and stable
operation but also the conformance to appropriate handling quality models for pilot commands. The time to recover
aircraft control in a satisfactory manner after the occurrence of failures is short; indicating fast and efficient adaptive
characteristics of the MPC algorithms for reconfigurable flight control. As no online tuning or learning of controller
parameters is involved, the time required to adapt to faults is, in effect, governed by the FDI delay. The simulation
studies also reveal that the MPC framework can systematically treat and respect limits on the actuators and states
whenever possible. However, there is scope to further improve the RFCS methodology presented if the uncertainty in
online estimated parameters can be explicitly considered in the MPC optimization. Further research effort will be
devoted to such robust MPC formulations.
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