Efficient Data Storage and Analysis for Generic
Biomolecular Simulation Data

Muan Hong Ng', Steven Johnston®, Stuart Murdock?, Bing Wu®, Kaihsu Tai*, Hans Fangohr?,
Simon Cox", Jonathan W. Essex?, Mark Sansom? and Paul Jeffreys®
'Southampton e-Science Centre and ?School of Chemistry, University of Southampton, UK
80xford e-Science Centre and *Department of Biochemistry, University of Oxford, UK
correspondent email: mark@biop.ox.ac.uk

Abstract. BioSimGrid aims to deliver a biomolecular simulation data repository to
enable more efficient storage, access and exchange of biomolecular simulation data.
This is an ongoing project still in development that seeks to exploit the concept of the
Grid where large computational and data resources are made available to users in a
highly accessible manner. The ability to submit, search, query, retrieve, and post pro-
cess biomolecular data in a uniform way is vital for the biochemistry community for
more efficient data sharing. The study of biomolecular simulation data, which encap-
sulates the motions of molecules are key contributions to applications such as drug
discovery. This paper describes the BioSimGrid project and relates it to other recent
work on grid-enabled data storage. We describe the middleware that enables the work
flow of BioSimGrid and finally discuss the future work.

1 Biomolecular Simulation and
BioSimGrid

Computer simulations play a vital role in
biochemical research. By simulating the in-
teractions of all atoms within a molecule
or protein, the biochemical properties of
the structure can be revealed. One impor-
tant application of such Molecular Dynam-
ics and Monte Carlo simulations is predic-
tive modelling in drug discovery, where the
motion of proteins is important. These simu-
lations are computationally demanding and
they produce huge amounts of data (up to
10 GB each) which is analysed by a variety
of methods in order to obtain biochemical
properties. Generally, these data are stored
at the laboratory where they have been
computed in a proprietary format which is
unique to the simulation code that has been
used. This constrains the sharing of data and
results within the biochemistry community:
(i) the different simulation results are usu-
ally not available to other groups and (ii)
even if they are exchanged, for example via
FTP, then the data can generally not be com-
pared easily with post-processing tools due
to the varying data formats. This missing
ability of sharing and comparing the simu-
lation data is regarded as a major impedi-

ment to the discovery of new science in the
biochemical community.

BioSimGrid [1] seeks to tackle this prob-
lem by enabling biochemists to deposit
their simulation data of varying formats to
a shared repository. This will allow bio-
chemists to retrieve a slice or part of a pro-
tein in a uniform way for post-simulation
analysis. By providing a uniform data stor-
age and data retrieval mechanism, different
proteins can be compared easily.

Figure 1 demonstrates typical scenarios of
using the BioSimGrid project. The comple-
tion of a biomolecular simulation delivers
simulation data, which is called a “trajec-
tory”. A trajectory consists of many frames
(corresponding to time steps in the simu-
lation process) of simulation data record-
ing the positions and velocities of all atoms.
The first step is to submit the new trajec-
tory and all the relevant meta-data (which
describes the simulation and will allow so-
phisticated querying of all submitted trajec-
tories) to the database. The extraction of the
meta-data (from the simulation configura-
tion files) and the trajectories (from the sim-
ulation data files) is fully automated, but the
user has the option to provide additional
information, such as publication references
which cannot be extracted from the simula-
tion configuration and data files.

User

Configuration file

i Simulation

Tools ‘
Visualisation » Metadata |
Tools T

I
Trajectory |

3. Query Data-on-demand

2. Generation of Metadata

{ 1. Submission of Trajectory

5. Visualisation of Analysis Result

BioSimGrid Core Application

__Analysis Toolkits

.

/ __Mass

4. Analysis

¥

Analysis Results

Fig.1: A schematic sketch of the work flow in the BioSimGrid project.

Once the data is stored in the database,
users can query different slices of one or
more trajectories and perform a number of
standard analysis computations (a selection
is shown in the figure) on these data. The
work flow is then completed by the graph-
ical display of the analysis results (either
as vector graphics, bitmaps, movies or us-
ing interactive 3-dimensional environments
such as Visual Molecular Dynamics [2] and
PyMol [3]). The results are, of course, also
available in text or data files.

The following section of the paper dis-
cusses two related work on grid-enabled
data storage. Section 3 describes the archi-
tecture of BioSimGrid where the data stor-
age layer, the middleware layer and the user
interface layer are discussed in details. Sec-
tion 4 gives a brief outline on the current is-
sues and the future work on the next proto-
type, and we finally conclude in section 5.

2 Related Work

2.1 GridPP and the European DataGrid
Project

GridPP [4] is a collaboration project be-
tween Particle Physicists and Computer Sci-
entist from the UK and Cern aiming to
build a Grid for Particle Physics. One of
the key components of GridPP is the Eu-
ropean DataGrid Project (EDG) [5] which
deals with managing a large quantity of
sharable data reliably, efficiently and scal-

ably. EDG aims at enabling access to geo-
graphically distributed computing and stor-
age facilities. It provides resources to pro-
cess huge amounts of data from three dis-
ciplines: High Energy physics, Biology and
Earth Observation. EDG has a file replica-
tion service to optimise data access by stor-
ing multiple copies of local data at several
locations. This replication framework has an
optimisation component to minimise file ac-
cess by pointing access request to appropri-
ate replicas and proactively replicating fre-
quently used files based on access statistics.

As compared to DataGrid, BioSimGrid
aims to provide a mechanism of data access
at a finer granularity level, by delivering a
slice of a trajectory rather than a whole file.
Hence the concept of file replication of Data-
Grid can potentially be adopted and modi-
fied to suit a finer granularity level of data
access.

2.2 OGSA-DAI

OGSA-DAI (Open Grid Services Architec-
ture - Data Access and Integration) [6] is a
grid middleware that has been developed
to allow access and integration of heteroge-
neous data sources as though they were a
single, logical data resource. It is well suited
particularly for database applications that
involve legacy databases of different ven-
dors. Its services offer data federation and
distributed query processing to allow joint
table query from multiple disparate data

sources. To enable integration of heteroge-
nous databases, OGSA-DAI data query ser-
vice introduces an extra middle layer on top
of the data sources before data is brought
into the processing environment. This po-
tentially introduces a layer of overhead in
the middleware. OGSA-DAI is an OGSA-
referenced implementation of grid services.
With the deprecation of OGSI which is
the architectural implementation of OGSA,
OGSA-DAI is currently migrating to web
services standard space [7]. Hence to date,
it is still an ongoing project which is yet
to prove its maturity. One of the reasons
OGSA-DALI is not employed in BioSimGrid
is that the heterogeneity of data sources
is minimal in this project, as we do not
deal with legacy databases. Furthermore,
BioSimGrid has multiple databases storing
identical metadata (please refer to section
3.1), hence the functionality of distributed
querying is not immediately required.

3 The Architecture of BioSimGrid

BioSimGrid seeks to fulfil the following cri-
teria in its implementation:

- to minimise data storage, in order to
store as many trajectories as possible in
a fixed amount of storage space.

— to maximise data transfer rate, in terms
of the speed of delivering data to the
computational elements, in this case the
post processing tools.

- to provide an abstraction of the data
layer, where biochemists are freed from
the complication of using and under-
standing data quering languages and
the data storage structure in their scien-
tific research.

- to provide a transparency of data loca-
tion to the users, where actual physical
location of the data is hidden.

As shown in figure 2, the architecture of
BioSimGrid encompasses three layers: the
data storage layer, the middleware and the
user interface layer. Each of these will be de-
scribed in the following sections.

3.1 BioSimGrid Data Storage Layer

The data storage layer is responsible for
managing the data on a single machine and

exposes methods which are used by the
Data Retrieval component to provide the
user with data. This layer is required on each
machine that is storing trajectory data, ini-
tially there will be six remote sites each run-
ning this layer. It provides an API which ab-
stracts from the method used to store the
data and provides simple access methods
for both querying and retrieving data. The
trajectory data is divided into two key sec-
tions, the metadata and the coordinate data.

Trajectory Metadata

The metadata is additional information
about the trajectory which can either be sup-
plied by the user, the input files or calculated
at a later stage. It also includes the topology
which describes the structure of the protein
(chains and residues). This metadata is com-
paratively small and can be replicated across
all sites using standard database replication
tools. The advantage of replicating the meta-
data across all sites is so that a user can
query all the trajectories stored in the sys-
tem by querying and single machine and
expect a timely response. This design also
helps with scalability and load balancing:
since the volume of metadata is small, ad-
ditional nodes can be added to the system
and easily incorporated by simply replicat-
ing the database. Since each node stores the
topology of all the trajectories, users can use
any node to query and process data helping
to balance the load across the system.

Trajectory Coordinate Data

The coordinates for every atom for every
timestep are stored resulting in a large vol-
ume of data which has to be managed. We
have devised a fast, efficient way to store
the coordinates using flatfiles which reduces
the storage requirements as well as improv-
ing performance results. This flatfile method
was implemented using Python pickle [8]
and it was compared with a commercial
database (DB2) as well as an existing flat-
file method (NetCDF [9]). The performance
results are shown in Table 1. These results
show that a flatfile method is well suited to
our application for both random and serial
data access.

We selected our own method for flexibil-
ity as a whole trajectory is broken into a set

[Web ‘

J Python ;

| Environment Environment
4 AN

HTTP : ; User Interface Layer I ;

S Middleware Layer o |
o e?:;ia:i S \\‘ (Data Retrieval\\\ ~Post ProcessirD l
 Componen /- Comporent_ L Comporent /|

— j

1

....................... |

F ’ Relational | Flat Files ‘
L i J

“ Databases |

Fig.2: The architecture of BioSimGrid depicting the data storage layer, middleware layer and user

interface layer

of files which are then replicated to at least
one other node. This helps to load balance
the coordinate data requests as well as pro-
vides offsite backups of the data. This ab-
straction layer also permits the use of dif-
ferent storage methods which can include
compression and custom formats, which are
completely transparent to the user.

Currently only the coordinates are stored
using this method but the next version will
store both coordinates as well a velocities,
using the same method.

DB2 |netCDF|Python
pickle
Size(GB) |75 (3.0 3.0
Random
Access (Sec)1560.8/16.4 18.6
Sequential
Access (Sec)|389.04.9 55

Table 1: Summary of performance results com-
paring different flatfile methods with a
commercial database (DB2)

3.2 BioSimGrid Middleware

The middleware of BioSimGrid is imple-
mented on a modular architecture to enable
easy extension and future plug in. It is
written in Python [8], a free, open-source
and platform-independent high-level
object-oriented programming language.

Python is chosen for several reasons: (i) the
biomolecular simulation community are
moving towards Python as the preferred
environment for post-processing analysis
and several mature post-processing tools
written in Python exist already (for ex-
ample, MMTK [10] and PyMOL [3]). (ii)
Python can easily integrate and interface
to compiled codes so that other existing
tools (typically written in Fortran or C) can
be re-used immediately. (iii) Python comes
with a substantial set of standard libraries
which can be used in this project and avoid
re-coding common tasks.

Data Deposition Component

The process of depositing a trajectory into
the BioSimGrid database is completely au-
tomated and the complication of the under-
lying storage structure is abstracted from
the users. One of the challenges is to cater
for different simulation packages that pro-
duce simulation data in various file formats.
To deal with this, the deposition compo-
nent consists of different parsers for differ-
ent simulation packages to parse the simu-
lation data files into a generic input object.
This object is then parsed through a valida-
tor to check for correct data type and their
validity against various dictionaries (e.g. the
existence of a residue in the dictionary).
The process is completed when the vali-
dated generic input object is deposited into
the flat files (coordinates and velocities) and
database (metadata) through an importer.
With the modular approach as shown in

[Generic’,

i
|
e
‘ %N\ NAMD
e ™
| —h‘\ Charmm

Various Simulation Simulation package
Result Files parsers

Input L—> Validator ’—‘ Gﬁﬁ?c L——» importer !
| Object j e '\ object | —
. \ /
AN S

/ Validated

! Flat Files

Fig.3: The modular implementation of a data deposition component which includes a set of parsers,
a validater and an importer. New parsers can be easily added to this modularised component.

from Deposit.NAMDDeposit import NAMDDeposit

files ={‘coordinates’:

‘/path/coordFiles’,

‘topology’ :‘/path/topoFile’,
‘parameter’:‘/path/paraFile’ }

g'::

NAMDDeposit (files)

Fig.4: An example of a user script to deposit a NAMD trajectory. The underlying complexity of pars-
ing, validating and importing of trajectory into the database is hidden from the users

figure 3, new parsers can easily be added
for any new simulation package if required.
The underlying complexity of parsing, vali-
dating and importing of trajectory into the
database is hidden from the users. A bio-
chemist needs only to run 3 lines of code
to deposit their trajectories by specifying the
path for their simulation data files, as shown
in figure 4.

For the next prototype, the data deposi-
tion component will be extended to cater
for the distributed nature of the application.
We envisage an implementation of multi-
ple deposition points to avoid single point
failure and performance bottlenecks. In this
case, a global identifier will be assigned to
uniquely identify a trajectory and facilitate
the synchronisation of multiple metadata
databases. To deposit a trajectory from a re-
mote location the generic input object will
be serialised at the deposition client and de-
serialised at the deposition server.

Data Retrieval Component

The data retrieval component provides a
single point of entry for all the trajectories
stored on any of the sites. Each site will be
running a data retrieval component and a
user can use any site to query the data in
the entire system. This component queries
the local database to retrieve any metadata
that is requested, so the user can query in-
formation about a trajectory on a different
site without having the overhead of con-

tacting the hosting site. This component ab-
stracts the location of the trajectory data
from the user and is responsible for getting
coordinates from external sites if they are
not stored locally.

Figure 5 shows how the data is transpar-
ently retrieved from a remote site so that
it can be used by a users script. In step
1 and 2 the user submits a script that re-
quests request for a set of coordinates from
the Data Retrieval Component. This compo-
nent first looks at the metadata database to
retrieve the locations of the requested coor-
dinate flatfiles (step 3). If the data is stored
locally then it is returned otherwise a list of
remote data source locations are returned to
the Data Retrieval Component (step 6). A
data source is then selected from the list and
a request is made to the Data Retrieval Com-
ponent on the remote site for the required
data (step 7). As this source is listed as a
valid data source it is guaranteed to store the
data locally, hence it will not attempt to re-
trieve the data from another remote site. The
data is then passed back to the requesting
site (step 10) and the Data Retrieval Compo-
nent returns the data to the user script (step
11) in the same way as a locally stored data
set.

There are two key opportunities to
save retrieval times when retrieving large
amounts of data. The first is to look at the
list of sites that store the trajectory and ask
multiple sites to provide different parts of
the trajectory. This will reduce the load on

| ste1 |

1) User Submits script

] User Script

[P DU

2) Script requests data 11) Data returned

User

Middleware Layer,

4 Data Retrieval "~

™~

__——--10) Data returned__ |

;Component e [-
/{, —— . 7) Data is requested from remote site™ - Component /

| site2 |

— Middleware Layer
~. —

Data Retrieval ™

kv,'f\

3) Valid data locations established N
/ "»\
]
|

f
i
- l

6) Data or data location is returned

8) Data réquested 9) Data returned

\‘ J,

Data Storage Layer 1

Data Storage Layer

=

4) If not Iocal,\Cache is queried 5) Data or Nuil returned

Fig. 5: Schematic showing how a remote data request is returned. Caching mechanism is used to

improve the speed of data transfer.

sites by distributing it across multiple sites
as well as improving the speed that data is
received.

The second is a cache (not implemented
in the current prototype). Each frame that is
retrieved from an external site will be stored
using the same flatfile storage method. If
a whole trajectory is then cached it can be
moved to the main database and marked as
a valid location to retrieve data for that tra-
jectory. So when a data query requires data
that is not stored on the database then the
cache is consulted first to see if it has been
retrieved previously (step 4 and 5 in Figure 5
if not then the hosting site is queried. There
is a limit to the number of frames that are
held in the cache and this is defined by a site
specific limit, which also includes the whole
trajectories that are added to the local data
store. The aim of storing whole trajectories
on additional sites is to attempt to move the
data closer to the processing. If a site contin-
ually requests a trajectory it makes sense to
store the trajectory on that site.

Currently each site has an excess of stor-
age space and we can utilise this space to
gain a performance boost however more tra-
jectories can still be added as temporary tra-

jectories can simply be deleted and removed
from the metadata database to make more
room as required.

The Data Retrieval Component is not only
responsible for getting the data from the
distributes sources but it is also responsi-
ble for making the data transparently avail-
able to the users in an environment of their
choice, in this case Python. This results in
Python numeric arrays being made avail-
able to users who have no idea where or
how the data is stored. This has currently
been implemented and a series of analy-
sis tools for the Post Processing Component
have been built on this design. This design
also permits extensions for other languages
like Perl to assist the users to migrate and
utilise the BioSimGrid project.

Post Processing Component

For the post processing component, a set of
analysis tools are written for standard and
generic analysis on the simulation data, e.g.
the calculation of Root Mean Square Deriva-
tion (RMSD) and the computation of the av-
erage structure and interatomic distances.
Each analysis is exposed as a module and
the modularity approach enables the tool

FC =
myRMSD = RMSD (FC)
myRMSD . createPNG ()

FrameCollection(‘'2,

100-200")

Fig. 6: An example of a user script to run a RMSD analysis using frame 100th to 200th from trajectory

2

set to be extended easily. An example of
an analysis script is shown in figure 6 to
demonstrate how to use the post process-
ing tools. The first line of the script speci-
fies a frame collection - the part of a pro-
tein to be used to perform the analysis, in
this case frame 100th to 200th from trajec-
tory 2. The next line requests a RMSD anal-
ysis by taking the frame collection as its in-
put parameter. Finally, the third line speci-
fies the format of the result to be generated,
which in this case is the output of an image
file in PNG format. The ease of selecting dif-
ferent data set and different post processing
tools allows biochemists with little compu-
tational experience to perform an analysis
on the simulation data and obtain meaning-
ful results.

3.3 User Interface Layer

BioSimGrid user application level offers two
modes of interaction: via a graphical web
based interface or via the Python script-
ing environment. The graphical interface is
just another layer on top of the underly-
ing Python codes. The scripting environ-
ment caters for advanced users who would
like to connect to BioSimGrid in a script-
ing environment and utilise its data submis-
sion, retrieval and post-processing API in
a fully programmable way. In this environ-
ment, biochemists can choose to run existing
analysis toolkits provided by BioSimGrid.
Alternatively for more specific analysis, they
can use the available data retrieval packages
to write their own script. The graphical in-
terface provides a more user friendly envi-
ronment to cater for novice users. It allows
users to perform standard analysis runs and
provides an overview of the available data
and processing options. In this mode, a user
first selects an analysis from a drop down
menu, then proceeds to select a trajectory
and the relevant frames to perform the anal-
ysis on. All these operations are done by
clicks of buttons on a web browser.

4 Current Issues and Next Proto-

type

BioSimGrid is in its early stage of devel-
opment. Current prototypes that have been
developed are based on architecture where
both the application and database server are
implemented as client server architecture,
running at a single location. We have mod-
ularised our components and have devel-
oped a basic set of functionalities of BioSim-
Grid for data deposition, data retrieval and
analysis of post simulation data. The mod-
ularity approach of the components enables
easy plug-in and future extension of various
functionalities, such as adding more anal-
ysis tools or extending the data deposition
tools to cater for new simulation result for-
mats.

The next prototype of BioSimGrid will
concentrate on tackling the geographically
distributed databases and applications. Es-
tablishing secure asynchronous network
communication, handling data latency and
data recovery is non trivial in this case. We
are investigating Python twisted framework
[11] and Pyro [12] for programming network
services and applications. For a more reli-
able data transmission, the next prototype
will incorporate MD5 [13] hashes to help
manage corruptions in file transfer. We also
envisage the use of standard protocols such
as secure socket layer (openSSL) to provide
secure point to point communication.

The issue of security is also a major con-
cern in BioSimGrid. We envisage the use
of digital certificate-based authentication to
authorise users into the system and provide
mechanism to set various permission levels
for different user groups to authorise them
to different resources and transactions.

In the future work, we plan to implement
web service based interfaces in order to pro-
vide a platform and language independent
way of accessing the existing middleware
components.

5 Conclusion 10.

In summary, BioSimGrid provides a trajec-
tory storage system which allows users to
submit simulation data from a wide range
of simulation packages and to run cross
simulation comparisons independent of the

source of the data. We have developed the ,

current version of the system together with
biochemists who provide constant feedback
on the usability of the project, and we are
currently expanding the user base and the
number of available trajectories in the sys-
tem.

Acknowledgements

We would like to thank our collaborators D.
Moss, C. Laughton, L. Caves, O. Smart and
A. Mulholland. This project is funded by BB-
SRC.

References

1. Bing Wu, Kaihsu Tai, Stuart Murdock,
Muan Hong Ng, Steven Johnston, Hans Fan-
gohr, Paul Jeffreys, Simon Cox, Jonathan Es-
sex, and Mark S.P. Sansom. Biosimgrid: a
distributed database for biomolecular simu-
lations. In Simon J. Cox, editor, Proceedings
of UK e-Science All Hands Meeting 2003, pages
412419, Swindon, 2003. EPSRC.

2. Andrew Dalke William
and Klaus Schulten.
sual molecular dynamics. Journal
of Molecular Graphics, 14:33-38, 1996.
http:/ /www.ks.uiuc.edu/Research/vmd/.

3. WL. DeLano. The PyMOL molecular
graphics system. DeLano Scientific, 2002.
http:/ /www.pymol.org.

4. The GridPP
http:/ /www.gridpp.ac.uk.

5. The EU DataGrid Project. http://www.eu-
datagrid.org.

6. The OGSA-DAI Project. http:/ /www.ogsa-
dai.org.uk.

7. OGSA-DAI Two Years On, GGF10, Data Area
Workshop, Humboldt University, Berlin Ger-
many, 2004.

8. Fred L. Drake Jr. Guido van Rossum. Python
library reference. Computer Science Depart-
ment of Algorithmics and Architecture, CS-
R9524,1995. http:/ /www.python.org.

9. Unidata - netedf.
http:/ /my.unidata.ucar.edu/content/software/
netedf/index.html.

Humphrey
Vmd — vi-

Project.

11.

12.

. RFC

The Molecular Modeling Toolkit: a case study
of a large scientific application in Python,
http:/ /starship.python.net/crew /hinsen/MMTK,
1997.

Twisted Matrix Laboratories.
http:/ /www.twistedmatrix.com.

PYRO - Python Remote Objects.
http:/ /pyro.sourceforge.net/index.html.
1321 - The MD5 Mes-
sage Digest Algorithmn.
http:/ /www.fags.org/rfcs/rfc1321.html.

