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Thermoelastic instability in a thin layer sliding between two half-
planes: transient behaviour
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Abstract

The susceptibility of brakes and clutches to the known phenomenon of frictionally-excited thermoelastic instability is estimated
studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-
thickness a slides with speed ¥ between two rigid and non-conducting half-planes. The advantage of this fairly simple model is
that it permits us to deduce analytically the critical conditions for the onset of instability, that is the relation between the critical
speed V., and the growth rate b of the interface temperature and pressure. It has then been verified that as the thickness a reduces
the system becomes more and more prone to instability, and that a symmetrical pressure/temperature distribution at the layer
interfaces can be more unstable than an antisymmetrical one. Moreover, the analysis of the evolution of the system beyond the
critical conditions has shown that even if low frequency perturbations are associated with small critical speed, they might be less

critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When two bodies are in sliding contact with relative
speed 7, the heat flux ¢ generated at the interface is pro-
portional to the contact pressure distribution p, that is to
say g=/Vp, where fis the frictional coefficient. Usually,
the contact pressure p is not uniform because of surface
waviness and roughness, geometric imperfections and
mechanical vibrations. Consequently, the heat flux g is
not uniform involving non-uniform thermal distortions
of the contact interface, which, in turn, affect the contact
pressure distribution p. This feedback between interface
frictional heat and thermomechanical deformation can be
unstable leading to the phenomenon known as fric-
tionally-excited thermoelastic instability (TEI) ([1]). The
occurrence of TEI in brakes and clutches might lead to
the formation of hot spots, small regions where high
temperature and pressure are experienced, which are
responsible for an increase in wear rate, thermomechan-
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ical damage, vibrations, noise and thermal cracking
(12-5). /

Burton et al. [6] have proposed the first analytical
model for estimating the occurrence of TEI, where two
thermoelastic half-planes are considered in sliding con-
tact along their common interface. The idea of a critical
sliding speed V., was introduced: if the sliding speed ¥
is larger than a critical value V.., which is a function
of the material properties and geometry, the system is
unstable. However, Burton’s model overestimates some-
how the critical speed because it does not consider the
finite thickness of the brake or clutch disks. The effect
of the thickness of the disks has been addressed in Lee
and Barber [7] (L&B), who considered a model made
up with a metallic layer sliding between two halfplanes
of frictional material, which has been further refined by
Decuzzi et al. [8] where frictional layers with finite
thickness have been considered too. All the models listed
above are dedicated to the estimation of the critical con-
ditions for the onset of thermoelastic instability.

In this work, the evolution of the system with time is
considered. The model analyzed is that of a metal layer
sliding between two rigid and not conducting half-
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Nomenclature

metal layer half-thickness [m)]

growth rate [s™']

perturbation absolute speed [m/s]
perturbation relative speed with respect to the body 7 [m/s]
specific heat of the metal layer [J/kg °C]
Young’s modulus [N/m?]

frictional coefficient

imaginary unit

diffusivity of the metal layer [m?%s]

thermal conductivity of the metal layer [W/m °C]
wave number [m™']

contact pressure distribution [N/m?]

heat flux [W/m?]

heat flux in metal layer [W/m?]

temperature field [°C]

temperature field in metal layer [°C]
displacements at the sliding interface [m]
sliding speed [m/s]

critical sliding speed [m/s]

thermal expansion coefficient [°C~]

wave length [m]

shear modulus [N/m?]

Poisson’s coefficient

shear stresses at the sliding interface [N/m?]
density of the metal layer [Kg/m?]
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planes, as introduced by Barber and Hector [9], in the
following referred as to B&H.

2. Model and formulation

The model under analysis is made up of a thin metal
layer (2) with thickness 2a, representing the brake disk,
and two rigid and not conducting half-planes (1) rep-
resenting the brake pads, as shown in Fig. 1. The metal
layer (2) has a relative speed ¥ with respect to the two
half-planes (1), and a uniform pressure Do 1s remotely /

applied to ensure complete contact along the interface. V | a
The formulation is similar to classical TEI work byBur- T M >
ton et al. [6] and Lee and Barber [7]. Although some of
the analytical results are new, the expert reader may per-
haps prefers to jump to the results section in Section 3.
The uniform contact pressure is perturbed superim-
posing a sinusoidal perturbation with wave number m at
the sliding interface (y=0) having the form
p(x,) = poe’e™ M
where b is the growth rate and j is the imaginary unit T T T T + T Tp
(=—1). Following Burton et al. [6], the thermoelastic
stability of the system is studied by means of a pertur- Fig. 1. A thin metal layer (2) sliding with relative speed ¥ between

bation technique: the conditions under which the pertur- two rigid not conducting half -planes (1).
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bation can grow with time are examined. The pertur-
bation has an absolute speed ¢ along the x direction and
relative speeds c; with respect to the two bodies i (i=1,2).
Since Burton et al. [6] have shown that the pressure per-
turbation is almost stationary with respect to the good
conducting material, it derives that ¢,~0 and c,=c=V.
Two frames of reference stationary with body (1) and
(2) are introduced, as in Fig. 1, where x = x, = x,— V¢
and y = y; = y,—a.

The geometry of the system is symmetrical with
respect to the middle-plane of the layer, but it does not
imply a similar symmetry for the stress and temperature
fields. Under the small perturbation hypothesis, the lin-
carity of the problem is preserved, thus an arbitrary per-
turbation can be described as the superposition of sym-
metrical and antisymmetrical components. The
perturbation with the highest growth rate 4 dominates
over the others.

The frictional heat ¢, generated at the sliding interface
enters the sole conducting body (2), being the half-plane
(1) an insulator, that is to say

T. ‘
9 = Gy = "Kzg ’ = fVpoe?e™. 2
V2
1y=0
Further, the non uniform temperature distribution, sol-
ution of the heat conduction equation k(0°7,/9x2 +
d’T,/0dy3) = 0T,/dt, has the form T,ebe™,

2.1. Symmetrical problem

From Lee and Barber [7], we know that, for a sym-
metrical problem, the temperature field in body (2) is
given by

cosh[A,(y + a)]

Tlxeyt) = 6(y)e™e™ = T, e (3)

cosh[A,a]
where
b 172
A, = (mz + ) : )
k,
Therefore, substituting Eq. (3) into (2), we obtain
(KxAtanh[A,a))T, = fVpo. (%)

As shown in Barber and Hector [9], since the fric-
tional pads are non-conducting the temperature field is
exclusively perturbed in the metal layer. Further, since
they are also rigid, the displacements u, and the stresses
0., at the sliding interface are zero. It may be shown that
the temperature perturbation T5(x, y, 7) causes a pressure
distribution on the sliding interface expressible as p(x,
H=pye? cos(mx), with

+a

J' cosh[m(s, + a)]6(s,)ds,  (6)

—a

_ 8Bum
Po ™ (k + 1)sinh[2ma]

where u = E/[2(1 + v)] is the shear modulus and

B=a for plane stress o
= (1 + v) for plane strain
3_
K Y for plane stress

- 1+v (8)
= 3 + 4v for plane strain.
The choice of the sign + or —, in Eq. (6), is indiffer-

ent. Rephrasing the above formula with respect to the
frame of reference fixed on the sliding interface,

0

8
Po= (ke + 1)€,Iitn};1l[ma] ,{ cosh[m(s + 2a)}0(s)ds. ()

Substituting for 6(y), as from (3), in (9), integrating and
rearranging, it results in

_ 8BumT,( A coth[maltanh[A,a]—m
Po = (k+1) A3—m? '

From Eq. (5) with the above result, there follows the
following characteristic equation

(10)

Kotanh[A,a] 11)
., 8Bum [Acoth[maltanh[A,a]—m
T+ D) A3—m? :

For fixed material and geometrical properties, Eq. (11D
gives the dependence of the sliding speed ¥ on the
growth rate b, being A, a function of 4 as from (4). Under
plane strain assumption, Eq. (11) becomes

Astanhfi,a] = fVH2 /’choth[maz]tanl;[lza]—m (12)
k2 lz_m

where

. 2a(1 +

H2 — a( V)l-th. (13)

Ky(1-v)

Considering the expression for A,, as from (4), after
some algebra, it follows that

~ _ 2a(l + vyuk,
H, = Ky(1—v)

from which the critical speed can be readily determined
for 5—0

_ 4k,  msinh?[ma]
fH2ma + sinh[2ma]’
Unstable perturbations have 5>0.

(13)

Ver (15)

2.2. Antisymmetrical problem

From Lee and Barber [7], we know that for the anti-
symmetrical problem the temperature field in body (2)
is given by
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sinh[A,(y + a)]

bt njmx
sinfla] © o (16

T(xp,0) = B(y)ePe™ = T,

while, from (9) the contact pressure is given by
_ 8BumT, (A tanh[malcoth[A,a]—m
Po= 1 Ai—m? )

Finally, the characteristic equation is obtained substitut-
ing (16) and (17) into (2):

(17

KA, coth[A,a] (18)
_ -, 8Bum (A tanh[ma]coth[A,a]—m
Tk + 1) A3—m? )

Therefore, for the antisymmetrical problem, the depen-
dence of the sliding speed on the growth rate is

b\/m2 + bcoth[a\/m2 + b]
ks, Ky
. b b .
JH.mtanh[ma] | m* + r cothja_/m?> + i —fH,m*
2 2

=0

v

(19)

from which the critical speed can be readily determined
for 5—0,

4k, mcosh?[mal

= . . 20
Ver JHosinh[2ma]—2ma (20)
2.3. Dimensionless formulation
Introducing the dimensionless parameters
~ b . 14
= . = 1
2= it U @1

the dependence of the dimensionless sliding speed on
the dimensionless growth rate, for symmetrical (Eq.
(22)) and antisymmetrical (Eq. (23)) conditions,
becomes, respectively

. 1 byl + btanh[ma,|1 + A )
Vg = .~ N . 2
" fH, coth[ma]\/l + btanh[may/1 + b]—1 @)
. 1 1;\1 + l;coth[ma\/l + b] )
Vipm = .~ N — . (23
" fH> tanh[ma]|1 + beoth[may1 + b]—1 @)

Consequently the dimensionless sliding speed assumes
the following forms:

- (Ve _ 4 sinh?[ma]
Vorogm = (mk)sym ~ fA,2ma + sinh[2ma] (24)
. Ve 4 cosh?[ma]
Vor asym = (mk)asym ~ fH,sinh[2ma)-2ma’ 25

3. Results

In the following paragraphs, the behaviour of the
growth rate b with the sliding speed is presented as a
function of the layer thickness and the wave number m,
together with the critical sliding speed. In addition, the
interface temperature distribution T'is given as a function
of time.

The material properties of the metal layer are those
commonly used for cast iron disks in automotive appli-
cations, as reported in the Table 1.

3.1. Comparison between the symmetrical and
antisymmetrical sliding speed

In Fig. 2 the dependence of the dimensionless critical
speed V.. = V,./mk, on the wave parameter ma is shown
for both symmetrical and antisymmetrical boundary con-
ditions, as given in Eqs (24) and (25). It appears that the
critical speed for the symmetrical case is lower than the
speed for the antisymmetrical case, thus the former is
more critical than the latter. For ma going to o, both
cases tend to the known Burton’s solution (¥, gyen =

(Ver/ mky)gunon = 2/fH,) which has been deduced for
half-planes model (a—). The above result is apparently
in contrast with what has been found by Lee and Barber
[7], who showed the antisymmetrical condition to be
more critical than the symmetrical case for a set of
material properties commonly used in automotive appli-
cations (Fig. 3: lines with L&B). In the present solution,
rigid frictional half-planes (E;—) are considered, and
this explains the above observations. For a practical
braking system, the thermal conductivity of the frictional
material is small compared to that of the metal disk.
Thus the assumption of non-conducting material has no
substantial influence on the results. In fact, for symmetri-
cal conditions, as the thickness a decreases, it is more
and more “difficult’ to squeeze the metal layer between
the rigid half-planes: the pressure perturbation and the
surface thermal displacements are in phase concordance
on the opposite faces of the layer, and the critical speed
drops to zero for ma=0. Conversely, for antisymmetrical
conditions, as the thickness a decreases it is easier to
‘bend’ the layer: the pressure perturbation and the sur-
face thermal displacements are in phase opposition on
the opposite faces of the layer, and the critical speed
goes to infinity for ma=0.

In addition, Fig. 3 shows the behaviour of the critical
speed for the case in which the metal layer and the half-
planes have identical elastic moduli E,=E,. It is fairly
clear how the symmetric curve tends to be more critical
than the antisymmetric one. It can be expected that for
some applications where the frictional pad is sufficiently
stiff to reduce wear the most critical condition would be
that of a symmetrically deforming layer.

The following discussion is limited to the symmetrical
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Table 1
Characteristic values of the physical constants for the metal layer

. o —1 —6
Material E(N « 109) v a(°C™x1076) K( W) k(mz 5 10_6)
m? m'C s
Cast iron 125 0.25 12 54 12.98
120 —
48
110 10
R Sym(L&B)
- 10 e
" 16°
80 — .
- 10°
EE “~ 3 Asym(L&B)
c © \er_asym _él) 10
= =
~ w0 'v = 103
r_Burton \>., Al B&H
o] °\ 16? PYmBE) Asym(e,=E,)
» 10"
20 —| 0 Sym(E1 =Ep)
N 10
o cr_sym P Sym(B&H)
10
o]
I I I I 52
107 T T T 1
0 1 2 3 4
ma 0 1 2 3 4

Fig. 2. A comparison between the dimensionless critical speeds for
the symmetrical and asymmetrical mode and the Burton’s solution as
a function of the wave parameter ma.

case, which is the dominant mode for the present prob-
lem.

3.2. The growth rate b

In order to get the growth rate b as a function of the
sliding speed ¥, the relation (14) has to be inverted
numerically. In Fig. 4, the curves (V) are shown for
different values of the wave number m, namely m=200,
500 [m™'], and for ¢=0.005 [m] and @=0.05 [m]. The
critical speed in Fig. 4 is determined by the intersection
of the curve b(¥) at the horizontal axes (b=0). It appears
that for a fixed layer thickness, as the wave number m
is increased the critical speed increases: longer waves
are more critical than shorter. However, it can also be
observed that, at fixed thickness, curves with different
wave numbers intersect each other, meaning that shorter
waves (higher m) can dominate for sufficiently large
sliding speeds on the longer waves (lower m).

Moreover, at fixed wave number, as the thickness of
the layer increases the critical speed increases whilst the
growth rate for a fixed speed reduces: the system
becomes more stable with growing a.

Fig.3. A comparison between the symmetrical and asymmetrical
critical speeds for the (i) Lee and Barber material set (L&B), (ii) the
present material set (B&H) and (iii) the case of materials with identical
elastic moduli (E,=E,).

12— —— _ a=005[m]
———— a=0.005 [m]

Fig. 4. The relation between the growth rate b and the sliding speed
V (Eq. (14)), for two different values of the wave number (m=200,
500 [m~'] ) and thickness (a=0.005, 0.05 [m]).
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In Fig. 5, the dimensionless sliding speed is plotted
against the dimensionless growth rate for different
values of the wave parameter ma, with fH, = 0.0577.
As the wave parameter ma reduces at fixed speed the
growth rate b increases, and as from Fig. 4, higher wave
parameters ma lead to higher critical speeds. Again, as
ma goes to infinity, the Burton’s solution is approached.

3.3. Transient evolution of the temperature field

As shown in Al-Shabibi and Barber [10], a general
solution for the transient evolution of a perturbation at
constant sliding speed can be written as an eigenfunc-
tion series

Teyz) = 2, Ce"0,(xpy7) (26)
i=1

where » is the number of eigenfunctions and C, is a set

of arbitrary constants determined from the initial con-

dition 7(x, y, z, 0). The term with the largest value of

Re[b;] will dominate the transient response, so it is the

only term which needs to be considered. Thus,

‘g = be¥0,—bT @7

where b is the growth rate of the term which dominates
the transient regime. These results apply only if contact
is maintained at all times and the sliding speed ¥ is con-
stant. However, an approximate solution to the problem
with variable speed can be defined by considering b as
the dominant growth rate at the instantaneous speed (%)

5.0 —

45 —

—-1.00 —-0.99 ~0.88 -0.97 -0.96 ~0.95 -0.94

b/mk,

Fig. 5. Variation of the dimensionless growth rate b with the sliding
speed V as the wave parameter ma increases: the Burton’s solution is
sufficiently accurate for ma about 20.

Therefore the pressure and temperature fields in the tran-
sient regime can be written as

T = T(0)exp{ f bOu(1))de} (28)

z

p = p(0)exp{ f b(v(2))dz} (29)

0

where 7(0) and p(0) are the temperature and contact
pressure at the time /=0, and 5(¢) is intended as the domi-
nant growth rate at each speed ¥(¢).

From (14), 1(?) is expressed as a function of 4. But
the relation cannot be inverted analytically. However,
assuming a linear variation of the sliding speed ¥ with
time ¢

t
"t = VO(I_t ) (30)

0,

with ¥, and ¢, the initial sliding speed and stopping time,
respectively, it can be derived:

— t 1
T=_ =1- . 31
Zy JHV, G1)
b / b
2 2
b\/m + kztanh{a m? + kz]
, b b
mecoth[ma] /m? +  tanh|a_[m? + = m?
k, k,
Placing T = »7(b), it results:
g BE=7)
R dp~t
f b7 = j b(b=\(b)) db(b)db (32)
0 BT = 0)
BE = 1)
dr
= f b dbdb
bE = 0)

where 7; is a dimensionless time instant in the evolution‘
of the process and b(7,) is derived from (31). Therefore
the integrals in (28) and (29) take the form

b(:i)

T dr .
O exp{ bdbdb} fori=1,2,...,n (33)
BT = 0)
WE=7y
P _ dr
2(0) exp{ j bdbdb}, 34)
BT = 0)

where # is the number of time instants in which to esti-
mate the temperature.
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In Fig. 6, the transient evolution of the temperature
distribution is presented for different values of m, as
from Eq. (33), for a cast iron disk, and ¥,=0.8 [m/sec],
a=0.005 [m]. The temperature amplitude grows from
7(0), reaches a maximum and then reduces with time.
The maximum value and position (time) is a function of
m. All the perturbations with a wave number larger than
m=1778 [m™"] are stable with T decreasing with time.
For such value, in fact, the sliding speed is always main-
tained under the critical value. Furthermore, the long
waves are more critical than short waves for values of
the wave number m=400 [m~']. Above this limit the
situation is reversed, that is the perturbations with
greater wave length become less “harmful” for the sys-
tem.

In Fig. 7, the maximum of the temperature field 7,,,,
normalized with respect to its initial value 7(0), is plot-
ted as a function of the wave number m. For sort values
of m, such maximum grows with the wave number. Vice
versa, for m>400 [m~'] , the increase of the wave num-
ber involves a reduction of T,,,. Therefore, the pertur-
bation with m=400 [m~'] is the most critical perturbation
for the system, because it dominates over the others.
However, it must be noticed that the finite circular exten-
sion of disks in a braking system imposes a limit on the
minimum supportable wave number as observed in Lee
and Barber [7]. In fact, between the wave number m
and the mean radius of the disk R, exists the following
relation: m=N/R,, where N is the number of hot spots.
For example, if R,=0.05 [m] is considered as the mean
radius, for N=1 it is possible to derive the perturbation
with the shorter wave number (m=20 [m~']) compatible

120 —
115
110 —
105
100
95 |
90 —
85 |

80 =400
75 |

70 — r\
65 ]

60 —|

55 |
50 —

w5 riaoo
40 —

35
30

25
20 —]

T/T(0)

to

Fig. 6. Transient evolution of the temperature perturbation, nor-
malized with respect to its initial value 7(0), for different values of
the wave number m (a=0.005 [m]).

120 —
110

100 —

T T T 1T T 717 71T 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
m

Fig. 7. Variation with wave number m of the maximum of the tem-
perature perturbation, normalized with respect to its initial value 0)
(@=0.005 [m]).

with the physical size of the disk. Clearly, perturbations
with m=20 [m~!] must not be considered in this
example.

3.3.1. Dimensionless formulation
Introducing the dimensionless time

T = km’ (35)

and recalling (21), (31) can be rewritten as

=1 (36)

1 byl + btanh[ma,/1 + 5]
JELVs cothfmal 1 + btanh[may[T + 5]-1"

Therefore, keeping in mind (32), the temperature pertur-
bation becomes

bz=1)

~dT -~
=exp{ f bdgdb} fori=1,2,..,n (37)

bt = 0)

In Fig. 8, the relation between Y/T (0) and 7 is
presented for different values of the dimensionless wave
number ma, namely: ma=2; ma=2.5; ma=3; ma=3.5,
with fH,7, = 10 and 7,=3.82 It is evident that Burton’s
model for small thicknesses of the disk underestimates
the growth of the temperature and pressure perturbation,
whilst it is sufficiently accurate for large ma.

T
7(0)
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17500 —

T/T(0)

15000 —

12500 -

Fig. 8. Evolution with dimensionless time (r=km*) of the tempera-
ture perturbation, normalized with respect to its initial value 7(0), for
different values of the wave parameter ma. .

4. Conclusions

The model of an elastic layer sliding between two
rigid half-planes has been studied with reference to ther-
moelastic instability. The model is somehow arbitrary in
reproducing the correct thermoelastic behaviour of
brakes and clutches when the layer, representing the
metal disk, is more rigid than frictional pads. However,
the present model is close to the identical moduli case
(E,=E,) which is typical of traditional tread brakes where
both the pad and the disk are made up of cast iron. On
the contrary, the limiting assumption of non-conducting
pads is reasonable, since the thermal conductivity of the
metal disk is much larger than that of the frictional
material. However, the advantage of the present formu-
lation with respect to that of Lee and Barber [7] (where
both layer and half-planes are conducting and elastic) is
that the heat flux is stationary with respect to the layer
(c;=0), permitting us to determine in closed form the
relation between V., and b, and to study the transient
evolution of the sliding system.

The following results can be summarized:

1. the Burton’s solution (the half-plane model) is accur-
ate only for sufficiently large wave parameters,
namely ma=20, and as the wave parameter grows the

symmetrical and antisymmetrical modes tend to the
same solution which is that given by Burton;

2. as the thickness a of the layer reduces, the critical
speed V., decreases and the growth rate b increases,
thus leading to a system which is more prone to ther-
moelastic instability;

3. low frequency perturbations have lower critical speed
Ve than high frequency perturbations, however the
growth rate b of the high frequency perturbations
increases with speed much faster than for the low fre-
quency perturbations. Consequently, it is likely that
for sufficiently large operating speeds, well above the
critical speed, high frequency perturbations would
dominate low frequency perturbations;

4. symmetrical conditions on the thin layer are more
critical than antisymmetrical conditions, and such a
behaviour has been verified also for frictional pads
with sufficiently large elastic modulus, which is the
case of applications where the wear of frictional
materials is a major concern.
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