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Brief note: Some observations on oscillating tangential forces and wear in general plane
contacts
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Abstract — For general plane contact of clastically similar materials, including cases where there are multiple regions of contact, general properties
of the partial slip solution for conditions of constant normal force and monotonically increasing shearing force have been found recently by the first
author. An extension is given here to cover the unloading and cyclic loading cases. Further, it is shown that, if the tangential Joad varies between two
fixed limits, the region of stick does not change, even if relative microslip causes wear, changing continuously the profile of the indenter. The contact
area will change, but wear will not enter the original region of adhesion. The theoretical limit to which wear will eventually, asymptotically proceed is
established, viz. almost complete contact over what is the initial stick zone, although it may, in practice, take a long time to reach this state, © Elsevier,
Paris

1. Introduction

Recently the Cattaneo partial slip contact problem has been revisited by the first author for a general plane
contact (Ciavarella, 1998a,b). It has been shown that the contact problem can be reduced to a difference between
two normal indentation cases, specifically the actual normal contact problem, and a corrective normal contact
problem for a reduced load; this provides the shear correction in the stick zone. In particular, apart from the
Hertzian parabolic profile and the wedge geometry, a wedge with rounded apex (Ciavarella et al., 1998a), a
flat punch with rounded corners (Ciavarella et al., 1998b), or the general case of a spline profile have recently
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Slip invariably starts at the edge of each contact area, and, following Cattaneo (1938), we consider the
shearing tractions as the superposition of a full sliding component and a corrective part ¢*(x), non-zero only in
the stick zone, whose location and extent are presently unknown
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The integral equation for relative displacements in the tangential direction, Eq. (4) then states, using (12) and
(11), and finally substituting Eq. (3) for the full sliding component,
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which can be recognized as being of the same form as the original equation for normal contact Eq. (3), with
p(x) replaced by —g*(x)/f, and the function 4’(x) is still given by the actual normal contact problem, so that
the corrective problem corresponds to the same rotation, but with a lower normal load than that of the actual
contact problem. A rigorous proof that the analogy holds in the face of the inequalities is given by Ciavarella
(1998a).

This analogy allows us to solve a sequential tangential contact problem, as simply as the corresponding
normal one. For example, in the case of a single, simply connected contact region, involving incomplete
symmetrical contact, i.e. with bounded contact pressure at the edges x = +q, the normal load can be found
from (Ciavarella, 1998a)
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so that it is clear that there is no need to calculate the normal pressure explicitly. In the same way, as a

consequence of the analogy, the tangential load vs. size of stick zone may be calculated from (Ciavarella,
1998a)

P= (14)

f 1€ R(Htde
=fP+= [
Q f + AJ v/ ¢ —12
where c is the semi-dimension of the stick zone. Moreover, the magnitude of relative shear displacement in the
slip zones may be found directly from (Ciavarella, 1998a)
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We now return to a consideration of whether the analogous properties hold also in the unloading phase, when
QO reaches a maximum, is decreased back to zero, and indeed a cyclic loading is applied.

2.1. Unloading and cyclic loading

So far, we have considered the case of applying a normal load P, giving rise to stick everywhere in the contact
area; then P is held constant, while Q is increased monotonically from zero. When Q is first applied, slip
zones develop, which start from the last point which comes into contact during the normal loading phase (this
is apparent from the analogy). The stick zone therefore recedes as 0O is increased, and the slip zones advance.
When the tangential load is initially reduced, stick immediately takes place everywhere, as a consequence
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of dg/dt changing sign, but the shearing tractions remain unaltered. A further small reduction in Q causes
backslip within a region close to the edge of the contact (precisely where forward slip started when Q was
increased), as the contact pressure is unable to sustain stick in that region. This can also be appreciated from
a different point of view: consider the new load Q" as a perturbation from the maximum load oM ie. as
an application of a AQ = Q™ — Q". Then, if slip were prevented, the tangential tractions would, as in the
case of the increasing tangential load phase, become singular at the edge of the contact area, with the important
difference that the sign is reversed. Thus a region of counter-slip must from, and grow inwards. Consider, now,
anew shear stress distribution ¢*(x) in the partial slip regime during unloading, so that again the resultant shear
is a superposition, this time of the partial slip solution previously obtained, together with a reverse full sliding
component (to model correctly the reverse slip in the new slip zones) and a new corrective part ¢**(x) in the
new stick zone S}, ,—Ilocation and dimension presently unknown—as

q“(x) = fp(x)+q*(x) = 2fp(x) + g™ (x), 17)

where g*(x) =0, x € Sgier, ¢**(x) =0, x € Stick- In the new stick zone S%; ., g’'(x) = 0 only in the part where
there had not been slip in the previous increasing shear load phase, i.e. Sstick M Sstick, Whilst in the remaining
zone the amount of slip displacement is fixed at the value it reached at the end of the loading phase, given by
Eq. (16). The integral equation for relative displacements in the tangential direction (4) states that, using (17),

in the new stick zone upon unloading, x € S%
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Then, on substituting Eq. (16) into (18) we find that ¢**(x) is the solution of the following integral equation.
Note that ;1‘- g'(x) on the left hand side cancels out with the first two terms on the right hand side, so that
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which is again the normal indentation problem, rescaled into the new unloading stick zone S%;, (note that this
time the sign is the same as that of the pressure, and the additional factor 2). All the inequalities for the problem
of finding ¢**(x) in S}, can again easily be shown to correspond to the inequalities for the normal pressure
p(x), for the contact area S . Thus, the analogy continues to apply in the unloading, and even reloading,
regimes.

It is clear that this superposition procedure can be repeated ad libitum, and that the only care required is in
the imposition of the correct direction of slip in the slip zones. However, in plane problems only two conditions
are possible (slip and reverse-slip), depending of the sign of the tangential load. We repeat that the results are
completely general, providing only that a half-plane formulation is appropriate to the contact problem itself:
multiply connected contacts, associated with surface roughness and individual asperify effects are examples of
cases where these results may be used, providing that the normal contact problem itself may be solved. It would
even be possible to use the approach to solve problems involving a very complex profile, perhaps solved, for
the normal contact case, by finite elements, providing the half-plane requirement is met. This is particularly
useful when the partial slip solution is difficult to obtain, as is often the case, by purely numerical procedures.
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3. Implications for the wear process

Fretting involves partial slip under normal contact; it is therefore inevitable that some wear takes place,
as these are the two ingredients needed. Results of fretting fatigue tests are sometimes regarded skeptically
because the question is asked ‘As wear has taken place, has the contact geometry changed substantially?’, and
hence, by implication, modified the conditions assumed for fretting itself. This question is not easy to answer,
although various deductions could be made, if a wear law were available. As these are notoriously difficult to
formulate and render ‘geometry-independent’, it is worth investigating the results deduced above to see if any
light can be shed on this problem. First, we regard it as essential to have both contact pressure and relative
movement in order to have wear; it follows that within the stick zone wear cannot take place, and clearly
nothing can happen exterior to the contact. Wear must therefore be confined to zones of slip, where the profile
of the indenter will change. Now, as long as the relative rotation of the bodies is fixed, the minimum size of
the stick zone during a load cycle, i.e. when the full tangential load is applied, is determined by the corrective
normal contact problem, which is always the same, and independent of what is happening in the slip zones. In
other words, although the pressure distribution will change (over the entire contact area, and not only in the slip
zones), and hence so will the tangential relative slip displacement in the slip zones, the position and dimension
of the stick zone will remain fixed, so that wear will never enter these zones.

There are therefore two issues here, one is the timescale of the evolution of wear, which is very difficult
to attack without a great deal of experimental data, and the second is the steady state limit towards which the
system will ultimately move.

3.1. Evolution and Archard’s law

If we assume that wear proceeds according to Archard’s law, which is probably the most universally accepted,
the rate of material removal, w, is proportional to relative micro-slip velocity and local pressure

. Suy(x) .
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fp(x), (20)
where A has dimensions of [L?/F]. Further, on noting that u, (x) is given by Eq. (16), and considering that the
integral on the right hand side of (16) is constant during the wear process (as neither g*(x) nor Sy changes)
we deduce that the wear rate will have a component directly dependent on the pressure plus a second component
dependent on the value assumed by /4(x). Because of wear, the contact pressure will decrease in the slip zones,
and hence the wear rate itself will also eventually decrease with time. We could argue that wear at the highest
contact points occurs first, so as to reduce the contact pressure to a spatially constant value in the slip areas. This
simple assertion is physically reasonable for s/iding contacts. However, it is difficult to sustain under partial slip
conditions, for some geometries. For example, for a Hertzian contact, it would imply that wear would occur
adjacent to the stick-slip interface, just within the slip zones. But wear could not occur there without a loss of
contact, as clearly adjacent material just within the stick zones will not erode. Hence, the only way in which a
constant pressure state could be approached would be the addition of material, which is extremely unlikely to
occur unless wear debris volume exceeds that of the wearing material.

3.2. Steady state limit

In most fretting problems the applied normal load is controlled, so that the pressure in the stick area will
increase to support the load (i.e. a complete contact will evolve, where the pressure is singular at the stick
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area edges), and ultimately wear will cease. For this to arise, because the relative slip displacements are never
zero in the slip zones, the only possibility is that the pressure goes to zero there, i.e. there is incipient loss
of contact. An asymptotic contact problem can therefore be postulated for which the load is supplied entirely
over the minimum stick zone, and the contact profile just touches the regions of slip. It is possible to calculate
the amount of material to be worn away, simply from the boundary value problem for the complete contact
in the stick area, knowing the overlap of material that would arise for the original profiles. This result should
be of some use in determing the length of time for which wear may be expected to occur, and hence give an
indication of the rate of change of the contact profile.

4. Conclusions

The case of oscillating tangential forces has been treated for a general configuration of the contact for
elastically similar materials. The implications for the wear process in fretting of plane contacts has been
considered, and some general properties have been given, as related to the changes in the geometry of the
contacting materials. It has been shown that the wear operates only in the region of initial micro-slip, and that
wear must always proceed so as to give a steady state, of full adhesion. This property is independent on the
assumed number or shape of the contact areas, and also serves to give a clear idea of the amount of material
that will eventually be worn away.
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