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Abstract

Axisymmetric indentation of a flat surface is considered: specifically, the case of flat-ended indenter with
rounded edges, and the case of a shallow cone with a rounded tip. Analytical solutions are obtained for the
normal and sequential tangential loading, in both full or partial slip conditions (with the Cattaneo-Mindlin
approximation), and for the complete interior stress field in all these conditions.

Implications for strength of the contact are discussed with reference to metallic or brittle materials, with
the intention to shed more light in particular to the understanding of common ‘fretting fatigue’ or ‘inden-

tation’ testings with nominally flat or conical indenters. It is found that the strength of the contact, which is
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indenter, which produces a residual stress field promoting crack initiation, whilst the first have the
virtue of producing a well defined non-singular stress field, although at the possible expense of
causing crushing or plastic failure before a crack form. It should be noted that in his classic tests
forming circular cracks, some of which were developed into ‘cone frusta’, Roesler in fact used a
flat-ended indenter, rather than a sphere (Roesler, 1957). In this paper we wish to contribute to
the literature quantifying the stress state developed for each of these classes of tests, by formulating
solutions to:

(a) the problem of a flat-ended circular indenter having a finite curvature at the edge, rather than
an abrupt edge. This permits us to use an elasticity solution to a half-space problem for both
the indenter and the substrate, and so the usual idealization of a rigid indenter is not required.

(b) the problem of a conical indenter having a finite curvature at the tip. Again a half-space
idealization for both the indenter and the indented material is used, so that, if the indenter is
given a finite elasticity, the solution is appropriate only if the cone angle is large.

In addition to these examples of indenters used for testing, contacts involving nominally flat
bearing surfaces occur widely in engineering practice, such as supporting feet/pads, or electrical
brushes. There is therefore considerable practical motivation to study each of these geometries,
and, in particular, to examine the influence of a round-off of either a cone apex or punch edge, as,
in each case, the local singularity will be removed, and give rise to a well-posed problem within
elasticity theory. Such rounding off will be present in practice, either because of limitations of the
accuracy of the manufacturing process, or because localised plasticity during the first application
of load will have caused local plastic flow, hence relieving the singularity.

Usually, the solution adopted for the flat (axisymmetrical) indenter is that due to Boussinesq
(see, e.g. Timoshenko and Goodier, 1970) in which it is assumed that the indenter itself is rigid,
and is pressed into a compliant, elastic, half-space. The contact is complete, the pressure distribution
at the edges of the contact presents a square root singularity, and hence so are all the components
of the local stress field (o;; ~ 1 /\/ r, where r is the distance from the sharp corner). Physically, this
is an unrealistic limiting case, because of the inevitability of plastic flow, and also because the
assumption that the indenter is always much more rigid than the counter surface is not always
tenable.! Turning to the case of conical indenter, the half-space formulation is appropriate for
shallow external angles, and gives a weak, logarithmic singularity at the tip (Sneddon, 1951), which
again is, in practice, relieved by small scale plasticity. In both cases, the solutions are somewhat
unsatisfactory, in that the strength of the contact is difficult to determine (concepts of Fracture
Mechanics would be the best choice, although the singularity arising is not the classical one for a
crack, and the implications of the stress intensity factor for the contact strength are unclear).

With these preliminaries, the present paper provides insight into the contact geometries described
for normal indentation, full sliding, or partial slip of a static contact due to sequential application
of normal and tangential loads; the last represents a generalisation of the celebrated Cattaneo—

"The proper elastic formulation for indenter and substrate of comparable elastic constants should be the one
appropriate to a cylindrical domain, which requires an intense numerical effort, rendering it less attractive. Also, a
singularity will still be present, although of lower degree than that implied by the Boussinesq solution (Khadem and
O’Connor, 1969).
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Fig. 1. Geometry and coordinate system of the problem. (a) Flat punch with rounded corner; (b) Conical punch with
rounded tip.

Mindlin problem (Cattaneo, 1938; Mindlin, 1949). Solutions are also developed for the interior
stress field and issues related to strength of the contact addressed, with particular reference to
elastic indentation testing.

2. Formulation

The problem will be formulated as an elastic punch indenting an elastic half-space, which may,
in general, be of different elastic properties, although, if the bodies are not ‘elastically similar’ (see
below), the contact must be lubricated for the solution to be precise, in order to eliminate the
presence of shearing tractions. The geometries examined are shown in Fig. 1(a) and (b). The use
of the half-space formulation is certainly justifiable for the rounded conical punch: it has been
used successfully already for the sharp punch (Sneddon, 1951, using Hankel Transforms, and more
recently, Sackfield et al. (1995), using Love’s potentials and Abel integral equations), provided
that the external cone angle, 6, is small. In the case of flat punch, the half-space idealization will
apply providing that the contact disk does not penetrate too far into the rounded off region, i.e.
that, in the notation of Fig. 1(a), a does not approach b+ R,, so that there is sufficient material
around the contact to provide support. Analogous plane cases have been solved which show that,
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even if the radius of the edge curvature is only a small fraction of the contact disk radius, the
solution is still quite satisfactory (Ciavarella et al., 1988a, b).

Well-established techniques for the solution of integral equations for elastic half-spaces can be
used, as reported in the monographs on contact problems in the theory of elasticity (Shtaerman,
1949; Gladwell, 1980; Hills et al., 1993). In particular, for the normal axisymmetric contact problem
general solutions, due to Shtaerman, are known, which we will follow here, with minor changes in
notation; for tangential loading, a generalized version of the Cattaneo and Mindlin procedure
(Cattaneo, 1938; Mindlin, 1949), due to the first author (Ciavarella, 1998a, b, c), will be used.
Finally, the potential formulation will be employed for determining the complete interior stress
field (see Love, 1927, Hills et al., 1993, Section 7.1).

3. Normal loading

We start with the governing integral equation for the general axisymmetric normal contact
problem, which links the pressure distribution p(r) over the contact area S, of radius a, to the
relative surface normal displacements u.(r) ‘

;Jﬂpg%m=umm 0<r<a 1)

where #” is the radial coordinate of the integration point, whose distance from the field point, of
radial coordinate r, is given by R. Here 4 is a measure of the ‘composite compliance’ of the bodies,
defined by

4 1—vi 1-v}
2T E T g &)

where E; is Young’s modulus and v, Poisson’s ratio of body i.

The equation written is precise only when no tangential radial tractions arise, which means that
either: (i) the coefficient of interfacial friction, £, must be zero, or (i) the materials are elastically
similar, or, more precisely, Dundurs’ second constant B is zero, i.e.

1—-2y =2,
Uy M2

©)

This removes the possibility of a change in the surface relative profile.

Side conditions give a unique solution of eqn (1), which are: (i) the surface normal displacements
of the two bodies must match in the contact area; (ii) there can be no interpenetration external to
the contact area; (iii) no tensile tractions can be transmitted between the bodies. The first two
translate, respectively, to

u(r) = o, —2(r), 0<r<a )

uz(r) > OC,I—Z(V), axsr (5)
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where a, is the relative approach of two remote points, one in each body, and the indenter? profile
is described by z(r). The solution, in the case when p(a) is bounded (the so-called incomplete
contact conditions), is (Shtaerman, 1949)

2 [* F(s)ds
A r \/ S 2 12 2’
where the auxiliary function F(r) has been introduced

i 7 d
E(r) =oc,,—rj Z@di , 0<r<a @)
o\/rz-—tz

<r<a, (6)

p(r) =

and o, is given by (Shtaerman, 1949)

]

Equilibrium between the applied load and the pressure distribution can be written as (Shtaerman,
1949)

a 4 (z/(He2 de
P=12 dr = . 9
L nrp(r) dr AL Ja—r ®

The solution may be completed by the representation of stress and displacement fields in each
body, but this point will be discussed in Section 5.

3.1. Flat punch with radiused corner

In this case, the profile of the geometry is described by
0, 0<r<b

z(r) =k

) 10
2(r—b)2, b<r<a (10)

where k is the curvature of the rounded part, i.e. k = (1/R,), see Fig. 1(a). Let us start the solution
from the load—contact radius relation. Computing the profile derivative from (10) and carrying
out the integration of eqn (9), with the substitution 7 = acos o, gives

“(t—b)tzdt__ b’
b \/az_lz ~ 5c0s° @

and we may obtain the result that the contact load P is given by

[3sin @, +sin® ¢, — 3¢, cos ¢,] 1D

*The case of two half-spaces having arbitrary profiles is readily incorporated by writing z(r) = z,(r) — z,(r), where
z1(r), z2(r) describe the individual profiles.
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Fig. 2. Pressure distribution (na?/P)p(r/a) for a flat indenter with rounded corners: (b/a = 0.0,0.1,...,1). Bold lines
correspond to the limit cases: Hertzian b/a = 0 and rigid sharp flat punch b/a = 1.

_ 2kb? 3sin @, + sin® @, — 3@, cos @,

P , (12)

34 cos® @,

where the auxiliary angle ¢, is introduced as
b
cos Py = . 13
08 Py a (13)

The contact stiffness, i.e. the approach of remote points in the normal direction, «,, is obtained
from (8) and (10) as

“(t—b)dt ®0 .
o, = ka =ka| (acosp—>b)de = ka(asinp,—bgp,) (14)
b \/az -7 0
and so
o, = kp? PP P (15)
COS @g

Turning to the pressure distribution, this is now found directly by carrying out the integration of
(6) as shown in Appendix I. The result, non-dimensionalized by the mean value p,, = (P/na’), is

3
ro_ Se P lPﬂ(’, 0<r<a (16)
Pm 3sing,+ sin® @, — 3¢, cos @, b

where the function Wu(r/b) is given in Appendix I. In particular, note that the pressure at the
flat/round transition point (which is not the location of the maximum pressure, but is not far
away) is obviously finite. The pressure distribution for several values of the ratio b/a is plotted in
Fig. 2. It may be appreciated that the transition from the Hertzian distribution (b/a = 0) towards



M. Ciavarella | International Journal of Solids and Structures 36 (1999) 41494181 4155

the upper limit distribution of the rigid flat punch one (b/a = 1) is quite smooth, and gives a
maximum pressure which is lower than the Hertzian when b/a < 0.7 (about). In this range, note
that the pressure is quite close to uniform.

3.2. Conical punch with rounded tip
In the case of the conical punch, Fig. 1(b), the geometry defined by

6 2
<r<
2br, 0<r<b

z(r) = R a7n

91‘—2b, b<r<a

where 6 is the external angle of the cone, that has to be small for the half-space approximation to
be valid, i.e. # ~ tan 6. Note that 8/b = k = 1/R..

Let us start, again, from the load—contact radius relation. Given the geometry eqn (17), and
computing the derivative, we have from the integration of eqn (9), for a > b, the relation

4 faz(*dr 460 F£dt 4 [« (24t
pe JZU _ f + eJ . (18)
Al Jad—r2 Ab)y Jir—p A ), Ji-r

Now, with the substitutions ¢ = acos ¢, and cos ¢, = b/a we obtain

AP b?
40 6 cos’ [44 3, cos o, —3 sin ¢, — sin® ¢,]. (19)
cos’ @,

Regarding the approach «,, we obtain, with the usual substitutions from (8)

bo .
%, = (1—=sin@y+p,cospy). (20)
cos” @,

Finally, carrying out the integration of (6), as shown in Appendix II, the non-dimensionalized
pressure is given by

6
o _ ey (7) os<rsa en
Pn 443¢,cos p,—3sin @, —sin’ ¢, b

Appendix II gives the explicit form of the function W,..(7/b). In the case a < b the contact is
obviously Hertzian, and so well-known relations apply (Shtaerman, 1949; Hills et al., 1993;
Gladwell, 1980).

Figure 3 shows the pressure distribution for /a = 0,0.1,...,1. It may be appreciated that, as
b/a — 0 the maximum pressure (at the contact centre r = 0) becomes increasingly high (indeed, it
grows logarithmically).
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Fig. 3. Pressure distribution (na’/P)p(r/a) for a conical indenter with rounded apex: (b/a = 0.0,0.1,...,0.9). Bold lines
correspond to the limit cases: sharp conical punch b/a = 0 and Hertzian b/a = 1.

3.3. Comparison

Figure 4 shows a comparison between the two cases regarding the variation of load (for a given
elastic compliance 4 and geometry) with b/a. Note that the Hertzian value corresponds to b/a = 0
and b/a = 1, for the flat and conical case, respectively. As the quantities plotted are, AP/ka’,
bAP/0a®, respectively, for flat and conical indenters, i.e. APR./a® in both cases, the Hertzian limit
case corresponds in respective limits.

Figure 5 shows the variation of approach in normal direction ( for a given load P and compliance
A) (Ra,/a®) = (a,/ka®) for flat (bold line) and (R.x,/a*) = (ba,/0a%) conical indenter as a function
of b/a. Notice that the approach is always higher for the conical indenter, but since we are plotting
the quantity R,o,/a” for comparison purposes, this quantity goes to zero in the limit cases of sharp
punch, as R, = 0. Notice that the variations of R.a,/a* are not too far from linear with b/a.

4. Tangential loading

A solution will now be developed for the case of tangential loading, again assuming B = 0 [i.e.
eqn (3) holds], by appealing to a recent general result (Ciavarella, 1998a, b, for the plane problem,
1998c¢, for 3-D problems). This solution, which will be briefly discussed below, is exact (i.e. it
satisfies all contact requirements and Coulomb’s friction law, including the normality rule), only
(1) for plane problems or (ii) if the materials present no Poisson’s effect, i.e.

Vi V2
A = + =0 22
’ He M2 @2)

where y is now defined as the ‘combined Poisson’s ratio’. However, for a single axisymmetric
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APR /2°

0.5 )

bla

Fig. 4. Non-dimensional load (4 PR /a’) = (AP[ka®) for flat indenter (bold line) and (4PR,/a*) = (bAP/0a’) for a conical
indenter as a function of b/a.

oR /a

b/a

Fig. 5. Non-dimensional approach (R.a,/a>) = (a,/ka’) for flat indenter (bold line) and (R.x,/a%) = (ba/0a°) for a conical
indenter as a function of b/a.
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contact, the only approximation involved is the almost universally accepted one introduced by
Cattaneo (1938) and Mindlin (1949), for the solution of the corresponding problem for Hertzian
contacts.’ The exact solution implies a slightly non-circular stick zone, and requires a numerical
non-axisymmetric solution, but the effort to do so is not justified by the small correction to the
resultant stress state (Munisamy et al., 1994).*

Bearing these preliminaries in mind, consider the following loading sequence: apply first the
normal force alone, so that the stick zone envelops the entire contact. A monotonically increasing
shearing force, Q,, will, therefore, give rise to a receding stick problem, according to Dundurs’
classification (Dundurs, 1975), and we can therefore solve directly for any particular value of Q,.
A solution can be developed with the shearing traction distribution acting in the direction of the
tangential force only, i.e. a distribution ¢,(x, ). Equilibrium requires

0, = J J g (x, y)dxdy. (23)

Relative tangential displacement of surface particles within the stick zone must be constant, as
Newton’s law requires shearing tractions to be equal and opposite in the two bodies, so that

ux(x’ J/') = 5\'3 uy(x9 Y) = 5}’9 (xa J/') ES’stick (24)

where the rigid body displacement in the direction orthogonal to the load, §,, is zero in the
axisymmetric case, due to symmetry. Coulomb’s law requires

<fp(xa y)a (x, Y) € Sstick

=fp(x’y)7 (xﬁy)esslip . (25)

lq(x, y)| {

and that shear traction q(x, y) = ¢.(x, »)i.+4¢,(x, »)i, must always oppose the direction of relative
change in the direction of slip.

Let us therefore write the two integrals that relate the displacement of particles parallel with the
surface to the surface tractions, together with the boundary condition (24), in the form

2

‘ 0
5x =(1+V)U(X>J’)*Vax2 V(XaJ’)s (xay)ESstick (26)

2

0
5}’ = —yaxay V(_X,y), (xay)ESstick (27)

where we define U(x, y), V(x, y) as

* Although not recognized originaily by the original authors (there is a footnote only in Mindlin (1953) and Dere-
ciewicz’s paper), the solution implies non-zero relative displacements u, in the slip area, so that the slip direction is not
truly colinear with the shearing traction direction.

*For dissimilar elastic materials (§ # 0), the pressure distribution and shearing tractions in both the normal and, a
fortiori and tangentially loaded problem will present a complicated pattern, and the stick-slip boundary a complicated
shape, strongly dependent on the actual loading path.
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27[ ‘(x/’ ' ’ ’ 27[ VA, ’ ,
Ulx,y) = A” B axay, vy = ,4” Rq.(¥,¥) dx’ dy (28)
S s

where R = /(x—x")*+ (y—y’)*. From (27), follows that ¥(x, y) has the form
o
Vi(x,3) = g, (x)+g:(»)— yy xy, (%) € Siick- (29)

Moreover, on considering U(x, y) = AV(x, y) as it follows from direct computation, where A is the
2-D Laplacian operator, (26) can be rewritten as

0x = g1 () +(1+7)95(»),  (x,¥) € Saiex (30)
which is a differential equation with separate variables, with solutionk

9ix) =hi, g5(y) =hy, (%)) € Siek (3D
satisfying the algebraic relation®

O = hy+(14+)h,. (32)
Therefore, if we find a distribution ¢, satisfying the following condition in the stick area

Ux,y) = Z’ J L q*();;’y Vidx dy = AV(.3) = b+l (59) S (33)

plus the other conditions in the slip area, and the obtained V(x, y) is a second-degree polynomial
in x and y in Sy, this is an exact solution to the problem. This condition is always satisfied for
axisymmetric problems® like ours, and the solution of the problem can be obtained considering
gx(r) = fp(r) — q¥(r) in the stick area, ¢,(r) = fp(r) in the slip area, and obtaining from eqn (33)—
using (1) for the contribution of the pressure—an integral equation in the stick area in terms of a
corrective unknown part only

2n N hy+hy
A J‘J;md( R ds = uz(r)_ f 5 rESstick (35)

*We are assuming here the stick area is simply-connected.
%In fact, being g,, and hence so ¥, function of r only, eqn (33) reads

vy 14V
4 rodr hy +hy (34)

AV(r) =
has a general solution (neglecting logarithmic terms) V() = [(h; +h,)/4]r* +c.

More general cases of exact solutions are possible, as long as V' is a second-degree polynomial in x and y. The most
relevant are Hertzian elliptical contacts (as proved explicitly by Cattaneo, 1938) and plane problems (Ciavarelia, 1997a,
b). Indeed, for plane problems, with no dependence, say, on y, AV(x) =(d*V(x)/dx*) = h,+h, has a general solution
V(x) = [(h+h,)/2]x* +c. Other particular cases of such exact solutions may exist, with a more general shape of stick
area, but the question of limited practical interest, as long as the surface profiles to produce that contact area and
symmetry are of rather particular form, so that the property will hold only for very special values of geometry and load.
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i.e. the corrective part g¥(r')/f can be found from a normal contact problem of the kind (1) for a
reduced indentation. The details of the solution, including the proof that the inequalities in the
slip area also translate to the non-interpretation condition of the corrective contact problem, are
discussed in the cited papers, which provide further details. Here we just record that all the relevant
quantities can be obtained from a superposition of the normal load solution, using the corrective
load defined by

0 =/P-0.. (36)

The only care required is in the calculation of displacements, but we find that in geometrically
axisymmetric problems, with &, = /, from eqn (32)

@:m_wgo+;> 37)

and therefore the approach in the tangential direction is related to the superposition of approach
in the normal direction through the factor [1+ (y/2)], i.e.

?=@+9m—m. (38)

4.1. Flat punch with radiused corner

The size of the stick zone is given implicitly by the relation between ¢, and the corrective load
0*, i.e. using (9) and (36), (12)

Q*  2kb’ 3sin ¢y + sin® ¢ — 3¢, cos ¢,

> 39
f 34 COS3 ¢0 ( )
where the auxiliary angle ¢,, has been introduced as
b
Cos ¢y = . (40)
The approach of two remote points «, in tangential direction is given by (38) and (15)
& 2 v\ [tang,—¢o  tan gy —¢,
=kb* (1 - . 4
f b ( * 2) ( Cos @ cos ¢ 4D
Lastly, the non-dimensional corrective shearing distribution is given by (35) and (16)
2 3cos® ¢, r
() = i, ) 0<r<c 42
0t 0 = 35in gy +sin’ o3y cos 6y (b) *

where the function W,(r/b) is given in Appendix I.
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4.2. Conical punch with rounded tip

In the case of the conical punch, we need to distinguish two cases. First, for the case when ¢ > b,
so that the stick zone disk envelops the tip radius, the solution is given by the relations (9), (36)
and (19), i.e.

" _ 200° [44 3¢, cos ¢y —3sin g, —sin® ¢] 43)

S 34cos? ¢,

and the approach from (38) and (20)
% _ o1+ 7\ [1—=sin @+ @, cos @, _ I—singy+¢,cos ¢, 44
S 2 cos® @, cos? ¢,

whereas the non-dimensionalized corrective shearing distribution is given by (35) and (210

6cos® ¢,

S Yl ) 0<r<e (45)
4+43¢, cos ¢, —3sin ¢, —sin] ¢ b

nb?
0 qx(r) =

Appendix II gives again the function ¥, ,(r/b).

In the case, ¢ < b, when the stick zone lies within the radiused portion of the indenter, the non-
dimensionalized corrective shearing distribution is given by the Hertzian distribution (Hills et al.,
1993)

nc? 3 r\?
jq;'f(r)=2\/1—<c>, 0<r<c (46)

and the relationship between the corrective shearing force, O*, and the size of the stick zone is
given by
o* 8¢
[ 34b

(wWhere we have taken the curvature to be k = (1/R,.) = 0/b), and the approach of remote points in
the tangential direction o, is given by (38), (20) together with the Hertzian value (Hills et al., 1993)

“’=b0<1+ 7\ [(1=singo+@ocosp, c? '
S 2 cos® ¢, b?

(47)

5. Strength of the contact

The explicit calculation of the interior stress field for a general profile may be obtained either by
a series solution, using an expansion of the pressure in terms of Legendre polynomials, or by an
analogous procedure expanding the contact profile itself, as described in, for example (Sackfield
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and Hills, 1988) or (Hills et al., 1993). However, a direct solution will be used here, which gives
rise to a rapidly convergent numerical integration.”

5.1. Theory

The most suitable technique to deal with axisymmetric problems is to appeal directly to potential
theory (see Love, 1927, for further details). It may be shown that the stress and displacement fields
can be obtained by defining two harmonic potentials, N and 7, to model the effect of normal and
tangential loading in x-direction, respectively. The displacement field is obtained as

2u, = —(1=2V)N,—zN,.+ 2vT, . + 2T, —zT,,, (48)
2pu, = —(1=2v)N,—zN,, + 20T, +2T.,— zT,,, (49)
2uu. = 2(1 =2v)N.—zN_.+(1=2WT.,—zT... (50)
and the stress field as
O = —Ny—2VN,, —zN, . +2(1+ V)T, + 20T, — 2T (51)
0y = =N, —=2vN . —zN, . + 2T, . —zT,,,. (52)
0: = =N.—2N_..—zT,... (53)
Oy = —(1=2V)Nyy—2N,,. + 20T, 4+ T,,, —zT,,,. (54)
0,: = —zN,..— 2T, (33)
O = =ZNyo+ T —2T,... (56)
The potentials are defined from
N=1Im {rg(t)[z1 ln(zl+R1)—R1]d1} 57
(]
T=1Im {f"h(t) [1 [z%— 1r2]1n(21 +R)— 321R1 + lrz]dt} (58)
0 2 2 4 4
where
zy =z+It (59)
R} = x>+ +(z+in)? (60)

and, finally, g(¢) and A(¢) are real functions of ¢, obtainable in full sliding conditions as (Hills et
al., 1993, f. 7.23)

7 Except for the region of the surface contact disk, where numerical care is required for the nearly singular or singular
integrals to be computed.
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(t)_h(t)_ZdJ” rp(r) dr
9= f S onde z\/rz—tz.

For our purposes, it is preferable to obtain the functions ¢(¢) and A(7) in terms of the profiles, and
to compare eqn (6.11) with eqn (7.23) of Hills et al. (1993), which gives, immediately

_h( 2 & j‘ rz(r) dr
=7 Traar) yoop

This is a more convenient form for our purposes, as the function z(r) is elementary, whereas the
function p(r) is not. Elementary expressions will be obtained for ¢(?) in both cases of a flat indenter
with rounded corner and conical with rounded tip.

Notice that in the Cattaneo’s partial slip regime, the required potential is T s = I —T% where T
is given by eqn (58), whereas T* is given by (58) by changing the upper limit of integration with
c. Therefore, the ‘partial slip potential’ T, can also be obtained by considering the integration in
(58) extended from ¢ to a.

(61)

9() (62)

3.2. Application to rounded indenters

For the flat indenter, from (62) it is evident that g(¢) = 0 for ¢ < b, whereas for ¢ > b the integral
required is [using eqn (10)]

j’ rz(r) dr _ kf r(r—b)? dr' 63)
0\/12—1’2 2 b \/tz—rz
Therefore, we obtain, for full sliding, and ¢ > 5
_h() 2k 2 avip b
g(t) = T4 [2([ —b*)""* —barccos l (64)
In the limit as 5 — 0, we re-obtain the Hertzian value g(¢) = h(Of) = (dk/nA)t.
For the conical indenter the relevant integral is given by (from 62) using (17)
0 J‘ tortdr < b
j’ rz(rydr 2bJo /¢ 65)
0 /12 —r QJZ’ P dr +9f‘ r’dr Qbf’ rdr z>b‘
2o Jirmrly Joor 20 ), Jos?
Now, with the help of some elementary integration, we get simply: in the case t > b
20 s b
90="" [2:-2\/1 — b+ barccos J (66)

whereas if t < b
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40
= . 6
9= "1 67
Note that in the limit as » — 0, we re-obtain the conical punch value g(f) = h(O/f) =(0/A4). Also,
in the limit as » — a, we re-obtain the Hertzian value

40 ¢

A a (68)

9(1) =
Once ¢g() is known, the determination of the stress field from eqns (51)—(53) or displacements
from eqns (48)—(50) is relatively straightforward. Details of the computation of the potentials
needed (57) and (58) and their derivatives are given in Sackfield and Hills (1988) and Hills et al.
(1993), and reported briefly in Appendix II1.

5.3. Results

It is impractical to present comprehensive results for the interior stress field, as there are many
independent parameters involved, namely for each geometry, (b/a, v) in the normal indentation
case, (b/a,v,f) for full sliding problems, and (b/a, v,f, ¢/a) for partial slip problems; therefore, a
complete study is impractical if we are not guided by some preliminary general considerations:

For normal loading

e where failure is controlled by yielding, there will be a transition between the two limiting cases
of Hertzian indenter, where the maximum shear stress arises subsurface, and the sharp punches,
where this maximum is at the singularity point. In the case of ‘sharp’ indenters softened in their
intensity by the inclusion of a radius, there is a great deal of difference between the flat indenter
and the cone, as in the latter case the strength is always lower than Hertzian, whereas for the flat
ended punch the strength may be higher, as the pressure tends to be more ‘uniform’, over the
contact patch.

e where failure is controlled by the initiation of surface defects and their propulsion, the maximum
tension induced at the surface the most important quantity. However, as shown by Way (1941),
the surface value outside the contact patch does not depend on the exact distribution of pressure,
for purely normal loading, and therefore for very small defects the maximum tension is insensitive
to the actual pressure distribution. Differences are found only for those cracks whose crack tip
is sufficiently subsurface for the effect of the interior stress field to be of importance, but
insufficiently deep for the zone of radial compression to be entered.

For sliding problems

e the maximum of tension always arises at the trailing edge of the contact patch, and its value for
the conical punch, is therefore bound between the ‘sharp’ cone solution and the Hertzian, as
lower and upper limits, respectively. Also, the maximum tension is strongly dependent on the
value of the shearing force, but only more weakly controlled by the shearing traction distribution.

Guided by these general considerations, it is possible now to explore the strength in greater
detail, splitting the discussion for the two geometries.
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5.3.1. Flat indenter

Normal loading. Figure 6(a)—(c) shows plots of the normalised von Mises yield parameter,
az\/ J,/P, for representative cases of normal loading. As the ratio (b/a) becomes very small the
solution tends to the standard Hertzian case, whilst for very high (b/a) the geometry tends to the
flat-ended punch value. Perhaps surprisingly, varying (b/a) causes the strength of the contact first
to increase with respect to the Hertzian case, then to decrease very slowly. This can be seen in Fig.
6(a), which is for b/a = 0.25, the maximum value of von Mises yield parameter, instead of lying
at the subsurface point on the centreline as for the Hertzian case, moves to a region of almost
constant value. In Fig. 6(b), which is for b/a = 0.5, the maximum lies in a wide, ring-shaped region
close to the contact patch. Finally, in Fig. 6(c), when b/a = 0.75, the maximum is again in a
localized region, moving towards the contact edge, where the limiting sharp-cornered, flat case
b/a = 1 has its singularity.

Results from several plots of this kind are summarized in Fig. 7, which gives the elastic limit,
P[ka’, where k is the yield strength in pure shear, for normal indentation as a function of the ratio
b/a, according to von Mises’ yield criterion: over the wide range 0 < b/a < 0.83 the strength is in
fact higher than the Hertzian case in the normal frictionless contact,® with a maximum increase of
more than 20%, corresponding to values in the range b/a = 0.4-0.6. This is because the pressure
is close to uniform in that range (see Fig. 2), and the maximum of the yield parameter az\/ J,/P
moves from a well-defined point at the centreline to a region of nearly minimum value as described
above: note that, in the ‘optimal’ uniform pressure case, for our choice of v = 0.3, the optimal
normalised von Mises’ parameter is slightly greater than eight (Hills et al., 1993). For values of
b/a higher than 0.8 the strength decreases rapidly: therefore, for design purposes, it is safer to keep
the value of b/a (or, equivalently, the normalised load from eqn (12)), lower than, say, 0.6.

Full slip. We turn now to the case where a tangential load, sufficient to cause sliding, has been
applied. Figure 6(d)—(f) show representative cases of full sliding conditions. The results are
summarized in Fig. 8 and show the dependence of the elastic limit P/ (@’k) on the friction coefficient
/- First, it is clear that, starting from the Hertzian configuration b/a = 0, it is well known (Hills et
al., 1993) that, for small coefficients of friction, less than about f = 0.33 the severest state of stress
remains below the surface. Above this value the maximum moves to the surface, showing a
discontinuity in the plot, as the strength decreases much faster in the surface controlled region.
The same behaviour is also exhibited by rounded flat contacts, although the transition subsurface—
surface tends to occur at lower coefficients of friction, and moves monotonically towards the limit
of the sharp flat punch, where the severest state of stress is always on the surface, at the contact
edge. From Fig. 8 several conclusions can be drawn: first, it appears that, for a high enough friction
coefficient, the increase in strength of the contact over the Hertzian value, found in the range
bja = 0, 0.83 for the corresponding normal loading case (/= 0 in this figure) tends to decrease. In
fact, for bj/a < 0.83, the strength of the contact becomes lower than the Hertzian case for surface-
limited cases. For higher values of b/a, the strength is always lower, as was expected. Therefore, it

# Notice that in the equivalent plane case a smaller range of b/a values was found where this held (0, 0.55) (Ciavarella
et al.,, 1997b). This is physically reasonable, as the maximum pressure close to the edges of the punch is lower than the
analogous plane case, because of the axisymmetric conditions, as the pressure contributes to the load by a multiplicative
factor of 2nr.



4166 M. Ciavarella | International Journal of Solids and Structures 36 (1999) 41494181

{a} Stresses under Contact, VoenMises

&y -

CIAFETSY
LZEIE~DY r/a
L413R-01
LSB56E-01
LG83E-01
LB29B-01
LBEER-01
CLI0B+00
L128E+00
L138E+00

DO DSOS

{b} Stresses under Contact,
e - IR S & =

VonMises
i s, ‘\ -

S
.,

z/a

2.5 i

\‘w\_ o Ol PR Y
CONTOUR KEY

154E-01
L3328-01
LS$11E-01 /a
LE89E-01
LBETR~01
L1DBE+GD
L1Z22E400
G.1408400
C.1S8E+00
D.LTERLOO

i

AR AR R
DO D

ok

Fig. 6. Example contour plots of von Mises’ yield parameter az\/ J,/P, for flat indenter under sliding conditions: (a)
Ma=021f=0&(Mbm=02if:0$(®bM=OifEOD;M)wazaif=0&(@bM:OJif=QQ(D
bla=0.75,f=03 (v =073).



M. Ciavarella | International Journal of Solids and Structures 36 (1999) 4149-4181

(@)

(b)

-1

z/a

..27

under

Contact,

VonMises

J.
v
L

0.5 0 0.5 bl

Stresses

CONTOUR KEY

u

.139E-01
.264E-01
.390E-01
.516E-01
.642E-01
.768E-01
.893E-01
.102E+00
.114E+00
.127E+00

QOUWOIO WP WN K
[« NeNeoReoNoNeoNoRoNoNa)

=

r/a

onMises

T

W\T

AN

[
by
n
L

n
4

0.5 s} 0.5 3

der Contact, V
=&

6

5

N,
)]
)

CONTOQUR KEY

=

0.162E-01
0.352E-01
0.543E-01
0.734E-01
0.924E-01
0.111E+00
0.131E+00
0.150E+00
0.169E+00
0.18BE+00

QWO D WNE

Fig. 6—continued.

r/a

4167



4168 M. Ciavarella | International Journal of Solids and Structures 36 (1999) 4149-4181

es under Contact, VonMises

CONTOUR KEY

J140E-01
.272E-01 r/a
L403E-01
.534E-01
.665E-01
.796E-01
.928E-01
.106E+00
L119E+00
L132E+00

OWONIOWUL B WN
[eNoNeRoNoNoReNo ool

-

Stresses under Contact, VonMises

B Uiy

5
4

\
F 4 < 2
5 4
-1
1 3 )
z/a
-1.5 3 _'
\ \~\ e
A e
N e

-2 .

/

2 1.5 1 0.5 o 0.5 3 15

&

CONTOUR KEY

.177E-01
L403E-01
.629E-01 1/a
.854E-01
.108E+00
L131E+00
.153E+00
.176E+00
.198E+00
L221E+00

QWU B W
[eN=NeoNoNoNoNoNoNo Rl

[y

Fig. 6—continued.




M. Ciavarella | International Journal of Solids and Structures 36 (1999) 4149-4181 4169

87 P/ (kar2)
6
- \
4
2 e L
0.0 0.2 0.4 0.6 0.8 1.0

b/a

Fig. 7. Elastic limit P/ka®, for normal indentation of a flat indenter, as a function of b/a. The horizontal line gives the
strength for a Hertzian indenter (P/ka®) = 5.84. The flat indenter has a higher strength for b/a < 0.83 (v = 0.3).
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Fig. 8. Elastic limit P/ka’, for sliding indentation of a flat indenter, as a function of the coefficient of friction, /. Ratio
bja varying from bja = 0 (Hertzian indenter) to b/a = 0.9 with steps 0.1 (v = 0.3).

can be said that there is a good deal or reason to keep the strength subsurface controlled,
particularly if the contact is designed to take advantage of the rounded flat configuration with
respect to the classical Hertzian one.

Turning to the maximum tension arising at the trailing edge of the contact, of relevance for the
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Fig. 9. Non-dimensional maximum tension (a*/fP)c™*¢ arising in the surface, trailing edge of the contact, for the case
of a flat indenter under full sliding conditions, as a function of 4/a (v = 0.3). Notice that the tension due to the normal
load, which is independent on b/, can be readily added and is (a?/P)a™*" = 0.0637. For b/a — 1 the maximum tension
tends to infinity.

initiation and propulsion of surface cracks, it should be noted, from Fig. 9, that the maximum
increases steadily with b/a, although the increase becomes particularly steep for b/a higher than
~0.8. This region must be examined carefully, if the contact lies in this region and crack propa-
gation is a possibility.

5.3.2. Conical indenter

The analysis just given for the flat indenter is here repeated for the cone. It is clear, however,
that there is no advantage over a Hertzian design, apart from a minor improvement, under some
conditions, in the maximum tension. Figure 10(a)—(c) shows plots of the normalised von Mises
yield parameter, az\/ J,/ P, for representative cases of normal loading. The concentration of tension
occurs in a point subsurface on the centreline of the contact, which moves from the centre for the
sharp cone case b/a = 0, to the Hertzian value for »/a = 1. This appears more clearly in Fig. 11,
which shows plots of the normalised elastic limit P/(a%), where k is the yield strength in pure
shear, as a function of the ratio 5/a. It may be seen that the strength here is always lower compared
with the Hertz limiting case, as expected, since the pressure distribution here is more localized near
the centre of the contact. As the elastic limit in the sharp wedge case is theoretically zero, the major
result of the present investigation is to show that for a ratio b/a as small as 0.1 the elastic limit is
still about half the value for the Hertzian case.

Full slip. Figure 10(d)—(f) show plots of a"\/ J,/ P, for representative cases of tangential loading.
The results are summarized in Fig. 12, where the dependence of the elastic limit P(a*k) on the
friction coefficient fis given. It may be noted that the point where the strength becomes surface
controlled is at a value of f which decrease with b/a. This is consistent with the observation that,
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Fig. 11. Elastic limit P/ka?, for normal indentation of a conical indenter, as a function of b/a. The upper limit for b/a = 1
gives the strength for a Hertzian indenter (P/ka?) = 5.84 (v =10.3).
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Fig. 12. Elastic limit P/ka?, for sliding indentation of a conical indenter, as a function of the coefficient of friction, f.
Ratio b/a varying from b/a = 0.1 to b/a = 1 (Hertzian indenter) with steps 0.1 (v = 0.3).

for the limiting sharp-point case, the strength, which is zero, is always controlled by the singular
point in the centre of the contact surface.

Also of importance is the maximum tension induced at the surface, as this is the quantity which
is responsible for initiating surface defects and their initial propulsion as cracks. The transition
from the ‘sharp’ solution to the Hertzian is displayed in Fig. 13. The variation is not particularly
enlightening.
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case, but the transition to the infinitely higher concentration predicted by the sharp flat punch can
be considered slow.

For design purposes, a complete set of practical diagrams has been given, for normal or full
sliding loading conditions. In the partial slip regime, since the corrective shear distribution always
reduces the local value of the shearing traction, and since they are the principal quantities con-
trolling yield, the elastic limit for the full sliding can be considered an upper bound for strength,
therefore allowing a safe design.

Appendix I: Pressure distributions for the flat punch

In order to obtain the pressure distribution, according to the procedure given in Section 3, let
us calculate the auxiliary function F(r), defined in eqn (7), so that, considering the profile in eqn

(10)
%ps 0<r<b,

F( = oz,,-—krfft/—qb)dj, b<r<a’ )
bV — 1

Now, putting ¢ = rcos 6, we obtain

J (1=b)ds = \/rz —b? —barccosl; ‘ (70)

b \/,,2_[2

so that the derivative of F(r) simplifies to

0, O<r<b,
F(r)=—k b . 71
® 2\/r2—b2—barccosr, b<r<a n
Hence the pressure can be obtained from eqn (6), as
(‘ 2 ‘ 2 b
. (2\/.9 —b* —barccos s)ds
, 0<r<b,
2k4 Jb \/SZ—F2
r) = b 72
P@) nA (2\/s2—b2—barccoss>ds 72
, b<r<a
LT \/SZ__},Z

Assume s = b/cos ¢, so that a = b/cos @y, ds = btan ¢/cos ¢ de, and introduce the function ¥4(x)
as
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4177
“1(2tan g — @) tan p d 0<x<l
W) — 0 \/ 1—x?cos? ¢ | 73)
7 f‘ﬂ (2tan o — @) tan @ de l<x< 1
' s X<
arccos(1/x) \/1 —x? COS2 ] COS @,

to obtain, on substituting the value of the load, the final expression, eqn (16).

Appendix II: Pressure distribution for the conical punch

Finally, to obtain the

pressure distribution, let us calculate the auxiliary function F(r), from @)
for the profile (17)

0

2
o, —r b’ 0<r<b,

F(r) = (74)
oc,,—rb(r~\/r2-bz)—rHarccosb/r, b<r<a

so that the derivative of F(r) simplifies to

2r/b, 0<r<b,

—F(r=20 b . 75

& 2r/b-—2/b\/r2—b2+arcosr, b<r<a (75)

Therefore, the pressure can be obtained from eqn (6), as

b
_ 2_ 32
¢ s/bds fs/b l/b\/s b +l/2arccoss

+ ds, 0<r<bd,
P =, \/sz—rz
() 0 b (76)
p(r) = '
4 f slb—1/by/s* —b*+1/2 arccos

ds, b<r<a
\/s2——r2

Apart from the first integral (where we use s =

bcos ¢), we put s = b/cos @, so that a = bjcos Do,
ds = btan ¢/cos ¢ do, and use the variable x =

r/b. Introducing now the function W.on(x) as

Tcon(x)
. 1
<l —sin g+ 2<pcos<p)tanq>dq)
arccos x S. d o
nede f L 0<x<l,
0 \/l—xz/coszgo 0 cos<p\/1—x2 cos? ¢
= . 1 (77
1—sing+ ,PCOs @ tanp de
@9
) I <x<1/cose
J;rccos(l/x) cos p,/1—x? cos? ’

we obtain, considering the load eqn (19), eqn (21).
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q" = [z+pcos(a/2)] + [t+p sin(x/2)]? (114)
and finally
2zt
tano = 2+Zz L, 0<a<m (115)
re+z0—t
t+ psin(a/2)
= <p<Lm 116
tanf z+pcos(a/2)’ A (116)
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