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Abstract

In this note, we determine the stability boundary for the thermoelastic contact of a rectangular elastic block sliding
a rigid wall in the presence of a pressure-dependent thermal contact resistance. This geometry can be seen as in
between the idealized ‘Aldo’ rod model and continuum solutions for the elastic half-plane.

The solution is obtained by comparing the expression for the perturbed boundary condition including frictional heat
that for purely static loading, already solved by Yeo and Barber (1995). The critical sliding speed is obtained as a fun
the temperature difference imposed between the wall and the free end.

In most cases, frictional heating tends to destabilize the system. However, for certain forms of the resistance-pres
the opposite conclusion is reached and the system can be stable for all sliding speeds.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In thermoelastic contact problems, the temperature distribution causes thermoelastic distortion which influences th
pressure distribution. If this in turn influences the heat transfer problem, the resulting feedback is potentially unstable
to non-uniform temperature and pressure distributions and regions of separation.

Two distinct mechanisms are known which can cause such feedback. If the two bodies slide over each other, fricti
will be generated proportional to the local contact pressure, leading to the phenomenon known asFrictionally-excited ther-
moelastic instability or TEI (Barber, 1969; Dow and Burton, 1972). Alternatively, in static contact where there is no fric
heating, thermomechanical coupling can result from the existence at the interface of a thermal contact resistance whic
on the local contact pressure (Barber et al., 1980). There is ample experimental evidence for such a contact resis
Clausing and Chao, 1965; Thomas and Probert, 1970) and many authors have developed theoretical models of th
based on statistical descriptions of the roughness of the contacting bodies (e.g. Shlykov and Ganin, 1964; Cooper et
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Burton et al. (1973) investigated the TEI problem for two sliding half-planes by determining the condition under w
small perturbation on the uniform pressure solution could grow exponentially in time. Burton’s method has since been
to both categories of thermoelastic stability problem in both analytical and numerical (finite element) form (Lee and
1993; Yeo and Barber, 1995, 1996; Yi et al., 2000).

Most treatments of the TEI problem assume that perfect thermal contact occurs in the contact area, since this
simple condition of temperature continuity to be written at the interface which implicitly defines the partition of frictiona
between the two contacting bodies. However, there is every reason to expect a pressure-dependent thermal contact r
the sliding interface (Johansson, 1993) and this introduces the possibility of interaction between the two instability mec
Recent papers have examined the effect of this interaction for one-dimensional rod models (Ciavarella et al., 2003; A
and Ciavarella, 2004a) and on the sliding contact of two half-planes (Afferrante and Ciavarella, 2004b). For a single r
in at the non-contacting end, existence of a steady state can only be guaranteed below a certain speedV∞, above which, for
some initial conditions, the pressure grows without limit causing seizure (Ciavarella et al., 2003). Similar effects are p
in a shaft rotating inside a concentric cylindrical bushing (Awrejcewicz and Pyryev, 2002). The Aldo model compris
independent parallel rods sliding against the same rigid surface and joined at the non-contacting ends, where an ax
applied (Afferrante and Ciavarella, 2004a). In this case, seizure cannot occur because the total axial force is prescribed
in which both rods are in contact with equal contact pressures is always possible and it is both unique and stable below
sliding speedVu. Above this speed, additional steady states are obtained and these can involve one of the rods separa
the wall and/or both rods remaining in contact but with dissimilar contact pressures. The solution with equal contact p
becomes unstable above some sliding speedVs , which may coincide with or exceedVu, depending on the system paramete

Afferrante and Ciavarella (2004b) applied Burton’s method to the sliding of a thermoelastic half-plane against a ri
with a pressure-dependent contact resistance. They found that for a given wavelength of disturbance, the uniform
solution is stable below a certain critical heat fluxqcr, but that the value ofqcr can be increased or decreased by slidi
depending on the sign of the functionR0 + p0R′, whereR0,p0 are the thermal contact resistance and the contact press
the uniform steady state andR′ is the corresponding gradient of the resistance/pressure relation.

The Aldo model and the half-plane exhibit significantly different behaviour, even though both geometries are typica
as idealizations of thermoelastic contact for finite continuous bodies. In the present paper, we therefore consider a mo
intermediate case in which a rectangular block slides against a rigid plane. Relative to the static contact problem, we s
that the introduction of frictional heating merely introduces an additional pressure-dependent term into the perturbed
interface condition and this permits us to write down the stability criterion for the uniform pressure solution, using res
the static contact problem due to Yeo and Barber (1995, 1996).

2. Yeo’s problem with sliding

We consider the problem illustrated in Fig. 1, in which the rectangular block 0< x < L,−h < y < h is in out-of-plane
sliding contact with a rigid wall atx = 0 and loaded by a uniform pressurep0 at x = L, the other surfacesy = ±h being
traction-free. Thus the mechanical boundary conditions are

ux(0, y, t) = 0; σxy(0, y, t) = 0;
σxx(L,y, t) = −p0; σxy(L,y, t) = 0;

Fig. 1. Rectangular block sliding against a rigid wall.
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σyx(x,±h, t) = 0; σyy(x,±h, t) = 0, (1)

wheret is time.
Frictional dissipation leads to the generation of heat

q(y, t) = f Vp(y, t) (2)

at the contact interface, whereV is the sliding speed,f is the coefficient of friction andp(y, t) = −σxx(0, y, t) is the contact
pressure. We assume the existence of a pressure-dependent thermal contact resistanceR(p) between this heat source and t
rigid wall, which is assumed to be maintained at uniform temperatureT1. The heat flow into the wall is therefore

qW = T (0, y, t) − T1

R(p)
(3)

and the remaining heatqB must flow into the block, giving

qB = −K
∂T

∂x
(0, y, t) = f Vp(y, t) − T (0, y, t) − T1

R(p)
, (4)

whereK is the thermal conductivity of the block material. The other end of the blockx = L is maintained at uniform tempera
tureT2 and the sidesy = ±h are thermally insulated.

2.1. The steady-state solution

Dundurs’ theorem (Dundurs, 1974; Barber, 1980) tells us that steady state conduction of heat into the block atx = 0 will
cause a locally convex curvature and this in turn will cause the steady state solution of the thermoelastic contact proble
a non-uniform pressure with the maximum pressure occurring at the origin. However, sliding will cause local wear w
proportional to contact pressure and this will tend ultimately to equalize the contact pressure. In the presence of wear
permissible steady state is one in which a time-independent wear rate leads to a kinematically admissible rigid-bod
For the symmetrically loaded rectangular block, this requires that the wear rate and hence the steady-state contact p
uniform.

In this steady state, we therefore havep(y, t) = p0 and the temperature must be a linear function ofx, giving

∂T

∂x
= T2 − T0

L
, (5)

whereT0 is the steady state temperature atx = 0. Solving Eqs. (4), (5), we have

T0 = LR0f Vp0 + LT1 + KR0T2

KR0 + L
; q0 = K(R0f Vp0 + T1 − T2)

KR0 + L
, (6)

whereR0 = R(p0) andq0 is the steady-state value ofqB .

2.2. Stability of the steady state

The stability of this steady state can be analyzed using the technique due to Yeo and Barber (1995, 1996). For this p
need to perform a linear perturbation of Eq. (4) about the steady state. Differentiating this equation and denoting the
quantities by tildes, we obtain

−K
∂T̃

∂x
(0, y, t) = f V p̃(y, t) − T̃ (0, y, t)

R0
+ (T0 − T1)R′p̃

R2
0

, (7)

whereR′ is the derivative of the resistance functionR(p) at the steady-state valuep0. Using (6) to eliminateT0, this equation
can be written in the alternative form

−KR0
∂T̃

∂x
(0, y, t) = (βf V + γ )p̃ − T̃ , (8)

where

β = R0 + LR′p0

KR0 + L
; γ = K(T2 − T1)R′

KR0 + L
. (9)
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2.2.1. Solution with no frictional heating
In the special case whereV = 0, Eq. (8) reduces to

−KR0
∂T̃

∂x
(0, y, t) = γ p̃ − T̃ . (10)

The corresponding stability problem was solved by Yeo and Barber (1996) using a finite element description of the per
problem. They showed that instability occurred at a critical value of the dimensionless heat flux

Q∗ = −EαR′q0, (11)

whereE,α are Young’s modulus and the coefficient of thermal expansion respectively for the material of the block an
strain conditions are assumed. If the aspect ratio

r = L

h
> 1, (12)

the stability boundary is closely approximated by the solution for the semi-infinite strip. Yeo and Barber (1995) solved t
problem by expanding the stress and temperature fields as a series of eigenfunctions and found that their converged
results could be closely approximated by the simple expression

Q∗ = 2(1− ν)(1+ 3.88R∗), (13)

whereν is Poisson’s ratio and

R∗ = KR0

h
. (14)

Substituting (11), (14) into (13) and using (6) to eliminateq0, we can write Yeo and Barber’s criterion in the form

Eαγ > 2(1− ν)

(
1+ 3.88KR0

h

)
, (15)

for instability.

2.2.2. Effect of frictional heating
WhenV �= 0, the only change in the statement of the stability problem is represented by the replacement of Eq. (10

Comparing these equations, we see that the coefficientγ on p̃ is replaced byβf V + γ . All the other boundary conditions i
the two problems are identical, so we can conclude by inspection that the steady state with sliding is unstable if

Eα(βf V + γ ) > 2(1− ν)

(
1+ 3.88KR0

h

)
. (16)

3. Discussion

In interpreting Eqs. (15), (16), we should note that the contact resistanceR generally falls with increasing pressure,
R′ < 0. It follows that in the absence of sliding, the system is unstable only for sufficiently large negative values of(T2 − T1),
implying that the heat flows from the wall into the block. The first term in (16) will tend to destabilize the system —
cause instability to occur at a lower negative value of(T2 − T1) — if and only if

β > 0. (17)

This criterion reduces to that obtained for the half-plane in the limit whereL � KR0.
The inequality (17) is satisfied for most simple idealizations of the resistance law. For example, it is satisfied for a

of p0 if the resistance is inversely proportional to pressure or if it has the more general form

R0 = B + A

p0
; A > 0, B > 0. (18)

However, plausible resistance functions can be constructed that violate (17) at least in some restricted range of contact
Such cases will arise if there is a rapid reduction of contact resistance at some finite value of contact pressure. Co
example, the resistance function

R0 = R1
2 2

, (19)

1+ p0/p1
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whereR1,p1 are constants. Substituting into (17) and cancelling non-negative factors, we obtain

[L − KR1]p2
0 < (KR1 + L)p2

1, (20)

which is violated for

p0 > pcr ≡ p1

√
L + KR1

L − KR1
(21)

if L > KR1. Frictional heating would then tend to stabilize the system in this range.
A special case of some interest is that in which there is no externally imposed temperature difference, so(T2 − T1) = 0. The

stability criterion (16) then reduces to

Eαβf V > 2(1− ν)

(
1+ 3.88KR0

h

)
(22)

and we conclude that the system will be stable at all speeds for the resistance law (20) ifp0 > pcr. Forp0 < pcr, there will be
a critical sliding speedVcr which is pressure-dependent.

A limiting case where frictional heating would haveno effect on the stability of the system can be defined by the condi

β ≡ R0 + LR′p0

KR0 + L
= 0. (23)

This defines a linear ordinary differential equation for the functionR0(p0) whose general solution is easily shown to be

R0 = L

Cp0 − K
, (24)

whereC is an arbitrary constant. This relation is clearly physically unrealistic forp � K/C, but for higher pressures it define
a resistance that falls with increasing pressure and as remarked above it is quite conceivable that in some special cas
approximate the physical law.

4. Conclusions

The stability boundary for a rectangular block sliding against a rigid plane with a local pressure-dependent therma
resistance has been deduced from results for the corresponding problem without sliding. It is clear that similar rela
could be established for other geometries in which the static stability solution is known.

As in the case of the thermoelastic half-plane, we find that the effect of sliding is generally to reduce the tem
difference required for instability, but if the thermal resistance exhibits a sufficiently rapid decrease with contact pre
some range, sliding can exert a stabilizing effect. This contrasts with results for the idealized Aldo model, for which in
is always predicted at sufficiently large sliding speed.

In all cases, the critical sliding speed depends on the contact pressure, in contrast to systems in which there is n
contact resistance.
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