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Abstract. The well-known so-called ‘HRR-solution’ (Hutchinson, 1968 and Rice and Rosengren, 1968) considers
the elasto-plastic stress field in a power-law strain hardening material near a sharp crack. It provides a closed
form explicit expression for the stress singularity as a function of the power-law exponent ‘n’ of the material,
but the stress angular variation functions are not found in closed form. More recently, similar formulations have
appeared in the literature for sharp V-notches under mode I and II loading conditions. In such cases not only is
the angular variation of the stress fields obtained numerically, but so is the singularity exponent of the stress field.
In the present paper, approximate but accurate closed form solutions are first reported for sharp V-notches with an
included angle greater than 7/6 radians. Such solutions, limited here to Mode I loading conditions, allow a very
satisfactory estimate of the angular stress components in the neighbourhood of the notch tip, in the entire range
of notch angles and for the most significant values of n (i.e. from 1 to 15). When the notch opening angle tends
towards zero, and the notch approaches the crack case, the solution becomes much more complex and a precise
evaluation of the parameters involved requires a best-fitting procedure which, however, can be carried out in an
automatic way. This solution is also reported in the paper and its degree of accuracy is discussed in detail.
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1. Introduction

At the end of the ‘60s, HRR and J-integral theories were developed to set the entire basis of
the modern Non-Linear (or Elasto-Plastic) Fracture Mechanics (NLFM, EPFM). (Rice, 1968,
Hutchinson, 1968, and Rice and Rosengren, 1968). The starting point is the monotonic stress-
strain constitutive law of many ductile solids undergoing uniaxial tension, i.e. the well known

n
Ramberg-Osgood law ¢ = z + (2N , where E is Young’s modulus, n is the strain hardening

exponent (n=1 for linear elastic material, n = oo for elastic-perfectly plastic), and A is a
material constant, the ‘monotonic strength coefficient’. Near a crack tip, the stresses become
n
. . € o
very great and the elastic term can be neglected, so that we write — = « /— , Where
gy Oy
&y = oy/E; then, when generalized to multiaxial stress state under the ‘J, deformation’ (or
‘total strain’) theory (in order to simplify the mathematical treatment with respect to the more
correct ‘incremental’ or ‘flow” theories of plasticity), these become
-1 e

&ij 3o /Oe\n Sij 3
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Figure 1. Notch geometry and coordinate system.

and S;; are the deviatoric stress components. It is clear that the use of J, theory is only correct
in cases of proportional loading, where the material behaves in all respects as a nonlinear
elastic material; for significant non-proportional loading, deviations occur and the incremental
flow theories of plasticity should be used. Rice and Rosengren (1968) then showed that the
strength of the near-tip field is represented by the J-integral (equivalently to the K stress inten-
sity factors of LEFM), that the stresses, strains and displacements exhibit r=1/®+D  y=n/(+1)
@+ respectively, and the ‘HRR’ fields can be represented still (as in the linear case) in
separate variables in polar coordinates 1,6 (as immediate consequence of self-similarity), and
in particular

oy = cr°65(6, n) ¢))

where s=1/(n+1) is the singularity strength and c contains J-integral and a mild dependence
on n (Hutchinson, 1968, Rice and Rosengren, 1968). The ‘universal functions’, &y, Gag, O,
depend on the state of stress (i.e. whether it is plane stress or plane strain) as well as n, but are
not given in closed form.

Moving to the more general case of sharp V-notches, the problem becomes more demand-
ing: not only are the angular ‘universal functions’ still not given in closed form, but even the
singularity strength, s, requires a numerical solution as a function of n (Kuang and Xu, 1987,
Xia and Wang, 1993, Yuan and Lin, 1994, Lazzarin et al. 2001). The formulation in fact leads
to a system of differential equations that is generally solved with ‘multi-shooting’ techniques
or, more recently, special FEM techniques (Zhang and Joseph, 1998, Chen and Ushijima,
2000).

As far as the authors are aware, technical literature lacks stress field expressions with a well
documented degree of accuracy. In the present paper, an approximate closed form solution is
developed for sharp V-notches, under a simplifying assumption on the governing system of
differential equations, which is reduced to a treatable form.

2. Analytical background

Starting from the formulation proposed by Yuan and Lin (1994) - who were able to extend to
V-notches a stress function approach previously used for cracks by Ponte Castafieda (1985)
and Sharma and Aravas (1991, 1993) - the problem can be stated directly in terms of local



An approximate, analytical approach to the ‘HRR’-solution for sharp V-notches 271

stresses and displacements (see Figure 1 for the reference system), leading to the following
first order system of equations:

(1 —8)0r — gy + 09 =0 2)
Gogp + (2 —38)Gp =0 3)
-~ 3=

Uy + Ug g — iae“ 'Sep =0 4
1 . - 3 i~

E(ur,O —snlg g) — 0 59 =0 &)

In (2-5), o, and Sj; are the Von Mises equivalent stress and the deviatoric components of the
stress tensor. (For more details see Yuan and Lin (1994) as well as the leading order system
in mixed load conditions recently reported by Lazzarin et al. (2001)). Also, under plane strain
conditions, the following relations hold:

3 -
(1 —sn)i, — 55'6“'18IT =0 (6)
Szz =0 (7)

Let us then introduce the algebraic condition (6) into (4), and rewrite the differential system
as a function of the stress components &y, 644, 059 and the displacement .

(1 —8)0r — Ggg + 0199 =0 ®)
G990 + (2 — )0 =0 9
. 3_,12—sn _ .
Ugg = —0 (099 — 1) =0 (10)
4 1 —sn
~ 4~1—n ~ 6rr_5€9~ ~
4(1 — sn)opy + gore (1 —sn)sniliyp — 3(n — 1)~—20,90,9,9

- - o
o = Ogap + = — (1)

3 (G — Or)

I+-(n—1)——m5—
4 &2

€

It is clear that while Equations (8, 9), which derive form the equilibrium conditions, are linear,
Equations (10, 11) shows a complex dependence of the Uy ; and 6, ¢ terms on stress and dis-
placement indexes. The system (8-11) does not allow a full analytical solution. We therefore
proceed by simplifying the formulation in order to render the mathematics easier to dealt with.
The range of applicability and the degree of accuracy of the new approximate solutions will
be discussed in details.

3. A first-step simplified formulation

An approximate analytical approach is here proposed to simplify the first order problem pre-
viously stated in terms of local stresses and displacements. We observe that the boundary
conditions for the symmetric mode are (see Figure 2):
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Figure 2. Boundary conditions on the notch.

U(r,0) =0 opg(r,y) =0

(12)
Ur@(ra 0) Ure(r, V) :O
Manipulating these conditions we can also highlight the following characteristics:
Grp6(0) =0 (13)
5(6) — Goo (@) =0 (14

Equation (13) comes directly from Rolle’s theorem, given (12) for a 6 in the interval (0, y).
Thanks to the equilibrium condition given by (8), it follows that 6,+(8) — G4¢(6) > O being
s, 6+(0), Ggp(0) all positive; moreover, numerical analysis shows that, except for the - special
case n=1, y = 0, we have always 64 (0) > G,,(0). There exists, therefore, an angle 8 in the
interval (0, @) such that (14) is satisfied. Consequently, the expression
30— DTG0 (15)
e

is zero at least in 4 distinct points of the interval (0, ). Also, the denominator in (11)

3 G99 — Opr)?
1-{——([1-—1)(066_,2 1) (16)

4 o

is equal to one for 8 = 5 whereas it is not influent for 8 = 0, as in that case the numerator

is zero. It follows that it is convenient to simplify (11) by eliminating the terms (15) and

(16). We then make the simplifying hypothesis that the Von Mises stress is constant (which is

rigorously true only as n tends to infinite) and we normalize it with respect to its maximum

value, determining an approximate solution to the new differential system

(1 =8)0x —0pg + 6,9 =0 3
Goo.0 + (2 —8)op =0 )
- 32—sn _ . )

Ugg == — (Gop — ) =0 (10%)

41 —sn
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Figure 3. A comparison between exact and approximate stress distributions when 2o = 7/2 and n=4.

4
6’",9 = 6’99,9 + 4(1 — Sn)&rg =+ 5(1 — Sl’l)Snﬁg (11’)

Equations (10’) and (11°) are linear with constant coefficients, so that the new formulation
admits an analytical solution. It is worth noting that in special case of elastic material (n=1),
Equations (10), (11) coincide with the new (10’), (11’) and one finds the exact solution due to
Williams (1952).

Despite the strong simplification introduced by Equations (10°-11"), the new expressions
describe the stress distributions with an acceptable degree of accuracy, at least for 649 and
Oy stress components. An example is shown in Figure 3. Generally, the accuracy was seen
to increase with the increase of the exponent n and of the opening angle 2«. However, it
should be clear that the solution provided by Equations (8, 9, 10’ 11°) is thought of as a first
necessary step in order to build an analytical frame. More refined solutions can be obtained
only by adding further terms.

The new system of differential equations (8, 9, 10°,11°) of the first order can be solved by
means of the 4% order associated differential equation for 55¢. In particular:

3G 9%
60 _ T 909 06 4 2sn + 52 + s2n% — ds'n — 4) — Gpesn2 —sn)(s—2) =0 (17)

304 302
Hence, after collecting the constants as
E=2s+2sn+s’+s'n* —4s’n—4 ¢ =s*n(2 —sn)(s — 2) (18)

the roots of the auxiliary equation (17) result to be:

e+ VE _ s/
2 2

1= —FF P =— T
(19)

X3 = _—2—" X4 = — 2

E-VE+4 £ —VE+ 4
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Figure 4. A comparison between exact and approximate values of the eigenvalue s.

For typical values of s and n, the roots (19) are pure complex numbers. Putting ¢ = |x1| = | x2|
and ¥ = |x3| = | x4/, we finally write the resulting stresses as:

(=24 ¢t cos(ph) + casin(pd)] + (s — 2+ Y2)[e3 cos(Yh) + casin(y0)]

&rr lin = ) 1

Ogolin = €1 €OS(0) + ¢ sin(@h) + c3 cos(¥B) + ¢4 sin(yrh) 2n

Gupin = ——2<Lsen(pf) + L cos(p) — L sen(yd) + L4 cos(yo) 22)
s—2 s—2 s—2 s—2

Parameters c;, ¢3, c3 and c4 can be determined by using the following boundary conditions:

09(0) =0 T(0) =0= 616(0) = Gpp,e(0) =0 Gpa(y) =0 Gr(y) =0 (23)
Therefore
Cr=C = 0 (24)
_ . ysin(py)
ST T Y in(y) @)
¥ sin(yy) cos(py) — @ sin(py) cos(¥y) =0 (26)

Then, Equation (26) provides the characteristic eigenvalue s of the approximate differential
system, and Figure 4 plots approximate and exact values for s. It is evident that the agreement
is satisfactory.

Finally, the missing parameter c; can be imposed with a normalizing assumption (here we
have assumed equal to one the maximum value of the Von Mises equivalent stress).
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4. ‘A posteriori’ correction of the approximate stress solution

The comparison of the proposed solution with respect to the standard HRR solution (or the
existing notch stress field solutions) shows that, despite a substantial agreement in the general
trends, the errors are not negligible (Figure 3). In order to improve the solution, a second
distribution is then superimposed.

For opening angles 2« greater than 77 /6 radians, the subsequent terms for stress components
seem to be suitable:

- s —2+ w? Cs

oy = — ——————————— 0) — 2
Orr ¢ (8_2)(S_1)cscos(w ) p— 27
G comr = Cs5 cos{(wB) + cs (28)
- wC .
Biteon = —— Sin(wp) (29)

Note that, having assumed Equation (28) for the Gyppcorr cOmponent, expressions (27,29)
are then directly obtained from Equations (8,9) which represent the equilibrium conditions.

Equations (27-29) automatically verify the boundary conditions (12) when @ = (2m +
1)z /y, m being an integer. In the following sections, we simply let m=1, so that ® = 37 /y.
In conclusion, the final stress components are:

. . s—2+4¢? s—24y?
O = Orr lin + Otr corr = —mcl cos(pf) — m% cos(Yo)+
) (30
-2

_S—__!___ﬁ__cs COS(C{)Q) — C_S

s=2G—-1 s—1
G9o = Gp lin + T9 corr = €1 €OS(@f) + c3 cos(Yh) 4 c5 cos(wh) + ¢s (31
Guo = G i + G = — 2 sin(p6) — 2L sin(0) — 2 sin(wh) (32)

s—2 s—2 s—2

Obviously Equations (30-32) satisfy both the equilibrium and the boundary conditions.
Equations (10, 11), on the other hand, cannot be exactly verified in the entire integration
interval; however, it is possible to determine the unknown variable cs so that these conditions
are fulfilled at least in some points of peculiar interest.

In Equations (30-32) the parameter cs or, equivalently, the ratio cs/c; can be derived by
imposing a condition on the second derivative of &, calculated for 6 = 0; in particular, we
can impose that, on the bisector, the second derivative of &;; is equal when computed either by
using the term on the right hand side of Equation (11) or that on the left hand side of the same
equation. Due to the boundary conditions, the expression of the second derivative of &, at the
bisector exhibits quite a favorable form:

4 4
~ ~ ~ ~ 1— ~
O1,0,6l0=0 = Ovp 6.0l6=0 + ;(1 — $N)0yp 9lg=0 + gaeb:g(l — sn)snitg lo—o

3 s 5 (33)
—(n— 1)% (G:0.0l0=0)”
n Gels_o



276 S. Filippi et al.

c
r, ——right term in Eq. (11)
0.8 -
= |eft term in Eq. (11)
0.6 4
0.4 -
0.2 A
O -4
-0.2 T T '
0 /6 /3 /2 27/3
Angle 6 [rad]

Figure 5. 6y g angular distributions when 2o = 7/6 and n=8.

By introducing (30-32) into Equation (33), the final expression is the following:

2n + 3sn — 4/2+ 1//2 Cs 2\
n(s — 2) Ci

(s? -2s+ga2) + 27 =25+ Y + 237 — 8s + 4+ 0?)

32 s G-DGs-2) +

4n— 1)1 —s) / 2 Cs 2\ (34)
n(2 —s) + 'ﬁ T Cy

Cs
(s2—2s+go2)+c( 25—{—1//)—!— (3s-88+4+a)2)

-+

<p2+9¢2+55—w o+ 2yt +—

- Ci Ci + C1 C1
s—1 (s—D(s—2)

An example of the results obtained is shown in Figure 5, where the predicted values of the
0,0, evaluated by the left and the right hand side terms-of (11) are plotted.

When the angle 2« is less or equal to 77/6 radians, a first evaluation of the parameter cs can
be achieved by using the same criterion already proposed for large opening angles.

In order to achieve an adequate accuracy, the additional stress distributions need to be
modified as follows:

- _ csn?[3 cos(nf) — 13.5cos(vh) + 3 sin(vh) sin(nd) — 3.25 cos(vb) cos(nb)]
Orr corr = G-2G-1
_05{cos(v9)[6 + cos(n)] — 3 cos(nd) + 10} (35)
s—1

096 cor = Cs{cos(vB)[6 + cos(nB)] — 3 cos(nd) + 10} (36)
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O corr = SC5"2{sin(n9)[3 —cos(vé)] — 1.5sin(vO)[6 + cos(no)]} (37
where n = 27/y and v = 3m/y. Once again, Equation (36) is our proposal whereas
Equations (35, 37) are consequences of Equation (36).

Then the complete formulation is:

. - s—2+4¢° s — 2+ y?
= Orrlin T ST 8) - ———r 0
I = Gmtin + O com = — 5 T cos(pb) c_26_D" cos(y6)-+
+c5n2]3 cos(nf) — 13.5cos(vB) + 3 sin(vh) sin(nd) — 3.25 cos(vh) cos(n@)]
(s=2)s—1)
(38)
cs{cos(vB)[6 + cos(nh)] — 3 cos(nd) + 10}
s—1
Gg6 = Opg lin + 066 cor = C1 COS(@8)+ 39
—+c3 cos(f) + cs{cos(vh)[6 + cos(nbd)] — 3 cos(nd) + 10}
~ ~ ~ [
Gio = G+ Gy com = = sin(p0) — XL sin(y0)+
(40)

Cinz{sin(ne)B — cos(uB)] — 1.5 sin(vB)[6 + cos(n)]}

Following the same criterion previously used for large V notch cases, and taking advantage
of Equations (38—40), condition (33) can be expressed as follows:

4 —3sn—2
coosn—-n {_¢2 _ E:il/ﬂ — 2.5.13.75,72\ 4
1

n(s —2) Y
2
JSolin—l /¢2+9w2+§13'75n2\
s—2 n
(., )\ i
2—29) 1+ + @2 +2 ¢2 (14s +13.755% — 28s) 41)
(2 — sn) r(z 25)/1+ 3\+ + w + (14s + 13.7512 —288)-!
(s—D(—-2)

2 + C_3,(//2 ® o+ E‘(//4
T o cs [ 4693757  13.75n2]
s—1 s—D6E—-2) ¢ (s—D(s—-2) s—1

The parameter cs can then be determined by solving Equation (41).

In any case, a better agreement between exact values an analytical predictions can be
achieved by increasing the cs/c ratio to ci/c;. The new parameter ¢} can be evaluated by
performing a best fitting between the left and right hand side terms of Equation (11) over the
range (0-y/3). Such a range represents in fact the region where the maximum variation of G ¢
takes place.

This objective can be reached by introducing the integral mean values of the terms in
Equation (11). Solving the close-form integrals, the best-fitting condition can be given as
follows:
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Table la. Parameter values in Equations (30-32).

20 n s © ¥ ® c3ley cs/cy
4 0.188 04072 13867 3.6 0.5476  0.0196
/3 8 0.102 03300 1.309 3.6 0.6772  0.0230
IS 0.0565 02594 1.2628 3.6 0.7888  0.0250
4 0172 03662 14547 4 0.6778 0.0129
/2 8 0.0925 02890 14035 4 0.7878  0.0156
15 0.0510 02232 13733 4 0.8687 0.0171
4 0.144 02989 1.5655 4.5 0.8182 0.0075
2m/3 8 0077 0231 1.538 45 0.888  0.0093
15 0.0424 0.1763 1.5214 45 0.9335 0.0103
4 0123 0.2514 1.6419 438 0.8836 0.0053
3n/4 8 0.0657 0.1932 1.6241 48 0.9300 0.0066
15 00362 0.1468 1.6137 4.8 0.9591 0.0077
4 00941 0.1906 1.7361 5.143 0.9403 0.0033
Sn/6 8 0.0506 0.1462 1.7270 5.143 0.9646 0.0041
15 00279 0.1110 1.7215 5.143 09795 0.00457
Table 1b. Parameter values in Equations (38—40).
200 n s @ v n v caley csley csley
0.199 04398 1.3328 2 3 03747 0.00466  0.00272
0 8 0.111 03765 12075 2 3 0.4758 0.00489  0.00483
15 0.0624 03093 1.122 2 3 0.6081 0.00505 0.00675
0.196  0.4298 1.3493 2,182 3.2727 0.4444 0.00324 0.00276
w6 8 0.108 03584 12466 2.182 3.2727 0.5693 0.00355 0.00486
15 0.0601 0.2877 1.1810 2.182 3.2727 0.6994 0.00375 0.00670
~ (Y ~ ~ ~ Y
6o (21 = 61(0) 4 600 (0) = G [ L)
=1

[

e

; —
41— sn) By + 56071 = smysnily — 3 — 1T G
[og

f%
0

1+§m—n

52
0¢

(6o — Gur)?

do

(42)

For three values of the exponent n and six values of the opening angle 2«, Table 1a,b sum-
marizes values for s and the other parameters. Table 2a,b gives all the coefficients present in
stress expressions (30-32) or (38-40) in order to make their use immediate, at least in all the
cases considered here.
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Table 2a. Synthesis of coefficients valid for Equations (30-32).

2% s——2+¢72 s—2+1/f2 c3 s —2+w? cs cs P ¥ 3 o c5
=2)(s—=1) (—=2(s—Dcy (—=2)s=1cy cis—1) s—=2 s—2c; s—2¢

4 —1.119 0.041 0.148 —-0.024 —-0.225 —-0.419 -0.039

7/3 8 —1.050 —-0.073 0.149 —-0.026 —0.174 —0.467 —0.044
15 —1.023 —~0.150 0.150 -0.026  -0.133 —-0.513 -0.046

4 —1.119 0.129 0.121 ~0.016 —0.200 —-0.539 —0.028

/2 8 —1.054 0.028 0.127 —-0.017 —0.152 -0.580 —0.033
15 —1.027 —0.030 0.130 —0.018 —0.115 -0.612 —0.035

4 —1.112 0.306 0.087 -0.009 —0.161 —0.690 -0.018

27/3 8 —1.053 0.221 0.096 -0.010 -0.120 -0.710 —-0.022
15 —1.028 0.178 0.101 -0.011 —0.090 —0.725 —0.024

4 —1.102 0.440 0.068 —0.006 —0.134 —-0.773 —-0.014

3x/4 8 —1.050 0.362 0.077 -0.007 —-0.100 —-0.781 -0.016
15 —1.026 0.324 0.086 -0.008 —-0.075 -0.788 -—0.019

4 —1.083 0.604 0.047 —-0.004 -0.100 —-0.857 —0.009

Sm/6 8 —1.042 0.538 0.054 —0.004 —0.075 —0.855 -0.011
15 —1.022 0.507 0.058 —0.005 —-0.056 —0.855 -0.012

Table 2b. Synthesis of coefficients valid for Equations (38-40).

vy n ST2FER 52497 o cin? c ¢ v o3 o cs
=2(—1) (s=2)s—Dcy c1s=2)(s—1) ci(s—1) s—=2 s—2c1 s—2¢
4 —1.114 —0.006 0.00717 —0.00323 —0.244 —0.277 —0.00287
0 8 —1.040 —0.122 0.01096 —0.00518 —0.199 —0.304 —0.00487
15 —-1.014 —0.227 0.01423 —0.00689 —0.160 —0.352 —0.00667
4 —1.116 0.005 0.00873 —0.00331 —0.238 —0.332 —0.00322
/6 8 —1.045 —-0.114 0.01325 —0.00526 —0.189 —0.375 —0.00541
15 -1.019 —0.209 0.01696 —0.00691 —0.148 —0.426 ~—0.00730
5. Results

The accuracy of the obtained solutions is checked against previous numerical results obtained
with a special purposed code generated within the Matlab® environment for studying stress
fields with localized plasticity (Lazzarin et al., 2001).

Tables 3, 4 and 5 report stress values in different points of the interval (0, y ) and for several
values of n and 2. In particular, the columns on the left hand side give the exact values,
whereas the approximate results are on the right hand side. It is quite evident that the degree
of accuracy of the approximate closed form solution is remarkably high, in the entire range of
notch angles and for the values of n of greater significance (i.e. from 4 to 15). Moreover it is
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Table 3. A comparison between exact values (on the left) and approximate values (on the right) of the
stress distributions (n=4).

[% n=4 20=0 20=7/6 20=n/3 20=mw/2 20 =2n/3 20 =3n/4 2a=>57/6
or 1.67-1.54 1.39-136 1.11-1.10 0.83-0.85 0.54-0.58 0.40-0.43 0.26-0.29

0 ogeg 2.10-2.04 1.96-1.95 1.79-1.83 1.62-1.64 1.44-1.45 1.36-1.37 1.28-1.29
o 0-0 0-0 0-0 0-0 0-0 0-0 0-0

or 1.78-1.67 1.60-1.56 1.36-1.37 1.06-1.06 0.78-0.77 0.62-0.62 0.46-0.47
=y/4 ogg 1.74-1.64 1.63-1.61 1.46-1.49 1.36-1.39 1.19-121 1.13-1.15 1.08-1.09
o 0.44-0.48 0.44-0.46 0.46-0.49 0.44-0.44 045-0.44 0.44-043 0.43-0.42

or 1.27-1.26 1.20-1.23 1.08-1.13 1.00-1.02 0.88-0.86 0.82-0.79 0.75-0.72
=y/2 ogg 1.02-0.89 0.96-0.92 0.83-0.84 0.80-0.82 0.73-0.74 0.64-0.66 0.62-0.63
o 0.56-0.54 0.56-0.56 0.56-0.55 0.57-0.57 0.57-0.57 0.57-0.57 0.57-0.57

or 0.88-0.75 0.89-0.82 0.89-0.86 0.91-0.90 0.94-0.92 0.97-0.96 0.98-0.97
=3y/4 oggp 0.29-025 0.29-0.28 0.24-0.25 0.25-0.26 0.23-0.22 0.18-0.18 0.18-0.18
o 0.41-0.34 0.42-0.39 0.40-0.40 0.42-0.43 042-043 0.39-0.40 0.39-0.39

o 0.60-0.51 0.73-0.62 0.83-0.87 0.93-0.95 1.01-1.03 1.06-1.07 1.10~1.11
y ogy 00 0-0 0-0 0-0 0-0 0-0 0-0
o 00 0-0 0-0 0-0 0-0 0-0 0-0

Table 4. A comparison between exact values (on the left) and approximate values (on the right) of the
stress distributions (n=8).

0 n=8 20=0 20=n/6 20 =n/3 20=n/2 20 =2n/3 2a¥3n/4 200 = 51 /6
ogr 1.71-1.70 1.43-143 1.14-1.16 0.85-0.88 0.56-0.60 0.42-045 0.27-0.31

0 ogp 2.42-2.43 2.21-224 1.99-2.00 1.76-1.76 1.54-1.53 1.44-143 1.33-1.33
o 0-0 0-0 0-0 0-0 0-0 0-0 0-0

o 1.95-1.93 1.74-1.74 146-140 1.13-1.08 0.81-0.78 0.63-0.63 0.46-0.47
Xy/4 ogg 1.97-196 1.84-1.87 1.63-1.64 1.48-148 129-130 1.22-123 1.14-1.15
o 0.47-0.51 0.47-0.48 0.49-050 0.47-0.45 046-0.44 0.44-042 0.42-0.44

oy 1.35-1.38 1.20-1.24 1.08-1.11 0.98-0.98 0.85-0.84 0.80-0.77 0.73-0.70
=y/2 oy 1.23-1.19 1.07-1.1 0.96-0.95 0.87-0.87 0.75-0.75 0.72-0.72  0.68-0.68
o 0.57-0.57 0.57-0.57 0.57-0.57 0.57-0.57 0.57-0.58 0.58-0.58 0.58-0.58

on  0.83-0.77 0.82-0.77 0.84-0.81 0.86-0.84 0.90-0.88 0.92-0.90 0.93-0.92
X 3y/4 ogg 0.42-041 0.34-036 0.30-0.30 0.28-028 0.22-021 0.22-021 0.21-021
o9 0.48-0.46 0.46-047 0.45-045 045-0.44 0.42-042 0.43-043 0.43-0.43

o 0.79-0.82 0.86-0.96 0.92-0.91 0.97-0.96 1.03-1.01 1.06-1.05 1.09-1.08
v ogg  0-0 0-0 0-0 0-0 0-0 0-0 0-0
o 0-0 0-0 0-0 0-0 0-0 0-0 0-0
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Table 5. A comparison between exact values (on the left) and approximate values (on the right) of the
stress distributions (n=15).

9 n=15 20=0 2u=m/6 20=m/3 20=m/2 20 =21/3 20 =3n/4 2u=>51/6
o 175-178 146-147 1.13-1.19 0.87-0.90 0.58-0.61 0.43-0.46 0.28-0.31

0 ogp  2.62-2.56 2.37-2.42 2.09-2.08 1.86-1.81 1.61-1.57 149-1.46 1.37-1.35
o 0-0 0-0 0-0 0-0 0-0 0-0 0-0

o  2.08-2.09 1.82-1.86 1.48-1.40 1.19-1.09 0.85-0.79 0.65-0.63 0.50-0.49
Zy/4 opeg 2.13-2.17 1.93-198 1.73-1.73 1.54-1.51 1.33-1.32 1.26-1.25 1.14-1.14
op  0.51-0.52 0.51-0.50 0.50-0.49 0.49-0.46 0.47-0.45 0.44-0.42 0.45-0.43

Orr 1.39-1.42 1.26-1.29 1.09-1.11 0.97-0.96 0.84-0.82 0.79-0.76 0.72-0.70
=Zy/2 opg 1.33-1.35 1.20-1.25 1.02-1.03 0.91-0.89 0.77-0.76 0.75-0.74 0.66-0.65
og  0.57-0.57 0.57-0.57 0.58-0.58 0.58-0.58 0.58-0.58 0.58-0.58 0.58-0.58

or  0.78-0.76 0.78-0.75 0.81-0.79 0.85-0.81 0.88-0.86 0.89-0.87 0.94-0.92
=3y/4 ogg 0.47-049 040-045 0.31-032 030-0.29 0.23-0.21 024-0.22 0.19-0.18
o 0.52-0.53 0.50-0.53 0.47-0.46 0.47-0.45 0.44-0.42 0.44-0.43 0.41-0.41

o 0.92-1.02 0.95-1.12 0.99-0.93 1.02-0.96 1.05-1.00 1.07-1.03 1.10-1.07
y ogg  0-0 0-0 0-0 0-0 0-0 0-0 0-0
o 0-0 0-0 0-0 0-0 0-0 0-0 0-0

useful to remember that the solution coincides with the Williams solution in the linear elastic
case (n=1).

Grr,@

——right term in Eq. (11)

0.6 - .
== left term in Eq. (11)

0.2 -

-0.2 A

-0.6 4

"1 T L] 1 1 T
0 /6 /3 7/2 2n/3 5n/6 TC

Angle 6 [rad]

Figure 6. Gy ¢ angular distributions when 2o = 0 and n=15.
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Table 6 reports the values of the eigenvalue s as given by Equation (26). The data demon-
strate a very satisfactory accuracy when the notch opening angle is close to zero, while
predictions get less accurate in relative terms when 2« and n increase so that s tends towards
zero. An improved calculation of the eigenvalue s, can be obtained by correcting the predicted

value:

*

c o Exact values
24 - % ™
7 ® ——Eqs.(38-40)
B 0
1.8 - ;] v
12 - 5.
~ 00000
(O
0.6 -
O T 1 1 T ]
0 /6 /3 /2 2n/3 Sn/6 7t

Angle 6 [rad]

Figure 7. Stress field distributions for the crack-case when n=15.

o Exact values

S

S =
g(n, 20)

21/3

51/6

Angle 0 [rad]
Figure 8. Stress field distributions when 2«0 = 7/6 and n=8.
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G, ;
IJ6 - Ceo ——\Z>_ o Exact values
0003 — Egs. (30-32)
124 o2
G
0.8 - 229
Gy
0.4 4
0 T T T T
0 /6 /3 /2 27/3 Sn/6

Angle O [rad]

Figure 9. Stress field distributions when 2« = 7/3 and n=4,

Table 6. A comparison between exact and approximate values of the eigenvalue s

n 20=0 20 =m/6 20 =7/3 20 =m/2 20 =27/3 20 =3nw/4 20 =57/6

1 Exact value 0.5 0.4985 0.4878 0.4555 0.3843 0.3264 0.2483

Exact value 0.2 0.1983 0.1931 0.181 0.1562 0.1357 0.1068
Eq.(26) 0.1991 0.1956 0.1876 0.172 0.144 0.1226 0.0941
4 Eq.(43) 0.1991 0.1983 0.1944 0.1840 0.1605 0.1401 0.1106
Eq.(45) 0.2 0.1994 0.1951 0.1822 0.1537 0.1306 0.0992
Eq.(46) 0.2 0.1985 0.1931 0.1809 0.1555 0.1346 0.1059

Exact value 0.1111 0.1101 0.1079 0.1025 0.0909 0.0807 0.0655
Eq.(26) 0.1108 0.1076 0.1019 0.0925 0.077 0.0657 0.0506
8 Eq.(43) 0.1108 0.1098 0.1076 0.1025 0.0911 0.0809 0.0652
Eq.(45) 0.1111 0.1108 0.1084 0.1012 0.0854 0.0725 0.0551
Eq.(46) 0.1111 0.1105 0.1080 0.1023 0.0897 0.0789 0.0638

Exact value 0.0625 0.0621 0.061 0.0587 0.0536 0.0486 0.0406
Eq.(26) 0.0624 0.0601 0.0565 0.0510 0.0424 0.0362 0.0279
15 Eq.(43) 0.0624 0.0617 0.0607 0.0584 0.0531 0.0478 0.0394
Eq.(45) 0.0625 0.0623 0.0610 0.0569 0.0480 0.0408 0.0310
Eq.(46) 0.0625 0.0622 0.0613 0.0588 0.0528 0.0475 0.0398
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(6) i ~
1.6 20 o Exact values
—Eqs.(33-35)
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Figure 10. Stress field distributions when 2« = 7/2 and n=8.
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Figure 11. Stress field distributions when 2« = 37/4 and n=15.

where g is a function of the angle 2« (in radians):
g, 20) = 1 4+ vIn(m)[A2e + nQa)?] (44)

Parameters v, A and p in Equation (44) were calculated via best fitting tecniques. They
results to be v = 0.78, A = —0.01670 and u = —0.01374.

Figure 4 shows the value of eigenvalue s calculated by exact numerical approach and by
relations (23) and (43).
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Other approximate expressions to estimate s were proposed by Kuang and Xu (1987):

_plzh (45)

S**

1— A (n — 1/n) — 6.52589 cot(a) (1 — 1/m) 1-21 —=A)
=2 + . (46)
n+1 n+4+25{1—cos(a) + [1 — cos()]®} n+1

kkk

where, 1; is the elastic mode I eigenvalue. A comparison between exact values and the data
resulting from Equations (29), (47) and (45—46) is reported in Table 6. It is useful to note
that in Equation (46) the number —6.52589 substitutes the number +6.52589 present in the
original paper. However the authors have assured that Equation (46) matches all the data tabled
therein.

Figures 7-8 show angular distributions for the crack and 7/6 V notch obtained by using
the c§ parameter. Figures 9-11 show angular distributions for V-notches having an opening
angle 2« ranging from /3 to 377/4 radians. In all cases the agreement between approximated
expressions and exact values for stresses was found to be very good. This always holds true
for n equal to or less than 15. It is remarked that the components Gy and G4 are always
more accurate than the &;;, and this was also noticed by Kuang e Xu (1987) for ideally plastic
materials.

6. Conclusions

This paper has obtained two approximate closed form solutions for the J, deformation theory
elasto-plastic stress fields in V-notches subjected to mode I loading. The former solution is
valid for V-notch opening angles ranging from /6 radians to 57/6 radians, the later for
angles ranging from zero to /6 radians. Starting from a simplified differential system where
non linear equations are modified in order to achieve a closed-form solution, an a posteriori
correction was suggested in order to improve the respect of the compatibility conditions.
Eigenvalues and angular stress function have been shown to be very accurate in the presence
of a hardening exponent n equal to or less than 15. In the limit of n=1, elastic material, the
solution coincides with Williams’ celebrated solution (Williams, 1952).

All equations reported in the paper have been rewritten by using a commercial code. If
requested, the corresponding authors will send it to all the readers interested.
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