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Abstract

typical fretting contacts involving the Hertzian geometry or the flat punch with rounded corners in view of
application to the dovetail joints. Normal and tangential load (in the Cattaneo—Mindlin sense) is considered
with “moderate” or “large” bulk stresses.
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1. Introduction

Fretting fatigue (FF) has been till recently mainly considered as an area at the boundary between
fatigue, fracture and tribology. The problem is receiving increasing interest as one of the greatest
cause of premature failure for gas turbine engines. One of the sites of most critical relevance for
FF is generally dovetail attachment of the blade roots, the basic design of which has remained
unchanged for several decades now.

When FF was first studied years ago [1,2], no detailed knowledge was available of the stress
fields induced by the frictional contact (nor many concepts of fatigue and fracture mechanics were
available). Therefore, the mechanical damage over the surface was considered to have a dominant
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role in decreasing the fatigue performance of the material. Accordingly, parameters as microslip
amplitude and surface energy dissipated by friction were considered [3-5], but their efficacy, not
even for the fatigue life initiation, was never proved satisfactorily.

initiation life is reduced to zero and the only meaningful regimes, depending on stress intensity factors
amplitudes, are (i) propagation, above the threshold AK > AKy, or (ii) self-arrest, for AK below
the threshold.

condition of initiation as a function of the peak stress, but this does not distinguish if the crack
propagates of self-arrest, and indeed it is well known that non/propagating cracks are found at the
apex of notches. From a related perspective, the use of stress concentration factor alone is certainly
an over/conservative assumption, asymptotically correct towards the limit of very large size of contact
areas.

Solutions to frictional contact problems appropriate to fretting are obtained in closed form for the
simplest cases. In the Hertzian 3D most general case under constant normal load and sequentially

[9]. This paper will concentrate on 2D geometries such as Hertzian and rounded flat geometry, and
produce new results either analytically or numerically. Although general results are valid for the
Cattaneo loading condition for frictional contact of half-planes of arbitrary geometry [10,] 17 and in
particular for the flat-rounded geometry [10], in the presence of bulk stresses, the contact problem

In particular:

(1) for the Hertzian geometry previously considered by Nowell and Hills [9]:

e the case of bulk stress alone is solved in closed form, including the tensile stress concentration,
whereas both were only numerically obtained previously;

® a new analytical result is obtained for the tensile stress concentration in the case of moderate bulk
stress, for which a closed form solution was known only for the traction distribution;

e an improved numerical technique is given for the case of large bulk stress.

Results are documented for the tensile stress concentration over the entire range of loads.
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Fig. 1. Typical Hertzian fretting contact problem.

(2) for the rounded Sfat (RF) geometry,

¢ a closed form solution is given for the case of Cattaneo-Mindlin loading, using recent results by
Jager [13],

® an approximate close form result is obtained also for bulk stress only.

e all other cases are solved using the numerical method as in the Hertzian case with large bulk
stress.

2. Hertzian contact

Within the assumption of considering the bodies elastically similar half-planes, solution for the
normal load and tangential can be obtained very simply as normal and shearing tractions are un-

not alter the pressure distribution, General solutions have been known for some time. We therefore
assume that, under Hertzian cylindrical contact, with reference to Fig. 1, the two surface on contact
are subjected to a pressure p(x) given by

X

P=21- (5. 0

Therefore, we assume tangential load and bulk stresses are applied simultaneously and in phase,
and the appropriate integral equation on tangential relative displacements, together with Coulomb’s
law for friction, give the resulting shear traction distribution. i

Depending on the contact loads conditions, it is possible to quantify the tensile stress field, and
particularly the surface stress, in view of its importance in fatigue life assessment. Giannakopoulos
et al. [7] recently indicated an analogy with the maximum tensile stress with that of a notched
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component. The tangential distribution generates tensile stresses at the trailing edge of the contact,

while the normal pressure has no influence on tensile stresses for a true half-plane geometry.,
Hence it is useful to quantify the maximum tensile stress Oxc in the trailing edge (x=05,y=0).

For an half-plane problem the general expression for the surface stress in trailing edge is given by

b
0x(h,0) = % /‘b Z(J(—% dt + a5, (2)

where g(¢) depends on the load case and o}, is the bulk load. In Hills et al. [14] the Hertz case is
treated in details. In particular for complete sliding case (O/fP=1,06,=0) we have q(x) = fp(x)
and so

0D, 0) = 2fpmaxa 3)

where py,,, = 2P/nh.

2.1. Bulk stress only

For the situation where the bulk tension alone is imposed and the shear load Q is equal to Zero,
the solving equation for the shear tractions g(x) becomes [9]

b
t
/ &M@:Q X <o, )
—pX—1 4

where 2¢ is the width of the stick area and o is the bulk load.

The presence of the bulk load alone generates a skew-symmetrical shear traction distribution.
Moreover, as there is no tangential force, we can expect the stick area to be symmetrical. Accord-
ingly, in the slip area the tangential traction is

Isip(X) = fPmax /1 = (x/bsign(x), ¢ < x| < b. (5)

where p,,,. is 2P/7h.
This problem, for the evident skew-symmetrical properties, was approached with a numerical
technique in [9]. Here, it will be solved in closed form using Spence’s technique [15]; we start by

7). ]l <c,

g(x) = { (6)

qslip(x): c< ,x, < b.

Eq. (4), taking into account of Egs. (5) and (6), becomes

—c . [ b _
/ _ SPrmaxy/1 — (t/b)? dt+/ L(de+/ JPnax/1 — (4/b)? it 27 g
—b X —t —cX—1t ¢ xX—t

(7
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Fig. 2. Hertzian contact and bulk stress only: variation of stick zone size b/a as a function of bulk stress.

The integral in the square bracket in Eq. (15) gives

/c 1 dy— — n/2 (16)
o (12— y)x?— )\ /2 — y? Y Ht2 = X212 — 2
Hence, Eq. (14) becomes

s [T
q*(x)= fpma.tx ¢ —x? \/——6'7(t2 ) de (17)

which can be expressed using elliptic integrals

N 2 x [ X [pr - | c? I
‘I(X):;t'fpmaxl—) ) n 22 1“55 —K< ]_ﬁ) . (18)

where I1(n,m) is the complete elliptic integral of the.third type.
In Fig. 3 the shear tractions are plotted for different values of 6/ /pax(0.5,1.5,3). Using Eq. (2)
we find for the maximum stress after some algebra

60 (h,0) = 1+ /1 —(C/b)l ot fmax - (%)2E<\/1 - (%)2) (19)

The effect of 6} is highly non-linear and in particular we can notice that 6,(h,0) — 6 + 4 fDpax/T0
for large ratios 63/ fPmax, When ¢ — 0, as is plotted in Fig. 4. In fact, for this limit case when ¢ — 0

b .
oulh,0) ~ 2 meaxStgng)_W

4
dt +op = ; JPmax + 0p. (20)
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Fig. 4. Hertzian contact and bulk stress only: peak tensile stress (represented as (0 — 63)/fPmax) as a function of bulk
stress op/ fPmax-

2.2. Tangential load and moderate bulk stress

When both bulk tension and shear load O are imposed, the stick zone is no longer symmetrical
and so, if e is the x coordinate of centre of stick zone of width 2c, the solution is [9]
Flp@)+q77"(x), |x—e|l <,
q(x) = (21)
flp)], -bs<x<e—cUe+c<x<h,
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q(x)/fpmax

Fig. 5. Hertzian contact with tangential load and moderate bulk stress: shear tractions g(x)//pmax for 0b/ fPmax = 0.5 and
various levels of Q/fP.

where

b c
e/b=—04/4 fPmar, c/b=+/1—|0/fP|. (23)

It should be borne in mind that, while ¢, gives only the position of stick zone centre, the tangential
force Q influences only the stick area width 2c.
The solution holds provided that the condition |e| + ¢ < b is satisfied, or

ap 0 b Y
11— =<1 <4(1- - = 1. 24
o N TIPS T ( ! f) 29

In the Fig. 5 the shear traction distribution is shown for several values of Q/fP and 65/ fPme=0.5. In
order to evaluate the maximum tensile stress in the trailing edge we have to calculate the contributes
due to the two distributions. Accordingly, there is a first therm of3, depending on full sliding
distribution f| p(x)|, equal to 2 fp,... Then the second contribute due to corrective traction g« (x)
can be found after some algebra as

corr __ Gp Op g Q
T T e “\/(1+4fpmax> ~(=I7)| )

In order to obtain the normal peak stress we have to sum the two contributes, due to the contact
tractions, to the bulk remote load o, and so

2

. Op Op 0

GHZU}ZS'FO';?W‘FO' =2f max +\/<1+ ) —<1—‘—'—l) . 26)
) ’ P 4fpmax 4fpmax fP (

2
G () = — fomar < 41— ((e —x) ) : 22)
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Rb=0.0,0.5,1.0,1.5,2.0,3.0,5.0

QP

Fig. 6. Hertzian contact with tangential load and moderate bulk stress: peak tensile stress (represented as (Oxx — 1)/ fDmax)
as a function of Q/fP for various levels of bulk stress R, < 1.

In Fig. 6 the value of the peak as a function of the ratio Q/fP is plotted for different value of
Ry = 63/0p, 1im, Where

b,tim = 4 fPmax(1 — /1 = (Q/ fP)). (27)

If only tangential load is applied, we can find the simplified expression for the peak, that becomes

Oxx = O—;S + O_ch({)rr = 2fpmax\ / ’f—%‘ (28)

2.3. Tangential load and large bulk stress

When 63/ fpmax = 4(1 — /1 — Q/fP), the shear traction distribution assumes opposite value in
sign in the two slip zones at the edges of contact. For this reason, we propose here a numerical
solution, which is similar to the method first proposed by Nowell and Hills [9], with the only
difference being that frictional shear tractions in the stick area ¢*(x), differently from Nowell and
Hills [9], are taken as a product of two factors

q'(r)=¢(r)vV1-r (29)

and ¢(r) is approximated by a linear combination of Chebyscheff second type polynomials

$(r) = Y kUi(r). « (30)

j=0
Fig. 7 shows the shear distribution in the case of Q/fP = 0.5 and 6}/ fPme = 2. In the Figs. 8 and
9 the value of the stick area semiwidth and offset are plotted as a function of the ratio Q/fP for

different values of Ry = a4/0p jim Where 6 1im = 4 fopar(1 — /1 — (O/fP)). Finally, in Fig. 6 the
maximum tensile stress is shown for several value of Ry= Op/Op 1im > 1.
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Fig. 8. Hertzian contact with tangential load and large bulk stress: variation of stick zone size b/a as a function of Q/fP
for various levels of bulk stress R, > 1.

3. Flat rounded punch

For dovetail joints of turbine blades, the contact problem is not strictly speaking that of a
half-planes in contact. However, to reproduce a dovetail joint geometry a more realistic approxi-
mation of the geometry with respect to an Hertzian one is represented by a flat punch with rounded
corners in contact with an infinite halfplane. In Fig. 10 we can see as the analogy between two
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Fig. 9. Hertzian contact with tangential load and bulk stress: stick zone offset e/a as a function of Qf fP for various levels
of bulk stress R;-< 1 (moderate bulk stress) or R, > 1 (large bulk stress).

problem is well posed, because the contour gap function h(x) is the same. Clearly, the loading
condition on a real dovetail is much more complex than the constant normal load and oscillating
tangential load plus bulk stress, but given there is a Coulomb’s law limit on frictional shear, and
given that the Cattaneo-Mindlin sequential case produces the highest amount of slip and accordingly
of concentration of shear over the edges, we can consider this as a representative condition. The
geometry shown in Fig. 10 was discussed by Ciavarella et al. [12]: the punch has a flat central part
of width 2a, and two rounded corners of radius R, approximated by parabolic curves. The pressure
distribution was there given in closed form as

%Zpé p(x)= (2 arcsin (g) . n) _bzb—_xz

Vb2 —a? + av/h: —x2
Vb2 — a2 — avb? — x2

x/b /b

\/bz_xz_\/bz_az ¢

—In
\/b2 —x2+\/b2—a2

(1)

An alternative formulation is proposed by Jager [13]. After fixing a certain value of parameter a,
the contact area b can be evaluated using equilibrium equation:

E:TR = g — % 1- (%)2 — arcsin (%) . (32)

Fig. 11 shows the normal pressure distribution — p(x)b/P for several values of ratio a/b, or from
the Hertzian case for a/b =0 up to the value near to completely flat punch case (a/b — 1). Jiger
[13] starts with the case of a flat punch with a rounded edge R on the right corner only, subjected
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Fig. 10. Dovetail joint: (a) and flat rounded contact; (b) geometries.
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Fig. 11. Flat rounded contact pressure distribution for various geometrical ratios a/b.
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to a normal load P

2nARG p1(z,b) = i/ g—;—lb) [(Za — 2z — 2b)arccos / a_;l;é — /b2 — azil
+2i(z — a)arcsin %?Z)—(_b—;—)@, (33)

where z=x +1iy , i=+/—1. The solution for a symmetric flat punch with two rounded edges can
be written as symmetric superposition of two singular punches, eliminating symmetric singularities
at the edges

ih (x/b2 — a2 — 2qarccos %)

,b)= ,b) + —z,b) — 34

¢p(z ) ¢pl(z ) ¢p1( ) » ﬂARm ( )
The stress components can be expressed as a function of the Muskhelisvili potential

O + 0yy = 2(P(2) + $(2)), (35)

Tyy = iTxy = P(z) — P(2) + (z — 2)¢'(2). (36)

3.1. Tangential load

In the case of Cattaneo—Mindlin tangential load, the solution has been given in very general terms
for any plane contact problem [10], as a superposition of

q(x)= flp(x) — p*(x)] (37)

with p*(x) being the normal contact pressure distribution at some smaller value of the normal load.
Upon increasing the tangential force, the stick zone shrinks, in the reverse order as the normal
contact area during the normal loading process. The more general loading scenarios where normal
load is not held constant (Mindlin problem) has also been treated in quite general terms by Jaeger
[11]. Fig. 12 shows some examples for the rounded flat geometry. The Muskhelishvili potential for
the tangential loading alone has been derived by Jiger [13]

(obq(Za b,C) = 1f(¢p(z>b) - ¢p(Z,C)), (38)

where ¢ depends on the equilibrium equation in the horizontal direction; imposing the equilibrium
condition to horizontal traslation leads to the following formulation:

ol | (£>2 n/2 — (ajc)+/1 — (a/c)* — arcsin(a/c) (39)
/P b/ 7/2 — (afb)\/T = (ajb) — arcsin(a/b)’

Accordingly, the total potential for normal and tangential loading is

b2, b,¢) = G p(2.0) + by(z,b,¢) = (1 +1f )b p(z,b) — i f (2, ). (40)
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Fig. 13. Flat rounded contact and tangential load only: peak tensile stress (represented as Oxx/ fPmax) as a function of
geometrical ratios a/b for various levels of Q/fP.

R p(X)b/P
N q(x)b/P

~
=

-1 -0.5 0 0.5 1

Fig. 14. Flat rounded contact with tangential load and bulk stress: shear tractions for a/b=0.8, O/ fP=0.5 and 03/ fPmax=0.4.

Also in this case

g(x) = q*(x), [x—el <c,
gx)=flpx), b<x< -c+eUc+e<x<bh, (44)

where e indicate the x coordinate of the stick area centre respect. The same Chebyscheff polynomials
method as in the case of large bulk for the Hertzian geometry is then used. Figs. 14 and 15 show
two example results.
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————— p(x)b/P
0.5 J q(x)bAP

Fig. 15. Flat rounded contact with tangential load and bulk stress: shear tractions for a/b=0.8, Q/fP=0.5 and b/ fOmar=1.

Instead of presenting the full set of results for the peak at the frailing edye using the numerical
solution, we more simply remind that an approximate equation for the peak stress has been obtained
by Ciavarella et al. [16],

2
— % _ 191\ _ b
0(5,0) = 2 fomark \/(1 + %) — (1 | fP> 4 omm + op. (45)

Notice that as usual p,,, = 2P/nb = (4/T) pmea sO it is the peak pressure only for Hertzian case.
Fig. 16 shows three examples for a/b=03,0.6,0.9 as only the Hertzian case was represented in
plots by Ciavarella et al. [16].

3.3. Bulk stress only

We can attempt a closed form solution in the case of flat rounded punch, by using a simplified form
of the pressure distribution. The normal pressure p(x) is given by Eq. (31) and can be reinterpreted
as the sum of an Hertzian contribution DPrer(x), 1.€. p(X) = Pper(x) + peor(x), where the Hertzian
terms is given by

Prox) =~k 221 (XY (46)

and

i 1-— %arcsin(a/b) (47)
V1 = 2arcsin(a/b) — 2a /T (alb)
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4. Conclusions

New results have been obtained in closed form for the traction distributions and peak tensile
stress of typical fretting contact problems, namely Hertz and rounded flat geometries under constant
normal load and oscillating tangential and bulk loads. The most complex configurations have been
solved numerically. A full description of the stress has been derived, and various effects have been
considered in particular over the peak stress: the effect of the geometry from Hertzian to rounded
flat indenter of various shapes up to the almost flat, and the effect of tangential and bulk stresses.
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