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Frictionally excited thermoelastic instability in the
presence of contact resistance
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Abstract: In sliding systems, frictional heating generates a well-known instability above a certain
critical speed V., which is a function of geometrical and material properties only. Similar
instabilities are known to occur in the static problem, driven by temperature differences, in the
presence of thermal contact resistance. Thermal contact resistance at the interface has seldom been
considered and gives rise to full coupling of the problem. Generally, the resistance decreases non-
linearly when pressure is increased. Here, the critical condition (in terms of heat flux and sliding
speed) for the stability of the uniform pressure solution for a half-plane in frictional contact with a
rigid wall at fixed temperature is studied for a general resistance function R(p). It is found that the
heat flux direction increases the instability as in the case of zero speed, i.e. when directed into the
half-plane (which is the only distortive material), whereas frictional heating can have also a
stabilizing effect, for a given heat flux, specifically when R(p)+ pR'(p) < 0. Also, an isothermal
critical speed has been defined, and the actual critical speed is found to be smaller or larger
depending on the temperature difference sign. Longer wavelengths are always more unstable so that

the critical wavelength is still dictated by the real size of the system.
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NOTATION

growth rate (s™!)

specific heat of half-plane (J/kg°C)

Young’s modulus of half-plane (N/m?)

frictional coefficient

diffusivity of half-plane (m?/s)

thermal conductivity of half-plane (W/m °C)

wave number (m™")

contact pressure (N/m?)

po  contact pressure in the steady state (N/m?)

g heat flux (positive if entering the half-plane) (W/m?)

go  heat flux in the steady state (W/m?)

go  dimensionless heat flux in the steady state

R thermal contact resistance (m2 °C/W)

R, thermal contact resistance in the steady state
(m? °C/W)

t time (8)

Ty temperature field in the half-plane (°C)

Tw wall temperature (°C)
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temperature field in the half-plane at steady state
O

temperature perturbation in the half-plane (°C)
sliding speed (m/s)

critical sliding speed (m/s)

dimensionless sliding speed

= SN

thermal expansion coefficient of the half-plane
(o

distortivity of the half-plane (m/W)

shear modulus of the half-plane (N/m?)
Poisson’s ratio of the half-plane

density of the half-plane (kg/m®)

e
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1 INTRODUCTION

In sliding systems such as brakes, clutches and seals,
frictional heat generation depends on the local pressure,
and it is well known that, for a given friction coefficient f,
there will be a certain sliding speed V., above which the
system will be unstable; this is believed to lead eventually
to localization of the contact load in a small region of the
nominal contact area and to high local temperatures,
known as hot spots [1-4]. This phenomenon is known
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as frictionally excited thermoelastic instability (TEI) {1, 5]
and is of critical importance in the design of brakes and
clutches. Several methodologies have been proposed
over the years to study the problem: firstly, Burton
et al. [6] used a perturbation method to investigate
analytically (as an eigenvalue problem) the stability of
the uniform pressure solution for the contact between
two sliding half-planes, defining the critical speed V,
as the speed for which the growth rate is zero. This
technique has been used by Lee and Barber [7] to analyse
the stability of a layer sliding between two half-planes.
For more realistic geometries, numerical methods need
to be used, and the Burton er al. method was extended
by Du et al. [8] using the finite element method to develop
the matrix defining the eigenvalue problem. A significant
further improvement of the Burton et al. eigenvalue
technique was devised by using Fourier reduction in
axisymmetric problems by Yi et /. [9], and the resulting
code is available as HOTSPOTTER [10]. These tech-
niques have a significant advantage over the alternative
full transient simulation with the finite element method,
since coupled transient thermoelastic contact problems
in time are still very computationally demanding [11-13].

Generally, the influence of thermal contact resistance
R is neglected in these studies (except for a few, such as
that by Johannson [12]), and either zero resistance
(perfect thermal contact) or infinite resistance (open
gap) is assumed to occur at the interface. This simplifies
the problem considerably; as the system is linear as
long as there is full contact, it is possible to define
the critical condition clearly as a function only of geo-
metrical and material characteristics. However, even if
there is full contact between the two bodies, there
will generally be a thermal contact resistance at the
interface because nominally flat surfaces are always
rough at the microscopic scale. Thermal contact
resistance has been a subject of extensive experimental
[14-16] and theoretical [17, 18] investigations. There is
no general agreement on quantitative models for the
resistance and particularly for the interaction with
friction and the partition of frictional heating (see
references [12] and [19] and references therein). However,
it is generally agreed that it is a monotonically decreasing
function of contact pressure, principally because
increasing the contact pressure increases the number of
actual contact areas and hence reduces the constriction
effect.

Therefore, R varies with local contact pressure and a
perturbation in pressure causes a corresponding pertur-
bation in the heat flux; this can be per se a source of
thermoelastic contact instability [20]. The inclusion of
the contact resistance is crucial to explain instabilities
in heat conduction across an interface without frictional
heating, as in duplex tube exchangers [21] or in solidi-
fication of a metal against a plane mould where
thermoelastic contact between the partially solidified
casting and the mould can become unstable, leading to
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significantly non-uniform pressure distribution and
alloy composition [22, 23]. Barber [24] in particular
studied the contact of two half-planes and found, in
the limit case of one rigid perfect conductor material,
that the necessary condition for instability of a pertur-
bation of given wavelength was that the heat flow had
to be directed into the half-plane (more distortive
material) and had to be of a certain critical amount
(wavelength dependent) as a sufficient condition; the
steady state is believed to involve stable separate solu-
tions. In the more general case of two elastic and
conducting materials, the condition is more complicated
(eigenvalues can be complex), and it was shown that the
steady state could be unique but unstable, involving
oscillatory solutions.

Additional interest to introduce the thermal contact
resistance from the theoretical point of view comes
from the fact that it makes the resistance function
continuous and therefore easier to treat some effects
that otherwise would only be present with partially
separate conditions. Recently [25], an attempt has been
made to study the connection between ‘frictionally
excited” TEI and ‘static’ TEI, in the context of the
simple Barber er al. rod model [20]. Existence could
only be guaranteed below a certain critical speed V., as
above V_, for some initial conditions, the pressure
grows without limit, causing seizure, similar to what
had been suggested in a shaft rotating in a bearing
[26, 27]. In the more general three-dimensional contact
problem against a rigid non-conducting wall, extension
of the Duvaut theorem [28] was proved by Andersson
et al. [29], only for sufficiently low speeds (this suggests
that, for high speeds, non-existence associated with
seizure is possible). In the case of two conducting
materials in contact, particularly in the case of frictional
heating, non-existence of a steady state may be asso-
ciated also with oscillatory solutions, or with moving
contacts, so that it is not surprising that the existence
of a solution has not been proved.

An extension of the rod model is where the total force is
prescribed in a system of various rods in parallel, the so-
called ‘Aldo model’ originally devised by Comninou and
Dundurs [30] and recently extended to the effect of fric-
tional sliding by Afferrante ez al. [31]. For any given
imposed temperature difference, various critical speeds
can be defined: the first, V,, for which the uniform
pressure solution becomes non-unique and another, V7,
for which it becomes unstable. One of the interesting
results is that, when the solution is unique (uniform
pressure), it is always stable whereas, when there are
multiple solutions, the uniform-pressure solution is not
necessarily stable. Also, if V; is defined as the critical con-
dition (as is more sensible in view of the typical analysis of
nominal steady states in sliding systems), it is found that
separate solutions may exist below V; and are locally
stable and also (non-uniform) full contact solutions may
exist above V. In a continuous problem, non-uniform
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Fig. 1 Elastic half-plane in contact with a rigid perfect
conductor wall

pressure is routine for a separated contact, and there is no
obvious equivalent to this condition.

More in general, rod models have only a limited
relationship with the behaviour of more complex con-
tinuous structures (including two-dimensional and
three-dimensional solids). Hence, to make a further
step towards more realistic cases, the problem of an
elastic half-plane in contact with a rigid perfect con-
ductor wall at a temperature Ty is considered (Fig. 1).
The half-planc has a relative speed 7 with respect to
the rigid wall; a uniform pressure p, is remotely applied
to ensure complete contact along the interface and is
assumed to be constant at the interface. Further, a
uniform heat flux ¢, is exchanged between the bodies
because of initial temperature drop across the interface
and frictional heat flux is produced during the sliding
contact, fVp. Note that, when a thermal contact
resistance is postulated at the interface, it is generally
necessary to define the partitioning of this heat flux
into each of the bodies. However, the temperature of
the wall does not change ex-hypothesis, and hence
attention can be focused on the heat flux portion which
enters the half-plane, which without loss of generality
will still be denoted fVp.

With these preliminaries, the steady-state heat flux g,
which is positive if entering the half-plane y > 0, must
satisfy the equations

Tw — T,
=~W~R—H+ﬂ/p (1
oT
= K=~ 2
q 3 |, (2)

where Tw — Ty is the temperature drop across the
sliding interface. The stability of the system to small
perturbation (the system being non-linear) can be
investigated by a linear perturbation analysis about the
steady state.
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2 STABILITY

The general transient solution for the temperature field
in the elastic half-plane can be written

TH(X’yﬂ t) = T()(X,y) + T] (xaya l) (3)

where Ty(x, y) is the temperature field in the half-plane in
the steady state and T;(x, y, ) is a temperature perturba-
tion. Differentiating equation (1), and if Ag, ATy and
Ap are small perturbations in ¢, Ty and p respectively
such that

AqR0+¢]0AR:—ATH+fVR0Ap+fVPQAR (4)

and noting that

OR
=—Ap=RA
AR i Ap D (5)

it can be mentioned that the contributions due to fric-
tional heating have the opposite signs, since R is gener-
ally negative. This suggests already that, if the effect of
the derivative of resistance is large enough, it would
make the effect of frictional heating opposite to the
usual case, as will be made clear at a later stage. Return-
ing to equation (4), using equation (3), it is found that

AgRy = —ATy — [goR — fV(Ry + poR))| Ap (6)

where ¢y, po and Rq are the values of ¢, p and R in the
steady state.

Since the steady state certainly satisfies the governing
equations and the boundary conditions, the system has
a trivial solution 7'y (x, y, ) = 0 in which the contact pres-
sure is uniform and equal to py. In such conditions, the
temperature field 7y is linear in y and independent of x
as is the heat flux which is equal to ¢;. The linearity of
the governing equations (for small perturbations about
the steady state) permits the temperature perturbation
to be written

T(x, y, 1) = 6(y) exp(bt) cos(mx) ™

where m is the wave number and defines the spatial
frequency of the sinusoidal perturbation in the direction
x, and b is the growth rate of the perturbation. The func-
tion #(y) must be obtained by substituting equation (7)
in the heat conduction equation

8T, 8T, 10T
71 +—21':_—1 (8)
oxr 9 kot

in which k = K/pc, is the half-plane thermal diffusivity
(K, p and ¢, are the thermal conductivity, the density
and the specific heat respectively of the half-plane). As
#(c0) = 0, the function &(y) assumes the form

0(y) = Aexp(—Xy) )

J. Strain Analysis Vol. 39 No. 4




354 L AFFERRANTE AND M CIAVARELLA

where 4 is an arbitrary constant and

A= m2+b

% (10)

with Re()\) > 0. Therefore, the temperature and heat flux
perturbations become

ATy = Ty(x,0,1) = Aexp(bt) cos(mx) (11)
Ag = KAXexp(br) cos(mx) (12)

For the pressure perturbation, using the work of Barber
and Hector [32],

maEA

AP =TT m)

exp(bt) cos(mx) (13)

If equations (11), (12) and (13) are substituted into
equation (6), the characteristic equation is found to be

AV (1L )2
m mKRy ) m

1 4AMs e
+{mKR0+m_R0[qOR —fV(Ry +P0RH} =0

(14)
where

ool +v)
5 — 15
= (15)
is the half-plane distortivity and M depends on the shear
modulus and Poisson’s ratio of the half-plane according
to

a (16)

2M =
1—-v

Equation (14) permits determination of the parameter A
and hence the growth rate of the temperature perturba-
tion b [see equation (10)]. Since the perturbation must
decay away from the sliding interface, Re(\) > 0, and
hence the only admissible solution of equation (14) is

A1 1 12
== 2(1+mKR0> +I (17)
if and only if
1 1\ 4Ms. ,
F~2(1*m> 'E[QOR —fV(Ry +poR)] >0
(18)

If fVp =0, equation (17) returns to the characteristic
equation given by Barber [24].

Setting A =m (i.e. b=0), from equation (17) it is
possible to establish the critical condition, at which the
system becomes unstable, which together with condition
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Fig. 2 Stability zone for the system for R + pR’ > 0; frictional
heating is a destabilizing factor

(18) gives

(mKRy — 1)

R R Ry+—2 7~ 19
qoR' < fV(Ry + po )+16M5mR0K2 (19)
. mKRy + 1
goR < fV(Ry+poR') — W (20)

It is clear that condition (20) is more restrictive than
condition (19). Figures 2 and 3 show the possible zones
of instability of the system in example cases, for
Ry +poR >0 and Ry+pyR <0 respectively. Note
that for ¢, > 0, i.e. when heat flow is directed into the
more distortive material (the direction giving possible

Ry +p,R'<0 )
9o L
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Fig. 3 Stability zone for the system for R + pR' < 0; frictional
heating is a stabilizing factor
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instability in the non-sliding situation), an increase in ¢,
is always a destabilizing factor.

If the effect of frictional heating due to sliding (for a
given heat flow ¢,) is considered, it is found that the
critical speed decreases with increasing heat flux if
Ry + poR' > 0. However, the critical speed increases
with heat flux if Ry + py R’ < 0. This may appear surpris-
ing but in fact is consistent because, in both cases, heat
flux into the more distortive material makes the system
more unstable, as the instability condition occurs for
speeds lower than the critical speed if Ry + p,R < 0.
Note also that m =0 always gives the most unstable
perturbation, as usual,

1 ) 1
= 21

but it is a minimum critical speed for the system if
Ry+pyR >0 and a maximum critical speed if
Ry + poR' < 0 respectively.

Also, the heat flow g, depends also on frictional heat-
ing, from equation (1). Hence, for a fixed temperature
difference, the critical condition (20) becomes

Tw — T ;
(—WK—H+}(VP0>RI <fV(Ry+poR) -

mKRy + 1
2M6K
(22)
and, rearranging for fV, the two effects cancel each other
to give
S m- 4 1
2Mé  2MOEKR,

Tw—Ty
V14 + 7 R (23)
0
i.e. the critical speed is a function of the temperature
difference fV(Tw — Ty). If the ‘isothermal’ critical
speed”™ for zero temperature difference is defined as

m 1
Mo = 3315 T T3I5KR, (24)
then, since R’ < 0, the actual critical speed is higher than
the isothermal speed if Tyw — Ty < 0, and lower if
Tw — Ty > 0. Also, this form of the stability condition
makes clear that the system always has a critical speed,
and the highest stability is obtained when the wall is at
the lowest possible temperature, although in a real
system even the temperature difference is likely to
change with speed, adding another non-linearity to the
system.

Note that these results are obviously consistent with
the case V' = 0, which can be treated directly from equa-
tions (20) and (19), coincidentally with equations (33)
and (34) from the work by Barber [24].

*Note that this critical speed coincides with the Burton ez al. critical
speed for out-of-plane sliding of a half-plane against a rigid non-
conductor when Ry = oco.
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3 SPECIAL CASES

3.1 R = R, = constant

With a constant thermal contact resistance the instability
condition assumes the form

. N 1 1
. _ 2 N5
1V > [V 2(1+mKRO> (25)
where
. oV
p=20 (26)

is the dimensionless sliding speed. Note that V; quickly
decreases with increasing dimensionless thermal contact
resistance mKRy and does not depend on ¢, and p, but
only on Ry.

32 R=A/p

If a hyperbolic dependence of the resistance R on the
contact pressure p is assumed, equation (20) becomes

N R 1 1
6]0>4cr—‘2‘<1+m> (27)
where
mpy

is the dimensionless heat flux.

Therefore, an interesting result has been obtained;
the stability condition for ¥ = 0 (no sliding) coincides
with the stability condition for 7 £ 0 when an inverse
dependence of the thermal contact resistance on the
pressure is assumed, with the only difference that the
heat flow now depends also on frictional heating, from
equation (1). In particular, the dependences of the
dimensionless critical heat flux ¢, (for R = 4/p) and
the dimensionless critical speed fV,, (for R = R,) on
the dimensionless thermal contact resistance mKR are
identical, as shown in Fig. 4.

This is, however, only a consequence of a stronger
result, which is obtained if it is noted that, when
R = A/p, equation (1) becomes

(Tw + AfV) — Ty
1 P

Tw — Ty
1=

p+fVp= (29)
i.e. the entire solution of the problem can be obtained
for an equivalent static problem for an increased wall
temperature. Since stability is unaffected by the wall
temperature in the unperturbed solution, it follows that
sliding has no effect on the stability boundary and this
applies to any geometry, not just the half-plane. Since
R=A/p is in the class R+ pR =0, this makes it
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Fig. 4 Dependence of the dimensionless critical heat flux §,,
(fgr R = A/p) and the dimensionless critical speed
[V (for R = R) on the dimensionless thermal contact
resistance mKR

possible to argue that, for R+ pR > 0, destabilization
by sliding to more general geometries is expected.

33 R=R,+A4/p

In this case R’ = —A4/p*; hence Ry + poR = Ry > 0 and
the general conclusions of the previous section hold. In
particular, the stability condition (20) becomes

1 +mK(Ry, + A/py)
2R . mK

V>, ——
V>V, Re mp

(30)

The critical speed decreases with increasing heat flux if
go > 0. Also, let us analyse two limit cases:

1. For py— oo the critical condition (25) for
R = constant = R is obtained. The critical condi-
tion, therefore, decreases with increasing dimension-
less thermal contact resistance mKR, and does not
depend on ¢, and pg, but only on R;. Note that
such a limit condition is equally obtained if 4 tends
to zero.

2. For py — 0, equation (30) becomes

A Méq, { —00 for g, > 0
——

V>
Y Ry mp} +oo  forgy <0

(31)
Therefore, in the limit of R,, — 0 or when the
pressure tends to zero, the instability condition
coincides with the usual condition [24] that for
instability the heat flow has to be directed into the
more distortive material (the half-plane), and greater
than a certain threshold. Note also that, in the limit of
large frictional heating (or at least much greater than
heat flow due to interface temperature drop), then
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g = fVp, giving

A :
P > —— — always (32)
Ry
meaning that, since the frictional heating is always
directed in the half-plane, it is always a destabilizing
effect.

4 CONCLUSIONS

The critical condition for instability of the uniform-
pressure solution for a half-plane sliding against a rigid
perfect conductor wall, which depends on both the heat
flow across the interface and frictional heating, has
been studied. In other words, a critical speed can be
defined for a given heat flux, or vice versa a critical
heat flow can be defined for a given speed.

However, the sign of the factor R+ pR’ is extremely
important, as for a given heat flux, the following hold:

1. For R+ pR > 0, frictional heating tends to enlarge
the region of possible instabilities, and there is a
finite critical speed for any given heat flux.

2. For R+ pR’ < 0, frictional heating tends to make the
system more stable, as the system is unstable only
below a given critical speed, and there is such a critical
speed only for a large positive heat flux. This speed
becomes larger, the larger the heat flux.

In order to study the case the effect of frictional heat-
ing, for a given temperature difference, is considered; an
‘isothermal’ critical speed has been defined and it was
found that the actual critical speed is

Ve = Viso + 'ZWRTTHR, (33)

0

ie. is larger than the isothermal value if Ty — Ty < 0,
but smaller if Ty — Ty > 0. This may suggest that in
practical systems it may be useful, in principle, to keep
the temperature of the better conductor higher than
that of the counterpart (e.g. in a typical brake system,
of the metal discs and the frictional part respectively),
although this of course may not be practical from
other practical points of view.
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