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Abstract

Thermoelastic contact is known to show instabilities when the heat transmitted across the
interface depends on the pressure, either because of a pressure-dependent thermal contact re-
sistance R(p) or because of frictional heating due to the product of friction coefficient, speed,
and pressure, f¥p. Recently, the combined effect of pressure-dependent thermal contact resis-
tance and frictional heating has been studied in the context of simple rod models or for a more
realistic elastic conducting half-plane sliding against a rigid perfect conductor “wall”. Because
R(p) introduces a non-linearity even in full contact, the “critical speed” for the uniform pressure
solution to be unstable’ depends not just on material properties, and geometry, but also on the
heat flux and on pressure.

Here, the case of two different elastic and conducting half-planes is studied, and frictional
heating is shown to produce significant effects on the stability boundaries with respect to the
Zhang and Barber (J. Appl. Mech. 57 (1990) 365) corresponding case with no sliding. In
particular, frictional heating makes instability possible for a larger range of prescribed temperature
drop at the interface including, at sufficiently high speeds, the region of opposite sign of that
giving instability in the corresponding static case. The effect of frictional heating is particularly
relevant for one material combinations of the Zhang and Barber (J. Appl. Mech. 57 (1990) 365)
classification (denominated class b here), as above a certain critical speed, the system is unstable
regardless of temperature drop at the interface.

Finally, if the system has a prescribed heat flow into one of the materials, the results are
similar, except that frictional heating may also become a stabilizing effect, if the resistance
function and the material properties satisfy a certain condition.
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1. Introduction

Frictional heat generation in sliding systems gives rise to instabilities for a certain
critical product of friction coefficient and sliding speed, fV.:, leading to localization
of the contact in hot spots, a phenomenon known as frictionally-excited thermoelastic
instability (TEI) (Barber, 1969; Dow and Burton, 1972; Bryant et al., 1995). Burton
et al. (1973) were the first to use a perturbation method to define an eigenvalue prob-
lem for the stability of one the simplest models, i.e. the contact between two sliding
half-planes, for which the uniform pressure solution becomes unstable when the critical
speed ¥V, makes the real part of the growth rate of the perturbation to be zero.

Generally, the influence of thermal contact resistance R is neglected in these studies,
and either zero resistance (perfect thermal contact) or infinite resistance (open gap)
is assumed to occur at the interface, and the critical condition is a function only of
geometrical and material characteristics. However, even if there is full contact between
the two bodies, there will generally be a thermal contact resistance at the interface
because nominally flat surfaces are always rough at the microscopic scale giving rise
to constriction resistance (Shlykov and Ganin, 1964; Thomas and Probert, 1970). Also,
just the process of sliding of two bodies can lead to temperature differences between
the bodies. Early papers (Blok, 1937; Jaeger, 1942), studying the temperature rise in
sliding contact assume a single contact patch between two half-spaces at zero tem-
perature at infinity. However, if we consider the half-spaces to represent finite bodies
whose dimensions are large compared with the size of the contact area, there is no
reason to suppose that the temperatures at infinity will be the same. In essence, the
temperature at infinity becomes a measure of what is usually referred to as the ‘bulk
temperature’ in Tribology papers (as distinct from the flash temperature). In two pa-
pers, Barber (1967, 1970) made clear the point that in most cases the heat transfer
from the distant boundaries of the sliding bodies will cause the bulk temperatures of
the two bodies to be different, giving a temperature discontinuity across the interface
except in regions of actual contact. The same idea of a temperature jump was intro-
duced in a paper by Ling and Simkins (1963). The problem is complicated by the fact
that the heat is not necessarily generated exactly at the interface, but may be generated
in surface layers on one side or the other of the constriction resistance. Barber (1967,
1970) made some crude calculations for the partition of frictional heating, which are
further developed in Berry (1976), and the context of numerical models by Johansson
(1993), and Johansson and Klarbring (1993) and references therein.

From a more mathematical perspective, contact resistance had been postulated also
with the intent of solving some spurious non-existence of steady-state solutions for
static contact when the heat flows into the material with the lower distortivity. This
was shown to arise from the impossibility of a transition between perfect thermal con-
tact and separation with complete insulation (Comninou and Dundurs, 1979). Existence
of a steady state is proved by Duvaut (1979) for the general three-dimensional ther-
moelastic contact problem, and recently extended also in the case of frictional heating
for sufficiently small speeds (Andersson et al., 2003), suggesting that for large enough
speeds, existence cannot be guaranteed by introducing the resistance, and is an intrin-
sic feature of thermoelastic contact, probably associated with the possibility of seizure,
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i.e. the growth of pressure without limit (if displacements are constrained). However,
contact resistance gives rise to another source of instability, even in the absence of
sliding. For example, Barber (1987) studied the contact of two half-planes and Zhang
and Barber (1990) were able to characterize the instability as a function of material
properties, showing that the materials can be classified into 5 classes, depending on
three dimensionless ratios of the material properties: most cases exhibit instability only
for heat flow into the more distortive material; but for some material combinations,
instability can occur for either direction of heat flow, and the growth rate can be com-
plex, involving oscillatory growth of the perturbation. In particular, in some conditions
it was shown that unique solutions can be unstable, thus justifying also long-term
oscillatory behaviors.

More recently, in an attempt to study the interaction of frictional heating and contact
resistance for the instability condition in half-plane contact, Afferrante and Ciavarella
(2004) studied the case where one of the half-planes is a rigid perfectly conducting wall
at fixed temperature. The critical sliding speed, at which the system becomes unstable,
was found to decrease with heat flux gq if go < 0, i.e. heat flow is directed into the more
distortive material, the imperfect conductor half-plane, only in the case (Ry+ poR’) > 0,
where py, Ry are the values of the pressure and the resistance at the steady state, and
R’ the gradient of the resistance with pressure. If the temperature drop between the
wall and the half-plane, (Tw — T), is prescribed, then the critical speed increases with
the temperature drop if (7w — T) < 0, independently on the sign of Ry + poR’.

Here, we attempt the more general case of two sliding half-planes in the presence
of contact resistance. Given the results cited in the previous 2 papers, Afferrante and
Ciavarella (2004) and Zhang and Barber (1990), we expect the classification of insta-
bility behavior to depend both on the sliding speed and on temperature drop across the
interface.

2. Formulation

Consider two half-planes sliding out-of-plane as in Fig. 1. The material constants are
K;, ki, oz, i, v;, for conductivity, diffusivity, coefficient of thermal expansion, elastic
shear modulus and Poisson’s ratio of material i. Because a contact resistance is postu-
lated at the interface, it is generally necessary to define f8, the partitioning parameter
of frictional heat generation (see Barber, 1967, 1970; Johansson, 1993; Johansson and
Klarbring, 1993 and references therein). Note the existence of a non-zero temperature
difference T, — T will cause the proportion of the frictional heat flowing into a given
body to differ from the proportion generated in that body. Authors in Tribology some-
times confuse these quantities, so it is important to make it clear that our factor is a
partition of frictional heat generation.

The heat flow ¢, is positive if entering into the half-plane 1 (y > 0), and

h—-T
g1 ="+ BfVp. M

oT
q1=—K = 2)

oy y=0
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Half-plane 1
y

Half-plane 2

Fig. 1. Half-planes sliding out-of-plane.

for half-plane 1. For half-plane 2, we use the opposite notation (i.e. it is positive if
exiting 2),
-1
R
oT,

=-K, — 4
q2 2 oy y:()’ (4)

G = (1= fVp, (3)

where 7, — T; is the temperature drop across the sliding interface. Obviously, g is
related to ¢; by the heat balance equation

q—q=fVp. (%)

The stability of the system to small perturbation (the system being nonlinear) can
be investigated by a linear perturbation analysis about the steady state. Therefore, by
perturbing, for example, Eq. (1) we can write an equation in terms of A7 =A(T,—T}),
and using AR=R'Ap,

AqiRy = AT + [ — qioR' + BV (Ro + poR ) Ap, (6)

where po, 10 and R, are the steady-state value for the contact pressure, heat flow into
half-planes 1 and thermal contact resistance, respectively. Eq. (6) with zero sliding
speed reduces to Eq. (27) in Barber (1987) (where ¢; was the heat flow exchanged
at interface as there was no heat generated there), we note that the stability problems
seem to be equivalent by replacing the multipliers of Ap.

Note that, g; is only the heat flow entering half-plane 1 and ¢» =¢; — fVp depends
on frictional heating for fixed ¢;. An alternative formulation is for a fixed temperature
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drop across the interface. Rewriting Eq. (6), using Eq. (1) we obtain

T — Tho
Ry

where T»y and Ty are the steady-state temperatures on the surfaces of the half-planes.

We shall prefer this formulation for the first analysis, and we shall return to the case
of prescribed heat flux into material 1 in a specific paragraph.

3. Stability analysis

Following Burton et al. (1973), the temperature perturbation in two half-planes can
be written as

Ty(x, y, 1) = 4"~ cos[mx], (8)

where 4; (i =1,2) are the arbitrary constants and

ai=:t”m2—{——l[§ (9)

and the sign + holds for i =1 and the sign — for i =2, because the perturbation must
decay away the contact interface.

To obtain the thermoelastic stresses and displacements, following (Barber, 1987), in
the half-plane 1 (y > 0)

2 1 A
_2men( £ v)dum e cos[mx], (10)

Trmly=0 = (1—=v)(m+ar)
Uy, |y=0 =0 (11)
and similarly, for the half-plane 2 (y < 0)

Gomlyco =  2up00(1 + v2)Aom obt
yym | y=0 (1 . vz)(m _ az)

uJ’:h|y=0:0‘ (13)

The full solution for stresses and displacements can be obtained by superposing an
isothermal solution corresponding to each half-plane being loaded by a sinusoidal nor-
mal traction. Such isothermal solution can be written as

cos[mx], (12)

O vy | y—=0 = Bi cos[mx], (14)
Bi(1 —v;)
Uy y=0 = —_n—zﬁ,_l cos[mx]. (15)

In the latter equation we take sign — for i =1 and sign + for i =2. It follows that:

Tyyly=0 = Gyl y=0 + Typ =0, (16)

lly|y:0 = Mym|y:0 + ’Lly‘ y=0- (17)

iso
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The boundary conditions at the contact interface (y = 0) impose

Uy, |y=0 = Uy, | y—0, (18)

Ty ly=0 = Tyy ly=0 (19)
and the heat balance condition (5) depends on the pressure p, where

P=—0umly=0=—0pyly=0. (20)
Hence, from Eqs. (2) and (4) we write for the heat flow at interface (y = 0)

¢ = 41K a,e” cos[mx], (21)

¢ = AKray & cos[mx]. (22)

Substituting Egs. (16) and (17) in Egs. (18)~(22) in Eq. (5) we obtain the following
equations:
Bi(1—w1) n By(1—-vy) _
Hy Ha
2#151K1A1m bt _ 2/1252](2142}71
S alht it wil WA | = e 2R
(T =vi)(m+ar) (1 —v2)(m—az)

0, (23)

e + By, (24)

2#15114111’!
A Kya) — A Kyay)e = [V | —E e By ), 25
(41K 2Kza;)e f ((l—vl)(m+a1)e 1) (25)

where §; = a;,(1 + v;)/K; (i = 1,2) is the distortivity of material i. Eliminating the
constants A; and B;, the perturbations can be expressed in terms of the single constant

K fV KL YV
A= (K2a2 +am M) Ay = (Klal —aM ﬂl—i) A, (26)
m—a m+a
where
1
DY (I =v)/m + (1 = n)/. (27)
Therefore,
m—day
AT =4
<K2612(m — 612) + 4Mm52K2fV

B m+ a
Kiay(m+ ay) — 4Mmd K, [V

) e? cos[mx], (28)

ay(m+ay)

e ) ! b 29
e al(’n+al)—4Mmb1fVe cos[mx] (29)
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]
= —o0 = 4M
AP="0nl=o (al(m +ar) — aMmd [V
+ 02 Am e cos[mx] (30)
az(m — (12) + 4Mm(32fV ’

where AT =1, — T.
Substituting the above equation in Eq. (6), the characteristic equation is obtained as
o1
al(m + al) - 4M51me

4M[q1oR — BfV(Ro + poR')Im <

4 52 n RO
ay(m — ay) + AMom fV 1 _ AMmd\ [V

(m+a1)ar
+ ! 7 ! =0 (31)
Kay — 4M’:1,,5i1a{11 L Kap + LM,;Z(S?ZI;;W . '

We shall introduce the same dimensionless parameters and notation as Zhang and
Barber (1990),

. k; 0 K
R* =mK\Ry, 1 :é-, Fz‘—‘a—?, "3:??
b z
:—‘2—, C1:\/1+Z, Cy = 1+— (32)
mk; ry
and additionally define a dimensionless speed
V =2MfV8/m. (33)

Note that this dimensionless speed is chosen as to be equal to unity at the critical
speed when body 2 is a rigid non-conductor and there is no resistance (Burton et al.,
1973). With this notation, Eq. (31) can be rewritten as

AT = F(z), (34)

where AT is the dimensionless “interface temperature drop” or “heat flux at the inter-
face” (since R’ < 0, then AT > 0 indicates a Ty — T19 > 0), defined by

AT = —4M8,K, <T2°—_T—‘9-) R (35)
Ry
and
_ R* + (1/c1) + (1/r3¢5) — ¢V
F& = Gatran = il T o) (36)
with

b nU-B e, 2 [n, tn
CZZ|:C'1(1+C1)+02(1+02)}R +clc2 {]4_02_'_ l_l_cl}' (37)
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Note AT coincides to the dimensionless heat flux O into material 1 in the static case
(V =0) defined by Zhang and Barber (1990). For V' > 0 the heat flux into material 1

depends on AT and an additional term due to the frictional heating
[ — 4M5,Kiquo + mKi BV polR = AT (38)

Therefore, in exploring how the critical condition depends on frictional heatmg, we shall
consider a given temperature drop at the interface, AT. Note that AT > 0 indicates in
the static case g9 > 0, a positive heat flux into material 1, i.e. for r, =(5,/0;) < 1 the
more distortive material, and for r, > 1, the less distortive material. For the sliding case,
AT > 0 is better translated into “higher temperature” of the less distortive material for
r» < 1, and of the more distortive material, for r, > 1.

4. Analysis of the function F(z)

To study the stability of the system, it is necessary to analyze the behavior of function
(36) which has the form F(z)=N(z)/D(z), and z=x+iy is here the complex variable,
representing the growth rate b; the condition Reb = 0 defines the critical condition.
Next, we shall assume, without loss of generality, that the materials are arranged such
that r > 1.

4.1. Real roots

For real z (y = 0), unstable real roots correspond to solutions of F(x) = ﬁ, with
x > 0. The numerator of the right-hand side of Eq. (36) is

N 1 1 A
N(x,V)=R*4+ — + — —cV, (39)
C1 141%}

i.e. the difference between two positive decreasing functions with limiting behavior

201+ r3(1+ R*)] = {1 + r3ra 4 r3[ra(1 — B) + BIR*}V

N(@0,V)= o (40)

N(oo,V)=R". (41)
Further, the numerator N is a positive function for

P < Pren 1/rs+1+R* (42)

1/rs + 12+ [r2(1 = B) + PIR*
and it assumes negative values for small x and positive values for larger x, when
V>V
From Zhang and Barber (1990) we know that the denominator
1 %)
D(x)= -
x) ci(l+c¢) a(l+c)

(43)
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is a monotonically decreasing function of x, with limiting behavior

D(0)=(1-r)/2, (44)

D(0) = (1 — rim)/x. (45)
Consequently the function F(x) has limiting behavior
21+ r5(1+ R = {1 +rsry + sl = B) + FIRT}V

F(0)= 46
© r(1—r2) (*6)
which depends on speed and thermal contact resistance, whereas
F(o0) = —~ (47)
1—-r 172

is independent on ¥ and R*. L

If we plot a graph of F(x) against x, as in Fig. 2, solutions of F(x) = AT corre-
spond to intersections of the curve F(x) and the horizontal line AT. The first such
intersection will occur at either the origin, or infinity or at some intermediate point. If
it occurs at an intermediate point, this must correspond to a local minimum of F(x).
Plotting the -motion of these real roots on the compl/e_x\ plane, if a root arises because
of a minimum in F(x), it appears at some value of AT at a point on the positive real
axis and bifurcates into a left-moving and a right-moving real zero as AT increases.
The complete behavior of the roots of the characteristic equation must be continuous
in the complex plane, so we conclude that at AT a bit lower than those where the
double real root appears, there must be a pair of complex conjugate roots that con-
verge on the real axis from either side at the critical condition. The continuous motion
of these roots to the bifurcation point must have occurred by crossing the imaginary
axis (if they had crossed through the real axis, there would have been already a real
zero corresponding to a lower value of F(0) than that at the minimum of the F(x)
curve).

A minimum in the F(x) curve might arise if the function F(x) is not monotonic. It
is then possible to argue that the curve F(x) has to pass continuously from N(0)/D(0)
to N(o0)/D(00), unless D(x) has a zero in (0,00), in which case F(x) will pass
through plus and minus infinity at the zero. Hence, when a minimum in the F(x)
curve arises, above the zero it must either (a) pass through a minimum on the way
to x — oo, (b) decrease (increase for F(oo) < 0) monotonically to a final mini-
mum at infinity. The case (b) would imply infinite growth rate solutions. However,
F(x) is unbounded at infinity, so that an infinite AT would be needed to get infi-
nite growth rates. Thus, the only possible case is (a) giving a complex root for the
critical condition as explained above. In other words, this argument shows that in ap-
propriate cases, the existence of a minimum in F(x) demands that there be complex
roots.

For solutions at the origin, x =0 (Reb =Im b = 0) and the critical condition in Eq.
(34) is real

AT(1 = ry)=2[1rs + (1 + R = {1rs + 12+ [2(1 — B+ IR}V, (48)
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©) r,>1yand 1V, >0 ) ry>r and V, <0

Fig. 2. Possible behaviors of function F(x): (a) 0 <ry <1/r;; (b) I/m <rp <1 (¢} 1 <rp <ry and
ra > ry with ¥V, > 0; and (d) (r, > r; with ¥, <0).

However, even when a zero at the origin is possible, it may occur that the deriva-
tive of |F| with respect to x at the origin is negative, indicating that zeros cannot
reach the real axis through the origin because they occur on the positive real line
at lower |F| than those needed to produce a zero at the origin. Hence, the stability
boundary will be determined by a real root if the derivative of |F| at x =0 has the
same sign as the value of F at x = 0. Otherwise, it will be determined by a complex
root.

By differentiating Eq. (36) and rearranging, we can show that 77(0) has the same
sign as the expression

T(R*,V)=To(R*) -V x G(R*), (49)
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where

FO(R*):3R* (1 — ’—2> +3 (l +l> (1 — r_2> —2(1—r2) (l + L)
n r3 r1 rirs
e (1-2) B ()02
r ri r 3
+3r; (1 - l) +(1=r) (50)
r

and

1L (—1—+§r2>. (51)

Note that for ¥ =0, Eq. (49) becomes I'(R*) = I'y(R*), coinciding with Zhang and
Barber (1990).! Note also that if 7, < 1, I'o(R*) is always positive and if

3 1 1 1 /1 3
2 (3= - —— | —+= >0 52
2r;3 ( r1)+r2 (2+r2) r <r3+2r2> (52)
then G(R") is also positive for all R* and I'(R", V) will be positive for ¥ < I'y(R*)/G
(R*)=V,, where

P 2r1[3 + r3(1 +3R* +2r;)] — 2[2 + 12 + 3rar3(1 + RY)]

= S 0. 53
rz{r1[3+r3(1+3R*+2rz)]—3r3(1+R*)— 1}—2 = (53)
If H <0, but
* 21"1}H|
R > — T 4
7 3m(n— 1) G4

then G(R*) will be also positive and I (R*,V) >0 for V < V,. Finally, if R* <
il then I'(R*, V) > 0 for all V.

The possible behaviors of F(x) as a function of speed are shown in Fig. 2. In
particular, Fig. 2a considers material range 0 < r, < 1/r;. In fact, in this range the

limit behaviors of F(z) are

A N(@©0)>0 N(0) > R*
V< V*: = F(0) > 0, = F(00) = +o00,
. 1 D(0) > 0 D(c0) = 0"
<rp<l/ry:
e NPT N(c0) > R*
V> P = F(0) < 0 = F(00) = +00.
D(0) >0 D(c0) = 0"

IThe term {2(1 — 1/ry) + (1 — r2/r1)}, in Eq. (20) in Zhang and Barber (1990), need to be divided
for r3.
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Further, for ¥ < V*, F(0) and I' cannot assume opposite sign because the condition
I' < 0 involves that

H>0ad V>V, or

27’1‘H|
3ry(r — 1)

and the speed 7, in the range above identified is always larger than V*. Therefore,
the inequalities V < P* and V > V, cannot be satisfied at the same time and, hence,
for ¥ < V* we cannot obtain complex roots because the curve F(x) does not have a
minimum.

With similar arguments it is possible to show that the possible behaviors for F(x)
in the material ranges 1/r; <r, <1, 1 <r, <r and r, > r; are shown in Fig. 2b—d,
respectively.

H <0, but R* > and V >V,

4.2. Complex roots

We have shown that the existence of a minimum in F(z) demands that there be
complex roots. Complex roots in our problem correspond to sinusoids oscillating in
time (see the form of the perturbation in (1), where the real part only is implicitly
assumed to contribute to the temperature) and this should not be confused with the
case of migrating waves occurring in the case of sliding in-plane, for which there may
be migration speeds V] and V5 relative to materials 1 and 2, respectively, such that

h-n=V7,

where V is the sliding speed in plane. Thus, the case of independent travelling waves in
opposite direction is obtained if the waves move in opposite directions as V=V, —V,=0,
i.e. static contact or out of plane sliding. When there is a travelling wave (migration)
(i.e. not two counter moving waves creating a standing wave), the imaginary parts
create a phase lag between the expansion, the heat flux and the surface temperature.
For the standing wave case, this translates to a phase lag in time with cosine form. In
the in-plane case, the phase lags are on opposite sides of z =0 in the two materials
because generally the relative migration speeds are opposite, and the two problems are
not equivalent.

5. Implications for stability behavior

The above analysis enables us to characterize the stability behavior of the system with
respect to the material properties, using the same classification in material classes of
Zhang and Barber (1990), and by arranging the materials such that 7, > 1. Recollecting
briefly their results for the static case, instability occurs either for (see, Table 1)

1. flow only into the more distortive material (class a) with a real root,
2. flow only into the less distortive (class ¢ with a complex root, or real root for class
dand I'y < 0),
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Table 1
Stability behavior for the static case Zhang and Barber (1990)
Parameters range Inst. cond. Root Class
0<r <l AT >0 Re a
Ifri<m<l AT >0 Re
AT <0 C
1<r<n AT <0 C c
> AT <0 C
r2>r1(F0<0) AT <0 Re
Table 2
Stability bebavior for sliding contact
Parameters range Speed Inst. cond. Root Class
V< P* AT > Z?c, >0 Re a
0<r<l/r V<V <V, AT>AT“<O Re
" V>V, AT > ATy <0 C
V< V* AT > ATm >0 Re b
AT < AT2cr <0 C
lri<m<l" Pr <V <V, AT>ATm<0 Re
AT < ATzc,r <0 C
V,<V <V AT>AT10,<O C
AT < ATZCT <0 C
V>V, All AT Re
V<P, AT<AT“<0 C c
1<rm<n V<V <P* AT<AT“<O Re
V> AT <ATq >0 Re
ry > rp with 17, >0 Like material class 1 <7y <7y d
ra>rp with ¥, <0 V< p* AT<ATC,<0 Re
V> p= AT < ATy >0 Re

3. flow of either signs (class b with a real root for flow into the more distortive
material, and a complex root for the other flow sign).

Since most material combinations fall into classes a and b (see, Appendix A), it was
concluded that the most likely instability was in direction AT > 0.

In the sliding case, AT > 0 is translated into higher temperature of the less distortive
material for r, < 1, and of the more distortive material, for », > 1. The effect of
dimensionless speed V' is summarized in Table 2, for each material classes (a—d), in
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Fig. 3. Possible stability ranges as AT «r as a function of speed Vi@ 0<r<lfr; () Irn<n<l;
()1 <ry <ry and rp > rp with V, > 0; and (d) r, > 7 with v, <0.

terms of stability boundaries and indicating if the root is real (Re), or complex (C). In
the former case, the stability boundary is simply given by Eq. (48), and complex roots
are obtained as indicated in more details in the next paragraph. The stability boundaries
are correspondingly sketched in Fig. 3a (0 < rp < 1/ry), Fig. 3b (1/ry < r, < 1), Fig.
3¢ (1 <ry <ry and r, >y with Y, > 0, and finally Fig. 3d (r, > r; with V. <0)as
a function of speed.

At speed J*, the isothermal condition at the interface becomes critical (it is obviously
not critical at zero speed). Speed ¥, indicates the passage from complex to real roots in
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one of the branches of the stability boundary, or vice versa, and note that in the complex
root regime, the relation between critical temperature drop and speed is nonlinear.
Finally, at the speed ¥, speed for which the numerator and the denominator of function
F(z) pass through zero in a same point, the materials of class b show critical conditions
for all applied temperature differences. It is clear that the classification of the behaviors
for the static case is not altered much for speeds below V < V*, but the critical
condition may change from real to complex. Above this speed, a change of sign in
one of the critical values occurs, and therefore even a temperature drop in the opposite
direction of that causing instability in the static case, may cause instability.

6. Parametric study of complex roots

Complex roots appear when there is a minimum of the function and the actual range
for instability needs direct complex root computation. A simple strategy to obtain
results is to use a parametric investigation. In particular, if the characteristic Eq. (34)
is rewritten as

VIR*Qy + Q] — R* — Q5 — ATQ, =0, (55)
where
B r(1 =) 1 ( ) 1/r3 >
! cl(l+cl)+cz(1+c2) 2 e \l+c 14+ (56)
1 1 1
Q3 =— +—; 2 (57)

o ne’ 4= ol+a) all+a)
Taking real and imaginary part of Eq. (55), by fixing material properties and R*, we
define, for a given complex z, parametrically the two real quantities V, AT. Starting
from eliminating ﬁ, we obtain

R*Im Q;+Im Q, * .
o RO IR O (R* +ReQ3) — Im

— R ImQ m
Im Q4 — Re Q3.6 re 0

(58)

and substituting back,

R* + Re Q3 + ATRe Qq

R*Re Q 1+ Re .Qz
This analysis can be used for purely imaginary z in order to explore the stability
boundaries for complex roots, or for a general complex z if growth rate in unstable

regime are desired. The analysis was repeated to find the possible conditions of Table
2 and in Fig. 3.

V=

7. Prescribed heat flux into one material

In the single half-plane sliding against a perfect conductor (Afferrante and Ciavarella,
2004), it was found that at pressures for which R( po)+ poR'( po) < 0, frictional heating



1542 L. Afferrante, M. Ciavarellal J. Mech. Phys. Solids 52 (2004) 15271547

becomes a stabilizing effect (for a given total heat flux transmitted). Vice versa, heat
flow makes always the system more unstable when directed into the conducting material
(i.e. with higher distortivity). In the discussion so far, we have been concerned with

the case of prescribed AT, as this was simpler than the case with prescribed heat into
one body.? Using Eq. (1), we define a dimensionless heat flux into material 1 as3

Oro = —4M3, K q1oR = AT — VR (60)
with
R =mK; poR'. (61)

For a given Qlo, the critical conditions found in terms of E, cannot be immediately
translated. In fact, suppose we are in class a materials, for the condition given by real
root, then instability is given for AT higher than that given in Eq. (48), and using
Eq. (60),

010 > 2 HERSt (1/"3 + 1+ [r2(1 = B)+ PIR*

(1-r) (1—r2)

Hence, it is clear that frictional heating may be a stabilizing factor if the term under
parenthesis multiplying the speed is negative, i.e.
_ Urs 4+ [n( - p)+ BIR
(1—r)p

which replaces the corresponding poR’ < —R, found in the case of the half-plane sliding
against a perfect conductor (Afferrante and Ciavarella, 2004), which is immediately
re-obtained for r, = 0,73 = 00. Since R’ < 0, inequality (63) defines clearly a range of
special cases for which frictional heating has indeed a stabilizing effect.

However, E)L the case of real root for class ¢ materials, for which r, > 1, instability
is given for AT higher than that given in Eq. (48), and using Eq. (60), and changing
signs,

+ ﬁi@) V. (62)

R <

with r, <1 (63)

R s =

(1-r) (1-r2)
and normally the effect of frictional heating is to enlarge the region of instability, unless

= s+ +[n(l - p)+ IR
o= GRS

+ ﬁﬁ’) 14 (64)

with r, > 1

2 Note that for “prescribed” we do not really intend to artificially imposing a temperature drop at the
interface nor a heat flux into one material, as neither conditions is simple in practise. A more realistic
approach could be to consider prescribed temperatures of the two bodies (or heat fluxes) at some distance
from the interface, but because of the difficulties in half-plane elasticity, the present choice is the only viable
alternative.

3 Note that for V =0, Q, Q10 and E, all coincide

0= 010 = —4M5K1g1oR’ = AT. (59)
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which is impossible, given R’ < 0. It is not practical to explore if there is a larger set
of possible conditions making frictional heating a stabilizing effect than those indicated
in Eq. (63), particularly when the roots are complex, but it remains only a special set
of combinations of materials and resistance function.

8. Effect of heat generation factor f

In the formulation of the problem, we introduced the parameter f, indicating the
proportion of frictional heat which is generated in material 1, ffVp, ie. (1 —-B)fVp
is the complementary part entering body 2. This parameter essentially depends on the
exact mechanism generating frictional heat, most likely depending on the roughness
and plastic behavior characteristics of the contacting bodies at asperity level. It is very
hard to establish the value f8 unless there are experimental data available, and therefore
it is convenient to explore its effect in the entire range of possible values (0-1).

The parameter f of frictional heat generation appears in the expression for c¢ in
Eq. (34) and hence affects the stability of the system. In Fig. 4a the effect of f on
the stability of the system is shown for class a materials’ combinations, r, < 1/r;.
In this range the increase of f, i.e. the increase of heat generated in the more dis-
tortive material, makes the system more unstable and this effect is emphasized for high
speeds. ‘

In Fig. 4a the case of class b, i.e. when 1/ry <7y <1, is treated, showing that f8
has opposite effects on the critical values AT Ler ¢ and ATZCr When 8 grows, the reg10n
of ‘instability becomes larger with respect to ATM, smaller with respect to AT2cr

For r, > 1, the increase of f reduces the region of instability. Therefore, as for
ry < 1/r1, the increase of heat generated in the more distortive material, makes the
system more unstable. In Fig. 4c is shown this effect for , > r; and V, <0 (class d).
In the remaining case (class c¢) the effect is similar.

9. Practical considerations

In the classical literature on TEI, the occurrence of instability is associated with
undesired formation of hot spots and localizations of damage, which give rise to a
series of problems in brake/clutch systems. Given the standard analysis does not con-
sider resistance at the interface, the TEI critical speed is a well-defined quantity only
dependent on geometry and materials. It is generally concluded that undesirable TEI
effects can be minimized by increasing the thermal conductivity of the friction ma-
terial. This has the effect of increasing the migration speed of the disturbance with
respect to the good conductor, hence reducing the magnitude of the thermoelastic dis-
tortions. In automotive disk brakes, two commonly used friction material categories are
non-asbestos organic composites (NAOs) and semi-metallic composites. Semi-metallics
have significantly higher conductivity than NAOs because of the metal content. Design
experience shows that they are indeed less prone to hot spots and the associated hot
judder. Despite some remarkable success in comparing experimental evidence of TEI
to the predicted features of unstable modes, there is still some quantitative difference
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Table 4
Type of behavior for different material combinations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
b b b b b a b a a a b b b a a a a a a 1
b b b b ¢ ¢ b ¢ b b b b b c a a c b 2
¢c b a b a b b b b b a b b d ¢ b b 3
a a b d b b b b b a b b d ¢ b b 4
a ¢ ¢ b b b b b b b c a d b b 5
b a b b b b b a b b c b b b 6
¢ a d a a a c a c a a b b 7
b ¢ b b b c b ¢ d d c b 8
b a c d b a a a a a b 9
b a a b a c a a b b 10
a a b a d a a c b 11
a b a a a a a b 12
b a a a a a b 13
b c d d b b 14
a a a a a 15
a a a a 16
a a a 17
a a 18
a 19

material (classes a, ¢ and d). For material class b the reglon of instability is only
shifted and above ¥, the system remains unstable (both ¥V, and V¢ do not depend on
the parameter f3).
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Appendix. Material combinations

In the analysis, the combinations of materials introduced by Zhang and Barber (1990)
were used, where material properties are specified in Table 3. The resulting behaviour
is shown in Table 4, where the classification in four classes (a, b, ¢, d) is used in
Tables 1 and 2.
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