Tangential Loading of General
Three-Dimensional Contacts

A general three-dimensional coniact, between elastically similar half-spaces, is con-
sidered. With a fixed normal load, we consider a pure relative tangential translation
berween the two bodies. We show that, for the case of negligible Poisson’s ratio, an
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exact solution is given by a single component of shearing traction, in the direction
of loading. It is well kno
be applied through the center of the pressure distribution. Instead, for a Jull stick
case the tangential force must be applied through the center of the pressure distriby.
tion under a rigid flat indenter whose planform is the contact area of the problem
under consideration. Finally, for finite friction a partial slip regime has to be intro-

wn that, for full sliding conditions, the tangential force must

duced. It is shown that this problem corresponds to a difference berween the actual
normal contact problem, and a corrective problem corresponding to a lower load,
but with same rotation of the actual normal indentation. Therefore for a pure transiq-
tion 1o occur in the partial slip regime, the point of application of the tangential load
must follow the center of the *‘difference” pressure. The latter also provides g
complete solution of the partial slip problem. In particular, the general solution in
quadrature is given for the axisymmetric case, where it is also possible to 1ake into
account of the effect of Poisson's ratio, as shown in the Appendix.

1 Introduction

Transmission of loads and guiding of components is very
often accomplished by mechanical contact. in a variety of possi-
ble geometries. It becomes important, then, to quantify traction
distributions to improve our understanding of the “‘strength”’
of the contact as defined usually by the maximum value of the
von Mises parameter. Alternatively, depending on the applica-
tion, the quantification of fretting damage and surface frictional
energy dissipation, as well as crack initiation and crack propaga-
tion. Also, in many applications of robotics and. in general, in
production and manufacturing, such as positioning of objects
and workpieces, it is of paramount importance to precisely
quantify the elastic deformations, and the relatjve displacements
induced into bodies. Indeed, it may be desired to produce pure
relative translation of the two bodies. It is known that, in a
general contact in gross or full sliding, the condition to obtain
pure relative translation is the application of a tangential force
through the centroid of the pressure, i.e., the point of application
of the normal force? (MacMillan, 1936). However, the condi-
tion for full sliding cannot be reached, other than through an
increase of the tangential force from zero. Now, when a tangen-
tial load is applied to a general contact between elastic bodies,
a complex frictional shearing traction distribution arises to
equilibrate the applied load. The contact area is divided into
regions of micro-slip and regions of adhesion, according to
Coulomb’s law. Therefore it is possible that, on applying the
tangential force through the centroid of pressure, there is an
undesired relative rotation until the full sliding conditions are
reached. To investigate this possibility, we need to consider the
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? This is actually true, a rigori, only in the absence of Poisson’s effect, as we
will see in the discussion for the general case ¥ = 0 below.
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contact problem in the partial slip regime, evolving from the
fully adhesive condition in the presence of normal load only,
towards the full sliding conditions, when the tangential load is
fully applied.

There is a number of results available in the literature for
(frictionless) normal contact problems, at least in the case
where the contacting bodies can be approximated as half-spaces.
For a circular contact area, that practically requires axisymmetry
of the geometry and boundary conditions, a general solution in
quadrature is known (see, for example, Scthaerman. 1949). In
the case of general shape of the (single) contact area, approxi-
mate solutions are known (Fabrikant, 1986), and the normal
compliance and relation load-contact area can be also predicted
accurately by ad hoc methods (Barber and Billings, 1990).
There remains the far more complicated case of multiple contact
area. which is of particular importance when rough surfaces are
in contact. In this case, recourse to numerical methods to solve
the governing equations is in practice not avoidable. Indeed,
several solution techniques have been developed (see. for exam-
ple, Kalker, 1990), although it is not always easy to achieve
the desired accuracy, especially regarding localized regions. for
example when singularities are expected at the contact area
boundary, and in that case they may also change intensity with
position (Fabrikant et al., 1988), in the case of sharp corners.

Moving to the case of interest for the present investigation,
where a tangential action is applied with a finite friction coeffi-
cient, the number of known solutions is largely inferior, even
in the simplest case of elastically similar materials. The problem
corresponds to the finding of a shearing traction distribution
such that there is rigid-body displacement in the entire stick
zone, fulfilling Coulomb’s law in both stick and slip areas.
Cattaneo (1938) solved the three-dimensional contact problem
for second-order surfaces (Hertzian contact). The solution is
obtained by making an *‘educated”” guess of a distribution of
tractions that fulfills the requirements for displacement fields.
Itis little known that Cattaneo also solved the case of an axisym-
metric contact with distance function of fourth degree, in 1947
(Cattaneo, 1947a, 1947b). Later on, Mindlin (1949) indepen-
dently reobtained the solution of the Hertzian contact, and in
Mindlin et al. (1952) and Mindlin and Deresiewicz (1953) also
gave solutions to the unloading, cyclic, and oblique loading
problems. Deresiewicz (1957) gave the treatment for the oscil-

Transactions of the ASME



lating tangential forces in elliptical contact arca case, while
many experimental results by Mindlin himself (Mindlin et al.,
1952), and more extensively, by Johnson (1955), were in very
good agreement with the theory in two respects: the tangential
compliance, and the appearance of annular regions of slip,
where wear resulted. Other results are known for twisting prob-
lems (Lubkin, 1951; Cattaneo, 1955; Pacelli, 1956; Hetenyi et
al., 1958; Hills et al., 1986) in Hertzian contacts; it is well
known that, even in the case of pure twist of Hertzian contacts,
the equations become quite cumbersome, in particular in the
case of elliptical contact (Pacelli, 1956), and therefore we do
not address this configuration. In the case of tangential loading
with complex stick-slip patterns, however, the computational
effort of a fully numerical solution is, even for ad hoc procedure
(Kalker, 1990), very intensive, and it is still difficult to go
under certain levels of numerical error.

For the shifting partial slip problem, apart from the geometry
already solved by Cattaneo, to the best of the author’s knowl-
edge, only the case of a cone indenter has been solved to date
(Truman et al., 1995). This is probably because the Cattaneo-
Mindlin procedure involves the explicit calculation of the dis-
placements, whereas a general method would ideally avoid com-
pletely this step, formulating the problem directly in terms of
integral equations. In a recent paper (Ciavarella, 1998a, b). the
author has treated the case of partial slip in the general plane
contact between elastic isotropic bodies, showing in particular
a connection in any plane partial slip contact problem with two
corresponding frictionless plane contact problems, for which
solutions in quadrature are known for single, multiple, and peri-
odical contact: this result has permitted new exact solutions to
many plane partial slip problems, for which the Cattaneo-
Mindlin procedure, involving the explicit calculation of dis-
placements, would be prohibitively complicated.

In this paper it is shown that in the three-dimensional case.
for negligible elastically dissimilarity and combined Poisson’s
ratio, similar results apply, as a single distribution of shearing
tractions (i.e.. shear only in the direction of the applied force)
solves the problem. This permits one to obtain several properties
of the tangential loading regime, and provides a means to do
actual calculations either analytically or numerically in a much
simpler way. It is known that, in the presence of Poisson’s
effect, even the Cattaneo-Mindlin solution for Hertzian contacts
is approximate, in that it neglects the presence of a small shear-
ing distribution in the transverse direction (Munisamy et al..
1992). In view of this, attention will be concentrated on contact
problems for the case of no Poisson’s effect (v = 0 as below).

2 Formulation

Let us start from the governing equations for the case of
normal indentation. In general, there is coupling between tan-
gential and normal displacements, and therefore between pres-
sure and shearing tractions. In that case, exact analytical solu-
tions are not known even in the simplest geometrical and load-
ing configurations. However, the effect of coupling is generally
small (Goodman, 1962), and indeed there is a vast category of
situations where the contacting bodies material are of same
material, or the materials are elastically similar: specifically, the
case where Dundurs’ constant, 3, is zero

= oy — 1) = py(xy = 1) =0
a(ky + 1) + (s + 1) ’

where « is the Kolosov's constant, given by x = (3 — 4v) as
in the case of plane-strain conditions, (v;, y, are the Poisson’s
ratio and shear modulus of the material of body {). In this case,
the equations relating normal and tangential traction become
uncoupled, and the contact pressure can be calculated a priori.
Let us write relative surface displacements as u = u, - u,.
Then, the integral equation relating normal displacements to the

pressure is (Johnson, 1985)

(h
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(&,
-Zﬂu..(.\-.,\-) = ffﬂ—‘f-—n—)didn. (xv,m)es (2)
A s P

where S is the contact area, as yet undetermined, p is the dis-
tance between field and integration point

p=WE-2)+(n-y), (3)
and A is the ‘‘composite compliance’’ of the bodies?
1 - 1 -
A= (____v_ N __’_’_2> , )
Hi H2

This integral equation is sufficient to solve the normal contact
problem, imposing the appropriate boundary conditions. In par-
ticular, the equality (inequality) relating to contact over the
area § (noninterpenetration condition exterior to §) is

ulx,y) =6, — [0y + 0.x] = [filx,y) = filx. W],
(x,y)e§ (5)

u:(x, )’) > ‘5: - [9,)’ + 9)""1 - [.fl(x' y) —fl('\" }’)]v

(x.y) €5 (6)
where f,(x, y), f(x. y) are the functions describing the profiles
of the contacting bodies in the undeformed configuration, and
(8., 6., 8.) is the given rigid-body motion necessary to bring
the two body into contact. Given (4., 4., 8,), the distribution
of pressure p(x, y) is determined, from which a resultant load,
and moment M (of components M, and M,) with respect to the
coordinate system (&. 1) can be calculated as

P = fj;p(£.n)d§dr7, M, = ffsp(& n)§dédn,

M,\.=_l.f p(&, n)ndédn. (7)
S

Of course, there is a point where the resultant P can be applied
without any moment, and it is called the center of graviry of
the normal pressure distribution (simply, the centroid of the
pressure), and indicated by N; any coordinate system (&, 7o)
through such a point N will satisfy

ffsp(fm M) €odEodne = 0,

fj; P (&0, M) M0dEedny = 0. (8)

Although there is no exact method to solve the contact prob-
lem in general, and in particular for other than circular or ellip-
tical contact areas S*, remarkable is Barber’s method (see Bar-
ber et al.,, 1990) which is based on a variational formulation,
using the theorem that the exact shape of the contact area is the
one that maximizes the load, for a given indentation; a numeri-
cal method is then needed anyway, to find this maximum.

On applying a monotonically increasing tangential load in
direction x, there will in general be stick and slip zones. The
shearing tractions are strictly related to the limiting value of
Coulomb friction (see below). The other two integral equations
defining the problem both relate to displacement of particles
parallel with the surface, one in the direction of the tangential
force, and the other perpendicular to it. They are

? Notice that A corresponds to 2/E* in Johnson’s notation (Johnson, 1985).

* In fact, for circular area, the problem being axisymmetric, a solution in quadra-
ture is possible (Schtaerman, 1949). For eiliptical contact area, it is difficult to
think of any non-Henzian problem that produces exactly this shape.
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2_77 . =ff (& n)
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for (x,y) € S, where
y = (5—’ + ﬁ)/A.
Hi M

It is evident that, even though we are considering the 8 = 0
case. there is a second coupling, due to v, and it is between
the distributions of shearing tractions themselves. Indeed, this
system of coupled equations gives a solution [g(x, ), g.(x,
v)] for any couple of assigned functions [u(x, ¥), w(x, ¥)]
in the domain S. Therefore, in the general case, even if we
impose, say. u,(x, y) = 0, due to the coupling, it is not necessary
that g.(x, y) = 0. Also, again due to0 the coupling, there is no
analogy between the integral equation for the normal displace-
ments (2) and the tangential correspondents (9), (10). There-
fore. in order to avoid coupling, and obtain an equation similar
o (2). let us consider the case that the composite Poisson’s
ratio of the bodies is zero® y = 0: equations in tangential direc-

tion simplify to

(11)

2 v) = ff Md&m (12)

A s g

R ulx, y) = ff 2. n) dédn (13)
s P

A

which are two independent problems, each one analogous to a
normal contact problem in (2). The total shearing forces are

0. fs a&mdsan. o= [ [ atemaean. (a)

The condition we look for is the pure relative translation.®
Therefore, we seek here for conditions under which a simple
solution (i.e., with only one component of shearing traction
distribution) for the pure relative translation problem is possi-
ble. Let us denote with x the direction where the resultant force
Is applied, i.e., Q, = 0: it is clear that a priori we do not know
whether this is also the direction of the relative translation.
However, as the shearing tractions in the two bodies are equal
and opposite for Newton’s third law, the relative tangential
displacement of surface particles must be constant within the
stick zone, and equal to the imposed rigid translation

—_—
* For materials having positive Poisson’s ratio, this is only possible if both v,

=y, =

¢ Things become much more complicated when a relative tangential rotation is
present. In the simplest case of **pure spin,” only for the Hertzian circular and
elliptical contacts a solution is known, although the results are not in closed form
(Lubkin, 1951; Cattaneo, 1955; Pacelli. 1956, Hetenyi et al., 1958; Hilis et al.,
1986).
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u(x. vy =0, wulx.y) =00, (X.¥) € Suu (15)

where 6, is expected to be zero under conditions of symmetry.

Moreover, Coulomb's law requires that the shearing traction
must be less than the limiting value in the stick zone, j.e.,

lqCe, ) < fp(x y), (2, Y) € Sqex. (16)

Within the slip zones the shearing traction is limited by friction
again, i.e.,

lq(x, )| = fp(x,y). (x,9) € Sup (17)
where the vectorial notation is necessary because, in general,
q(x, y) has two components. The shear traction must always
oppose the direction of relative change in the direction of slip,
i.e. under monotonic tangential loading,
L9 uxy) _ 0.

or lu,(x. y)|

q(x, y)

la(x, »i
where u, = u, + u, is the relative tangential displacement, and
the variable time ¢ is introduced, but it is clear that we are
considering a quasi-static formulation. The above equations pro-
vide the framework for solving the problem.

(X' )') ESslipy (18)

.3 Solution

As in the normal loading phase there was no tendency for
surface particles to slip, the initial stick zone envelopes the
entire contact. A monotonically increasing tangential remote
relative displacement will therefore give rise to a receding prob-
lem, according to Dundurs” classification (Dundurs, 1975), and
therefore there is no need to follow the entire loading path, and
we can solve directly for any particular value of 5. We only
need to distinguish between the limit full stick conditions, and
finite friction conditions.

3.1 Full Stick Conditions. We shall assume that the
shearing distribution will have act only in the direction of the
tangential displacement. Writing the boundary condition ([5)
in the integral equation (12). we have

5. =_A_ff ‘1_-'&_'7_)4,547, (x,y) €S. (19)
2 s P

any

Equation (13) is identically satisfied, as uy(x, v) depends only
on g.(x, v), which is assumed to be zero. Integral Eq. (19)
then. is formally equivalent to the problem for a rigid flat punch
of planform §. indenting the half-space with a rigid vertical
displacement. Therefore, q, is proportional to the distribution
of pressure, which is singular along the boundary of S, of the
cited normal indentation problem: this implies also that a pure
translation solution is possible only if the line of application of
the resultant Q, is through the center of the rigid flar punch of
planform § pressure distribution, that we call the tangential
center 7T (in the full stick conditions). Moreover, this solution
will satisfy the problem exactly. We can therefore invoke
uniqueness of the elastic solution to prove that there will be no
other solution of the tangential shift problem, perhaps with a
self-equilibrated distribution g, of shearing tractions. It is inter-
esting to study in more detail the tangential center T; we have
proved that. if the direction of the tangential force Q, does not
pass through this point, there will be relative twist of the con-
tacting bodies, because, for uniqueness, the conditions u(x, y)
= §; u,(x, y) = 0 cannot be satisfied in the entire contact area
by any other distribution of shearing. tractions than the given g,
distribution. It is clear that for a fairly general profile, for which
the shape of the contact area § changes continuously increasing
the load, and consequently so does the tangential center T, for
each value of the normal load the set of possible direction of
tangential load for which there is pure translation is the set of
lines intersecting in such point 7. Only on condition of symme-

Transactions of the ASME




try the direction of application of Q, tur pure translation wil]
not change. To note that the result applies equally to connected,
as well as multiply connected areas S.

Again, no method exists to provide a solution in the general
case of §. This aside, the analogy is sufficient to validate the
assumption that full stick implies a singular distribution of
shearing traction, that cannot be sustained by a finite friction
coefficient. Therefore, the mathematical problem of full stick
is practically non very meaningful in this context, unless we
consider the case where the bodies are welded together, i.e., we
have an external crack problem with the singularity giving a
stress intensity factor.

3.2 Partial Slip Conditions. Let us then move to a partial
slip regime, that arises if friction is finite. We assume a shearing
traction distribution given by the sum of two components, a
full sliding term, and a correction, as

a:(x,y) =fp(x,y) = q¥(x,y), (x,y) €S (20)
where g (x, y) = 0 in the region of slip, i.e., for (x, y) € Sqip,
whereas it is at yet undetermined in the stick region. Writing
again the integral equation for relative displacement in the tan-
gential direction (12),
. A :(x,
‘5~*=iff fo(€ n)dfdn*—ff HICIS
2w JJs ] 2 J Js P

stick

(xy)es§ (21)
whereas Eq. (13) is, again, identically satisfied. Now, as the
normal loading equation (2) continues to hold, it follows that
g¥ (x, y) is the solution of the integral equation

A f f NS jein = w(e vy = 6 f
2w S 4

(.Y, }’) E Ssliuk (22)
which can be recognized as being of the same kind as the
original equation involving the contact pressure (2 ), for a lower
value of the vertical rigid-body displacement, giving the re-
sulting *‘contact™’ area (1i.e., the stick area) to be a subregion
of the actual contact area. In particular, it is important to note
that the rotation is the one fixed by the actual normal contact
problem, i.e., by Eq. (5).

The analogy is so far only partly proved, in that we need to
check that the inequalities are automatically satisfied by this
analogy. Inequality (6) corresponds to the condition that the
relative tangential displacement, for the chosen sign of the tan-
gential load, has to be positive: this results from a theorem in
normal contact which states that there is no point at which an
increase of normal force causes a decrease in the local contact
pressure (Barber, 1992, Section 25.3.2). Equation (13) proves
that the direction of slip in the slip zones is satisfied, as u, =
0, whilst the definition of ¢ * = 0 satisfies implicitly the limiting
conditions of Coulomb'’s law in the slip zones. As the solution
found is the exact solution to the problem, and the solution is
unique, there cannot be a solution with ¢,(x, y) = O in any
point of the contact area. Thus, any partial slip solution for a
contact problem, for elastically similar materials, and of any
shape (simply or multi-connected) of contact area, can be com-
pleted immediately, providing the corresponding normal load
is itself known.

Let us now consider the implications on the direction of the
force Q.. First, consider that the full sliding component, with
tangential force fP, clearly passes through the center of the
normal pressure distribution M, in the direction x. Then, we
define a center of corrective pressures by T*. The conditions
for determining the centre of the shearing tractions in the actual
partial slip tangential problem are given by elementary vector
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analysis. In particular, if the distance in the y-direction bctween
N and T# is o*. then it is immediately possible to find the
distance ¢ in the yv-direction between N and T. which is

oo [g]) e

and in particular at the first stages of application of Q,, i.e.,
when Q,/fP = 0, it is d == d* but d* is expected to be small,
as the corrective problem is only slightly different from the
actual normal contact. At the other limit, when Q,/fP = |,’
close to the full sliding, even if d* is large, d = 0, as expected
because the corrective problem becomes of vanishing small
load. Therefore, if we look for pure translation without moving
the direction of application of the tangential load, we can distin-
guish between three situations, depending on what happens to
the contact on unloading the normal load with the fixed rotation

of Egs. (5), (6):

I T* does not move—i.e., it rests coincident with N. In
this case, all directions passing through this point give possible
x-direction of application of tangential load that give pure trans-
lation solutions.

2 T* moves along a line. In this case, only this line gives
a possible direction of tangential loading that gives a pure trans-
lation.

3 T* moves along a curve. There is no translation solution,
for any direction of application of Q..

It is clear that, in general, it is possible to obtain pure transla-
tion in any direction, just following the path of the point 7, i.e.,
applying the tangential load at distance d varying according to
Eq. (22).

Moreover, several elementary properties can be deduced:

(23)

¢ Flat regions are either entirely in full stick or are in full slip
conditions, as in unloading they either stay in contact, or loose
contact simultaneously. In the limiting case of an entirely flat
contact, the behavior is full stick/full slip.

* The points that loose contact first in the normal unloading.
with the fixed rotation of the actual normal contact problem.
are the first to slip when the tangential force is imposed.

* The tangential approach can be calculated from the superpo-
sition of the two normal approaches of the normal contact prob-

lems, as

a
— =, - af (24)

f

* The shape of the stick zone is the one that maximizes the
corrective load for a given corrective normal approach, therefore
the shape of the slip area is the one that minimize the full sliding
component.

e If the indenter profile is symmetrical and self-similar, the
stick zone is similar to the initial shape, and the corrective
solution is always of the same functional form of the normal
pressure in the contact area.

4 Examples

This simple result permits new solutions to be found immedi-
ately from know solutions of normal contact problems. Also,
numerical methods for simple frictionless normal contact prob-
lems, permit the solution of partial slip problems, with evident
advantages in terms of computational time. Some solutions are
worked out in the following paragraphs.

4.1 Axisymmetric Contact. In this case the solution for
the normal contact problem of any continuous gap function z(r)
= filx, y) — fa(x. y) is known in quadrature (Scthaerman,
1949). The simplest cases have been already worked out,
namely second and fourth-order contacts (Cattaneo, 1938,
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1947a. 1947h). and the conc indenter ( Truman., 1995). In the
genceral case. supposing p{a) is bounded (the so-called incom-
plete contact conditions),

“ F'(s)ds

p(r)=—;f; Y e O=r=a, (25)
where
F(r):a,,—rf :,“)d;. O=sr=a (26)
ovr- -1

and the approach of remote points in normal direction a, is

given by
a, = af 2 (n)dr . (27)
o va? - 12

The equilibrium condition between the applied load and the
pressure distribution can be written as

“ 4 [z (nHrde
P=f 27r l')dr=-—f .

0 va- —

(28)

These equations translate immediately into partial slip solution
(in the Cattaneo-Mindlin approximate sense ). and so
e corrective shear

AJo vl -t

. 2 [ F'(s)ds
q*(r)/j=——f = =. O=sr=c, (29)
Iy r ;5' - r-
* corrective approach of remote points
<2 ()dr
af =c¢ —7’(*1‘ . (30)
o Ve = f?
¢ relation dimension of stick area and corrective load
4 (" 2(0erd
Q*/f== —,J()=‘, ) (31)

In the Appendix this solution is also extended (o the case with
Poisson’s effect. and in the paper (Ciavarella. 1998¢), the case
of rounded punches like a flat with rounded corners or a cone
with rounded tip are discussed in detail.

4.2 General Simply Connected Area. There is no exacr
analytical solution for any contact of general simply connected
area §, i.e., different from circular or elliptical shape. Therefore.
we can only make use of numerical solutions. In particular, for
a full stick problem. we need a solution for the complete contact
tor a rigid flat indenter of planform S. whereas for the partial
slip conditions we need the solution of normal contact for in-
denters of smooth profile, and for two values of the normal load.
For the former, Fabrikant provides an approximate analytical
solution (Fabrikant, 1986), whereas for the latter, Barber and
Billings (1990) give interesting methods to compute the relation
load-penetration, the latter being an integral property. These
methods can be used immediately to compute relation load-
displacement in the tangential direction in the partial slip prob-
lem. Also, Conway et al. (1968) provide a series of numerical
results for the relationship between load and penetration for flat
punches of arbitrary cross section which are of immediate inter-
st now in terms of the tangential contact problems.

Although having made recourse to a numerical approach, it
is still advantageous when solving problems with vy #+ 0, the
use of the superposition of normal contact problems, although
this will give only a rough approximate solution (the approxi-
mation involved is not only the Cattaneo-Mindlin one, the prob-
lem being nonaxisymmetric), as the complete investigation re-
quires the solution of a coupled system of two integral equa-
tions.
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5 Discussion

We know that if ¥ # 0, in the case of Hertzian contacts.
a solution of the kind just developed, i.e.. with the shearing
distribution acting in the direction of the tangential force only,
was given by Cattaneo (1938) and Mindlin (1949) for the
Hertzian three-dimensional case, although they did not notice
that the solution is approximate, in the sense that there is a
small disalignment between relative tangential displacements
and shearing tractions.” The question, therefore, is whether there
are more general cases where this solution can be developed
under this Cattaneo-Mindlin approximation.

The most important cases are the plane contact, solved in
Ciavarella (1998a, b), and the general axisymmetric single con-
tact case, which is shown in Ciavarella (1998c), and the main
results are briefly reported in the Appendix. This result is used
in Ciavarella (1998c) for the solution of the flat and conical
rounded indenters in great detail. More general cases are not
only unlikely to be solved, but are also of limited interest as
the surfaces required to produce such general smooth contact
will be of rather special form, and the shape is also likely to
change with the load.

6 Conclusions

Partial slip three-dimensional contact has been considered
with new general resuits, in the framework of contact of bodies
that can be elastically approximated as half-spaces. For the
solution with a single component of shearing traction, to satisfy
the problem exactly. Dundurs” constant £ and combined Pois-
son’s ratio y have 10 be zero. In this case, simple properties
and results can be obtained. In particular, the general solution
for axisymmetric contacts has been given. The more general
case has been discussed. and the effect of Poisson’s ratio is also
included rigorously in the general axisymmetric case.
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APPENDIX

The Axisymmetric Case With ¥ + 0

In (Ciavarella, 1998c¢) it is proved that in the general case
of an axisymmetrical problem, a solution of the kind just devel-
oped can be obtained. Here the proof is not repeated, but the
main results are given, extending therefore what was obtained
in the main part of the paper. It is true that the case y = 0 is
powerfully proved in general terms, and therefore a numerical
solution of any partial slip problem can now be developed easily
as the superposition of far simpler frictionless contact, but re-
garding strictly analytical results, only axisymmetrical problems
may be of practical interest. The solution of the problem for y
= 0, following what obtained in Ciavarella (1998c), is

g el
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where c is the size of the circular stick area Sstick, r’ is the
radial coordinate of the integration point; the field point has
radial coordinate r; and the distance between them is p. The
latter integral equation means that with the corrective part,
q¥ (r')/ f can be found from a normal contact problem of the
kind (2) for a reduced indentation. Also inequalities in the
slip area translate to the no-interpenetration condition of the
corrective contact problem.

All the relevant quantities can be obtained from the superpo-
sition of the normal load solutions, using the corrective load
defined by QF .= fP ~ (.. The approach in the tangential
direction can be related to the superposition of approaches in
normal directions through the factor (1 + (y/2)), i.e.,

@ _ Y - g
7 (14—2)(&, ak¥).

(33)

DECEMBER 1998, Vol. 65 / 1003



