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Abstract—Elastic contact between a shallow elastic wedge, whose apex is blunted by a finite radius, and an
elastically similar half-plane is studied. A closed-form contact law is found, and the interior stress field is then
deduced using a Muskhelishvili’s solution in series form, for frictionless and sliding conditions. This geometry
removes one of the principal objections to classical solutions to the wedge indentation problem—the
unrealistic infinite stress concentration implied by an atomically sharp apex—and in the latter part of the paper
the strength of the contact is evaluated explicitly. Further, cases of partial slip associated with the application of
tangential load less than needed to cause sliding are considered. © 1998 Elsevier Science Ltd. All rights
reserved
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1. INTRODUCTION

Classical elastic contact problems for the wedge and cone are attractive analytically because they
have a relatively simple form of solution for the contact law, and the interior state of stress induced
may also be found easily,* including the effects of sliding frictional shear tractions [1]. However,
results for these geometries are less useful when applied to real problems because the state of stress at
the apex of the indenter is singular, so that the implied strength of the contact is zero. In practice, the
singular state of stress would not exist, partly because there will be a finite curvature at the apex, and
partly because the singular state of stress would be relieved by local plastic flow. The principal
applications of this geometry are to an understanding of the stress state induced beneath asperities
on rough surfaces [2], the contacts arising in certain fretting fatigue experiments [3], the loading
imposed by stylus instruments such as surface profilometers, and, more qualitatively, to some types
of elastic indentation testing of brittle materials. In particular, the use of indenters having a linear
profile is attractive for fretting fatigue experiments as this permits a wide range of size of incomplete
contacts to be obtained, thus facilitating a control of the “size effect”, i.e. the different fretting fatigue
behavior of the material under geometrically identical contacts of varying size.

It is the intention in the present paper to remove the idealization that the indenter apex is perfectly
sharp, and to replace it with a circular arc, idealized, in the spirit of the Hertzian contact, by
a parabola. The geometry is shown in Fig. 1, and it will be appreciated that, if the overall width of the
contact, b, is less than or equal to the extent of the curved portion of the tip, a, the Hertzian solution
must be recovered, whilst as the ratio a/b becomes very small the effect of the curvature will become
negligible and the wedge solution should result. For intermediate cases the use of a little-known
approach due to Shtayerman [4] provides the solution, which will first be discussed. The interior
stress field will then be deduced, using a Muskhelishvili potential procedure, and these results will be
used to judge the strength of the contact based on first yield and maximum tension.

2. FORMULATION

The geometry examined is shown in Fig. 1 and the problem is formulated for either a rigid punch,
or an elastic punch which may be approximated as a half-plane, i.e. with small exterior angle, 6, of

tAuthor to whom all correspondence should be addressed.

*The interior stress field in the case of the sharp wedge has also been found from a series representation of the
Muskhelishvili’s potential [1]. However, fewer terms in the series are needed in the present form of the solution for the
rounded wedge to achieve a comparable accuracy.
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Fig. 1. Geometry of the problem.

the wedge. This is not usually restrictive, since only punches of this kind are of practical interest for
fretting fatigue studies, whereas pointed indenters like those used in hardness testing (Vickers, etc.)
would induce a a-power singularity in the elastic regime, and require an elasticity treatment
appropriate to the elastic wedge. Moreover, in the rounded tip case, the half-plane hypothesis is more
justifiable, since the contact starts as a Hertzian one, where the validity of the half-plane approxima-
tion has already been verified, and approaches the wedge case only in the limit when the rounded
part becomes a negligible part of the contact. The well-established technique of integral equations
for half-planes may therefore be used, as developed by Shtayerman [4] and Muskhelishvili [5], and
reported in Hills et al. [6]. Both indenter and half-plane may have finite and different elastic
constants, but the solution to be developed is precise only when either (a) there are no shearing
tractions present, which in turn requires the coefficient of interfacial friction, £, to vanish, or (b) the
materials are elastically similar. If neither of these conditions holds there will be a small surface
normal relative displacement induced by the shearing tractions, which will, in turn, modify the
pressure distribution, but experience with related geometries has shown this effect to be small [7].
The normal traction distribution over the contact is given by the solution of the following integral
equation [6, £2.17 p. 51], over the contact region L:
L = L f p@de.
A L x—¢&

(1)

where A is a measure of the composite compliance of the bodies, defined under plane strain
conditions by

2 2
A=—E—1(1—vf)+1—5;(1—v§), (2)

in which E; is the Young’s modulus and v; is the Poisson’s ratio of body i.

Here both p(b) and p( — b) are bounded (the so-called incomplete contact conditions), and it may be
proved that p(+ b) = 0 must hold," which means that the general solution for a contact over the
range — b < x < bis [4]

1 b K ()
p(x)—n—A,/bZ_xz J_bmdt. (3)

The function h(x) is the amount of overlap if the bodies could freely interpenetrate each other, and is
therefore defined, if rigid-body rotation is constrained, from the geometry of the undeformed bodies

y =fi(x) and y = f5(x) as
h(x) = C — [ f1(x) — f2(x)], 4)

where C is the rigid body motion to bring the two bodies into contact. Equilibrium between the
applied load and the pressure distribution requires that

b 1 KH(fedt
P= —j bp(x)dx——zj._b-———,__bz_tz. (5)

tUnder the Lipschitz continuity condition for the function profile.
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In the case under consideration, the geometry is such that

0, —-b<x< —aq,
Hx)={ —0(x/a), —a<x< +a, (6)
-8, +a<x< +b

where @ is the external angle of the wedge (Fig. 1) which must remain small if the indenter is to be
given a finite compliance; (a) to maintain the realism of the half-plane idealization, and (b) for the
strains in the vicinity of the apex to be within the definition of linear elasticity theory, for cases where
a/b < 1. From basic geometric considerations, the radius of the rounded tip is R ~ a/6.

3. CONTACT LAWS

3.1. Frictionless normal indentation
Carrying out the integration of Eqns (3) and (5) (see the Appendix for details), it may be shown
that the solution is given by

AP a sin 2¢q
A O+ 0. @ —o cos@ sing sin(@ — @)
A =In|t t -2 -2 : ’ 8
0 p(p) =In|tan 7 ATy ®oGin Qo sin@o |sin(e + @g) ®)

where

— 1 X
¢ =arcsin .
Considering a as a given geometrical quantity, Eqn (7) determines the dimension b of the contact
area, through the auxiliary angle ¢, (Where ¢, = arcsin a/b), as a function of the load, and Eqn (8)
gives the pressure distribution in the region — 7/2 < ¢ < 7/2, which corresponds to the physical
region — b < x < b, as x = a sin ¢/sin @,. In particular, the pressure at the straight/rounded part
transition point is clearly finite, and is given by

Po
tan @’

A 1 .
E p(@o) = In 5 tan @q sin 2¢, | — 2 ) .

whilst the maximum pressure, at the centre of the contact area, is

nA _ Po Po
o p(0) = 2[ln (tan 7) “Snon (Po]' (10)

It may be observed that the equation relating the contact area dimension with the applied load is not
only non-linear, but transcendental. However, with a modern software system, this is in fact a minor
drawback compared with solutions to the single-function profile case. It may be seen from Eqn (8)
that as a/b — 1 the classical Hertzian pressure distribution (for a parabolic punch on the half-plane)
is recovered, since ¢, = n/2 and k = 1/R = f/a is the curvature of the punch, giving the following
well-known results (x = a sin @):

a?, (11)

2P
P(P) = ——cos g = —— /a* —x%. (12)

On the other hand, as a/b — 0, the standard wedge solution is recovered, as ¢, — 0, x = b sin ¢, and

% = 2b, (13)
0] p 1| b
- b P =1, 1
p(op) 7 In |tan 5 s cosh x‘ (14)
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Fig. 2. Non-dimensionalized contact pressures — p(x/b)An/0 for ratios a/b = 0.1, 0.1, ... , 1. The sharp wedge
singular solution is obtained for a/b = 0, the Hertzian solution for a/b = 1.

Figure 2 displays the normalized contact pressure distribution found for intermediate cases. It may
be noted that the case a/b = 0.1 is practically coincident with the limiting sharp wedge case, apart
from the region |x/b| < 0.2.

3.1.1. Small rounded tip. Even simpler results can be obtained in the case where the rounded tip is
small, i.e. a/b — 0, which is of practical relevance for engineering design, particularly of styli. As this
limit is approached ¢, = arcsin a/b = a/b, and the relation between load and contact area is given,
to a first-order approximation, by the same linear relation as the case of a sharp wedge, i.c.

AP

=2, (15)

whilst the maximum pressure remains finite and is given by

A a
7 p(0) = 2[ln(ﬁ> - 1:|, (16)

which goes logarithmically to infinity as the rounded part becomes perfectly sharp.

3.2. Sliding and partial slip

Provided the contact is uncoupled, that is the contacting bodies are elastically similar (Dundurs’
constant § = 0), full sliding conditions will occur if the tangential load reaches the limit |Q| = fP,
and the shear tractions will simply be given by |g(x)| = — fp(x). More interesting is the case of
partial slip, i.e. when |Q| < fP and | Q] is increased monotonically from zero. This problem requires
the use of a second integral equation, that relates the surface shearing tractions g(x) to the
displacement of particles parallel with the surface. It is [6, £2.22 p. 53], again for the case of
elastically similar materials

1, 1
Zg(x)—E

J q(%) dé, 17
Lx—¢

where g(x) is the relative tangential displacement of surface particles, and g'(x) = dg(x)/dx is its
derivative. As we are considering the case when Dundurs’ constant (f) vanishes, Eqn (17) and its
counterpart for the normal pressure (1) are uncoupled, and the eccentricity of the stick zone has to be
zero. Further, upon applying a normal load, P, alone, there is no tendency for surface particles to
slip, and hence the initial stick zone envelopes the entire contact. The pressure will be given exactly
by the frictionless solution. A partial slip regime will arise as a monotonically increasing tangential
force, Q, less than the value needed to produce full slip of the indenter on the half-plane, i.e. |Q| < fP,
is applied.
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Within the stick zone the relative tangential displacement of surface particles must be zero, as for
elastically similar materials there is no relative tangential displacement during the normal loading,
so that (6, £4.2 p. 1097}

gx)=0, —c<x<c (18)
and the shearing traction must be less than the limiting value, ic. {6, £4.3 p. 110]
lax)} < = Jplx), —c<x<ec. (19)

Here, ¢ 1s the half-width of the stick zone. Further, within the slip zones the shearing traction is
limited by friction, so that [6, f4.4 p. 110]

—-b<x< —¢

+c<x< +b (20)

lg(x)| = — fp(x) {
and the shear traction must always oppose the direction of relative change in the direction of slip for
a quasi-static contact [6, £4.5 p. 110],

sgn(g(x)) = sgn (%g) —c<x<c. (21
A monotonically increasing shearing force, Q, will therefore give rise to advancing slip, and under
these circumstances, Eqn (21) is automatically satisfied.

We will consider g(x) = fp(x) + g*(x), i.e. the shear tractions arising in the contact as a superposi-
tion of the full sliding case, and a perturbation, ¢g*(x). We need to consider two cases, viz.,, when the
dimension of the stick zone, ¢, is less than the dimension of rounded part of the indenter ¢ < a, and
the case when the edge of the stick zone lies in the linear part of the indenter profile ¢ > a.

In the first case 0 < ¢ < g, the integral equation for behavior in the tangential direction [Eqns (17)
and (19)] states that in the stick zone the following integral relation holds:

1P q§dé k 1< q*(§d
O“EL, x—¢& —f§x+—f—c x—¢

7

as the integral of the full sliding term (fp(x)) can be simplified according to Eqn (1). Since only
bounded solutions can be considered for g*(x), and this quantity has to be zero in the regions
¢ <|x| < b, Eqn (22) is a standard Cauchy integral equation which may be inverted. It transpires
that ¢*(&) has the Cattaneo—Mindlin shape for a parabolic punch, i.e.

k
X =f7 /= 23)

This result holds whether b < a (the standard Hertz case, and we expect to recover the Mindlin

solution), or b > a, where the pressure present on the straight part of the indenter has an influence.

The dimension of the stick zone is obtained from the equation for tangential equilibrium.
Turning to the case ¢ > a, we have, for [x| <,

Ozlj\ M=£hr(x)+_l_‘r q*(f)dé
L A

, Ixi<e (22)

ny, x—¢& )., x—=¢&’
9, - < S'— 3
L e 1) e 4
- X~ ¢ 23— (xfa), —a<x< +a,
— 6, +a<x< +¢

as again, from Eqn (1) for normal surface displacements, the transform of the contact pressure is
equal to the profile derivative. This equation is of the same form as that for the pressure, and can be
solved analytically, as can the equation for tangential equilibrium, by the same method as that
described above. Giving only the result, it may be shown that, defining wo = arcsin a/c, and mapping

*Apart from the case where a uniform strain is applied to the specimen as a bulk stress.
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the region — ¢ < x < ¢ by means of the relation x = a(sin w/sin w,), one has

AQ* in 2
Q __ a (sm w°+wo>, 25)

0f  sin?w, 2
and

Ccos @ sin @
0 — —
sinwy  sin wq

A —
——n—e—q*(w)/f=ln tanw_;wotanw 2(00

sin{w — wg)
sin{w + wy)

(26)

Equation (25) determines the angle w,, and so implicitly gives the size of the stick zone as a function
of the corrective tangential load Q¥ after which Eqn (26) gives the shear in the region
— /2 < ¢ < m/2, which corresponds to the region — ¢ < x = a (sinw/sin w,) < c. In particular, the
corrective shear stress at the straight/rounded transition point is finite, as two logarithmic terms
cancel each other, i.e.

Wy

-2 ,
tan wg

1
- Q*(wo)/f In|= 5 tan o sin 2w,

whilst the maximum corrective shear traction, at the centre of the contact area, is

_ E ) =2 [ln (tan 7) _ o } : @7)

SIn Wy

The solution on the unloading case, as well as more general oscillating loadings, can equally be
obtained by a similar procedure, but is omitted for brevity.

4. INTERIOR STRESS FIELD

Whilst a knowledge of the contact law is important, it is the complete interior stress field which is
needed in other to assess fully the implications of the wedge apex radius. Muskhelishvili’s approach
is eminently suitable for half-plane problems, and as it is very straightforward to include the effects of
sliding friction this will be done for generality. However, the provisos made in the formulation
section must be borne in mind; the solution deduced above will only be precisely true for a sliding
indenter if the wedge and half-plane are elastically similar, or more precisely, if Dundurs’ second
constant for the pair vanishes.

As the shear traction, g(x) = fp(x) throughout the whole contact, Muskhelishvili’s potential is
given by

O(z) = - _.ifr P 4, 28)

2m 1t—z

where dimensionless coordinates are now adopted for x, y, t, z = x + iy, by normalizing them
with respect to the contact half-width b, and p(x) is expanded in terms of Chebyshev polynomials
Uja(x) as®

p(x) = — /1 —=x* 3 bUz(x). (29)
n=0
The corresponding Muskhelishvili’s potential is [6]

1L—if (' p@ _i+f
. _lt—zdt nz b,R2n+1(2) (30)

P(z) =

$The approach described in Ref. 6 of expanding the function profile in terms of Chebyshev polynomials of the first kind
f(x)= Z o b2aT2a(x), may be equally used. However, we prefer to present this formulation as it allows a direct control of the
representation of the closed-form contact law, and presents a more stable behaviour in the most challenging region for the
convergence of the series, i.e. the region close to the contact area edges.
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where R,(z) = [z — (z% — 1)/]". It is interesting to note that in the Hertzian case only the first term
is non-zero, while in the case of the sharp wedge, an infinite number of terms is needed, and the
convergence is slow and oscillatory, as this is the drawback of modelling the logarithmic singularity
with continuous functions. Analytical results are possible for the coefficients in the latter case, as

_ﬁ(_l)%
"Tmd 2+ 1’

n=01.., o0 31)

In the intermediate range, say, a/b = 0.1-1, the series is rapidly convergent. From the potential, the
stresses, as well as the displacement derivatives, can be obtained from the standard relations [5, 6]

Oy er % _ 2Re D(2), 2
D%t B _ (- () - B(z) - 0G) *

2

The absolute displacements may be found only to within an arbitrary constant, which is a character-
istic of plane elasticity. It is worth noting that Ry(z) = 1 for n = 0, and that the vaiues on the y =0
axis can be given in simpler form. In particular,

Tu(x), (x| <1,

[x —sgn(x)(x? — DV?3]" |x|> 1. 34)

Ru(x) = {

Also, on the y-axis, the expression simplifies to

R.(y) =i[y — (y* + D*T", |yl =0. (35)

Therefore, in cases where values are needed only on the x or on the y-axis, these simplified equations
may be used.

Some remarks on the details of the numerical computations are appropriate. First, a direct
least-squares fitting approach has proved to be more efficient than the calculation of the Chebyshev
coefficients from integral properties. The Fourier coefficients of this series have no physical
interpretation, but the choice of a sufficiently large number of collocation points avoids the problem
of oscillatory convergence which may arise in a direct calculation of the series coefficients, with the
only minor drawback that, if the number of terms included is increased, all the coefficients have to be
recalculated.

The partial slip cases are easily covered by means of superposition. In particular, the stress field
can be obtained from the potential of the full sliding configuration, by adding the corrective stress
field due to the perturbation shear g*(x), by means of a series in terms of Chebyshev polynomials

)= —JT=% Y Uz, (36)
n=0

Here x is normalized with respect to the dimension of the stick zone c. The corresponding corrective
Muskhelishvili’s potential is

(I)corr(z) = -

1 j‘ q* ()

1 =2 .
— _ E ) 7
_—27!1 ..1t Zdt— 2"=0bnR2n+1(Z) (3 )

Since the form of this stress field, on normalizing the coordinates, is exactly the same as the full
sliding case, the partial slip case does not require any additional coding, except that relating to
effecting superposition.

5. RESULTS

It is difficult to display comprehensive results for the complete state of stress over the neighbour-
hood of contact, even for sliding contacts, as there are two independent variables; the ratio of the
extent of the “nose” to the size of the contact patch (a/b), and the coefficient of friction, f. The wedge
angle 0 enters the problem in a slightly unusual way; it is simply a multiplicative constant only in the
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standard “sharp” wedge problem, but here it implicitly defines the radius of curvature, R, of the
wedge apex, as continuity of slope is assumed at the transition point, and hence sin 8 = a/R, or, for
small 8, R ~ a/f; therefore 8 is not an independent variable.

As it is the yield criterion that is of most interest in engineering applications for ductile materials
and the maximum principal stress is needed for brittle materials, only results in terms of these two
quantities will be shown. A Fortran library routine was used to calculate the maximum values of
these parameters, for a single Poisson’s ratio, i.e. v = 0.3, but for the complete range of ratio a/b from
0.1 to 1 in steps of 0.1, and friction coefficients in the range f = 0, 0.8 in steps of 0.0125. Von Mises’
yield criterion was used, and transverse plane strain was assumed to arise.

5.1. Normal loading

Figure 3 shows plots of the normalized elastic limit P/(bk), where k is the yield strength in pure
shear, as a function of the ratio a/b. It may be seen that, compared with the Hertz limiting case
a/b = 1, the strength here is always lower, as expected, since the pressure distribution here is more
localized near the centre of the contact. The elastic limit in the sharp wedge case is theoretically zero,
and it is worth remarking that in this case the state of stress implied at the apex of the indenter
depends on the path along which it is approached. If we set y = 0 first, and approach along the
surface, it is clear that 6,,(x, 0) = 0,.(x, 0) and that they both tend to infinity as | x| — 0. Yielding will
therefore occur along the z axis. On the other hand, if x is set to zero first, so that the origin is
approached along the axis of symmetry, the difference between the direct stresses remains finite at all
depths, and is given by

| ool 40a
Oxx — =
LAy + @

A major result of the present investigation is to that we have shown that for a ratio a/b as small as 0.1
the elastic limit is still P/(bk) ~ 3, i.e. about half the limit for the optimal configuration (uniform
pressure) [6] or about 60% of the Hertzian case. This clearly suggests that the simple Hertzian normal
loading design, with a safety factor of 2, is appropriate even for a wedge indenter, provided that the
dimension of the contact area is not larger than, say, 10 times the extent of the rounded part. If a more
precise elastic limit is required the data given in Fig. 3 are appropriate. Also shown in the figure is the
depth, y,., at which first yield occurs. This is at y,,/b = 0.7, the Hertzian case, when b/a < 1, and moves
up to the surface, y,,/b =0, as a/b — 0, i.e. the sharp wedge geometry is approached.

5.2. Full sliding case

We turn now to the case where a tangential load, sufficient to cause sliding, has been applied.
Figure 4 shows the dependence of the elastic limit P/(bk) on the friction coefficient f. First, it is clear
that, starting from the Hertzian configuration a/b = 1, it is well known [6] that, for small coefficients
of friction, less than about f = 0.3 the severest state of stress remains subsurface, whilst for higher

0.00 ~ 5.0
Y/ b P/ (bk)
0.20 - L 45
L
-0.40 — - 4.0
-0.60 - 3.5
0.80 17 30
000 020 040 060 08 100

alb

Fig. 3. Elastic limit P/(bk) for a normal indentation, and vertical location of the yield point, as function of the
ratio a/b. Poisson’s ratio v = 0.3.
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values of f the tendency to yield is greatest on the surface. This response gives rise to the cusp of the
upper curve in Fig. 4. When a rounded wedge case is considered, the yield point tends to move to
the origin with an increase in contact dimension, b/a, as discussed above; with an increase in the
coefficient of the friction this migration to the surface occurs more rapidly. In the limiting sharp
wedge case, it is clear that the vertex is always a singular point.

It is worth noting that, as the friction coefficient is increased, the difference between the Hertzian
and rounded wedge configuration as measured by a yield parameter tends to decrease, as the severest
state of stress arises on the edge of the contact area, and is less dependent on the precise distribution
of the normal and shearing tractions.

The effect of the frictional traction is displayed in an alternative form in Fig. 5, where the point of
maximum von Mises yield parameter is identified in detail. Starting from the normal loading case
(f = 0), the point moves from the axis of symmetry, towards the trailing edge of the contact, as it
migrates towards the surface; each little cross corresponds to an increment of the friction coefficient
of 0.0125. When f has reached a particular value (that can be obtained also from the cusp points in
Fig. 4), the maximum jumps to the surface, is the sense that the local maximum on the surface
suddenly becomes the global maximum. As can be seen from Fig. 4, when the strength of the contact
is surface-controlled the severity of the state of stress increases rapidly with £, and hence the contact
strength falls abruptly. In fact, when the strength of the contact is controlled by a subsurface point it
is only weakly dependent on the coefficient of friction, particularly when the radius of the nose is

5

P/(bk) |
4
\\ ab=0.1,02,..1

Fig. 4. Elastic limit P/(bk) in the full sliding configuration, as a function of the friction coefficient f, for different
values of the ratio a/b, in the range a/b = 0.1, 0.2, ... ,1.0. Poisson’s ratio v = 0.3.

0.0 -
yib |

0.2+

044

L

0.0 02 04 06 0.8
x/b

Fig. 5. Location of the yield point in the (lower) half-pane, for different values of the ratio a/b; note that each

cross correspond of a increment on the friction coefficient of 0.0125, and that only subsurface values are

displayed. The point where the maximum jumps from the subsurface to the surface corresponds to the cusp
points in Fig. 4. Poisson’s ratio v = 0.3.
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small (b > a), but the critical value of f is also smaller for b > a. Therefore, from the point of view of
the design of styli, there is a great deal to be said for attempting to maintain the coefficient of friction
below the critical value, perhaps by lubrication.

Also of importance is the maximum tension induced at the surface, as this is the quantity which is
responsible for initiating surface defects and their initial propulsion as cracks. The point of
maximum tension lies at the trailing edge of the contact patch, for Hertzian, sharp wedge and
rounded wedge cases. The relevant values are

o _ {1, shape wedge case (39)

a—- .
fP 4/n, Hertzian case,

and for intermediate cases no simple closed-form exists, but it is clear that the Hertzian result
provides a safe upper bound for design purposes. It is worth emphasizing that the presence of the
apex actually decreases the concentration of tension: this is apparent from a consideration of the
distribution of shear, which is solely responsible for this tension, as it is less localized at the trailing
edge, and the variation is only 21% of the original Hertzian value. The transition from the ‘sharp’
solution to the Hertzian is displayed in Fig. 6.

5.3. Partial slip case
Figure 7 shows some traction distributions arising for some particular cases of partial slip regime.
The case shown is a/b = 0.25, and 3 different values of the tangential load are considered, for which

J 4/n
1.20
g- 4
o)
o
=
= 1.10 4
1047771 1
0.00 0.20 0.40 0.60 0.80 1.00

alb

Fig. 6. Values of the non-dimensionalized maximum principal stress (a/fP)eT™" at the trailing edge of the full
sliding contact, as a function of the ratio a/b.

An/0 q(x)/f
N
o
1

] 172

0.0 4——
000 020

—
0.40 0.60 0.80 1.00
x/b

Fig. 7. Non-dimensionalized shearing tractions — q(x/b) An/f8 in the partial slip regimes. The contact

geometry is fixed to a/b =025, and 3 different values of the tangential load are considered, for which

¢/b = 0,1/6,1/2, corresponding, respectively, to full sliding contact, Cattaneo—Mindlin corrective solution, and
edge of stick zone lying in the linear part of the profile.
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c/b =0,1/6,1/2, respectively when the contact is full sliding, the stick zone lies only in the rounded
part (Cattaneo-Mindlin corrective solution), and stick zone lying in the linear part of the profile too.

Regarding the strength of such contacts, the number of parameters become impractically large
{a/b, f, Q/(fP)], and therefore it is not possible to cover all possible regimes. However, since the
corrective shear distribution always reduces the local value of the shearing traction, and since they
are the principal quantities controlling yield, it is likely that the elastic limit for the full sliding can be
considered an upper bound for strength, therefore allowing a safe design. Also, it is believed that
a more refined design procedure is not warranted, as the partial slip regime is likely to occur between
vibrating components, where the coefficient of interfacial friction and magnitude of applied shear are
not known within precise limits. Also, in these cases a more refined approach using the framework of
Linear Elastic Fracture Mechanics is usually required.

6. CONCLUSIONS

The indentation by a wedge punch with rounded tip has been studied. Normal loading, as well as
full sliding and partial slip regimes have been treated and solutions in either a closed form or as
a rapidly convergent series have been found. The transition from Hertzian to a sharp wedge punch
has been fully studied. One of the most noteworthy and unexpected results is that the strength of the
contact is about 60% of the equivalent Hertzian case for an extent of the rounded part as small as
about 1/10 of the contact dimension. It follows that for many wedge-type indentation processes the
presence of even a modest finite radius at the apex of the indenter has a profound influence of the
strength of the contact, and the strength of the contact immediately becomes quantifiable. This will
be true whether or not the results found are applied to macroscopic indenters, or the kind of
nano-indenter currently being employed where the tip radius may well be specified in terms of
a number of atomic diameters.
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APPENDIX: DERIVATION OF THE PRESSURE DISTRIBUTION

To integrate Eqn (3), we made use of an integral calculated by Shtayerman [4] for the similar case of a flat punch with
rounded edges. Considering that the function A'(r) is described by Eqn (6), one has

/ tdt adt ]

,/ — . Al
pbx) = [v[ Jb’—t - j a /b* —t2(t — x) L Vb —tHt —x) (AD

Now, define @, = arcsin a/b, t = 2tb/(1 + 72), and x = 2Eb/(1 + £2); we find

2 .6
j C14¢ dr )
/B2 —rz(t—-x) b ), -9 -1
1+¢ [ ¢ dt o drt ]
- - , A3
a1 B leroid s @3
where &,, &, are related to x,, x, by
2 _ 2%

Xy =112 2 b, x;= o :%b. (A4)



988 M. Ciavarella et al.

Considering that the integrals must be intended as CPV, and assuming ¢ =tan ¢/2 and a = bsin @y, it follows that
x = bsin g, and

e adt b adt a sin(@ + @o)/2| /| cos(e + @o)/2
.[_,, JB =2 —x) - J S =t —x) “beose  |cos(e — (00)/2'/ sin(@ — @o)/2 ’ @)
Moreover, with the same procedure
4 tdt a dt @ dt
J—am(t—-x)=v[-a\/5§j +xj—nﬂ7(t - %)
=200+ b czscp Zi:((z + ZZ; ’ (A6)

where the first integral is elementary using the substitution ¢ = b sin ¢. Substituting the integrals into the expression for the
pressure p(x),

sin{e — o)
sin(¢ + @o)

@+ ¢o P — Qo

cos @ sin ¢
tan ———tan —
2 2

0. .
sin @y sin o

b =1n , (A7)

Regarding the equilibrium condition (5), assuming ¢ = b sin ¢,

AP”I_E tdt 1J~“ t2dt r tde
0 5 /b2 —42 a —4\/b2-—32 a\/bz_tz

b? [sin 2 a (sin2
= —2bcosq@y +— —%—(oo =—— -—22+(po . (A8)
a 2 sin® @p 2



