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Technical Note

On the extraction of notch stress intensity factors by
the post-processing of stress data on the free edges of
the notch

M Ciavarella'* and G Demelio®
Department of Mechanical Engineering, University of Southampton, UK
2DPPI, Politecnico di Bari, Italy

Abstract: Following on the lines of a previous paper dedicated to cracked components by Ciavarella et al.,
here the case of a notch of semi-angle a is considered. Contrary to the crack case (a = 180°), the free
edges of the notch are easily accessible to experimental analysis; moreover they provide information about
all the terms of the Williams series expansion of the stress field about the notch apex, including the most
important, i.e. the symmetric and antisymmetric singular term notch stress intensity factors (N-SIFs),
whereas for the crack case the mode I N-SIFs cannot be extracted from those stresses. Another important
different feature is that symmetric and antisymmetric N-SIFs have different singularities, and in several
cases they are so close that their contributions tend to overlap. Therefore, a simple procedure is here
proposed to use radial stresses, to separate their symmetric and antisymmetric contributions a priori by
computing the sum and difference of the stresses on the two edges, to post-process these quantities in the
‘asymptotic region’ with standard least-squares techniques and to extract the N-SIFs. The method is
applied to a simple case known in the literature and solved by means of a boundary element code, and the

results are almost coincident with previous results, even with quite coarse mesh discretizations.
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1 INTRODUCTION

One of the classical areas of elastic theory is the wedge
problem that Williams [1] studied in a celebrated paper as
part of his interest in re-entrant geometries in wings and
other parts of missiles. Williams considered different
homogeneous boundary conditions along the radial bound-
aries (namely free—free, clamped—clamped and free—
clamped), obtaining the classical Airy stress function as a
series superposition of separate variable eigensolutions,
where the radial dependence is of a power-law type (the
exponents are called eigenvalues and the functions eigen-
vectors). Despite its widespread use in the engineering
community, only recently has it been proved mathemati-
cally rigorously that the solution obtained is complete and
uniformly convergent [2,3]. Some features of the stress
field have already been discussed in reference [4], and a
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very detailed study of the eigenvalues has been given in
reference [5].

The most ‘significant’ contribution to the stress field is
due to the singular term which grows without limit at the
notch apex [in the case of the crack (o = 180°), the singular
terms give the well-known stress intensity factors (SIFs), and
here by extension the singular terms are called notch stress
intensity factors (N-SIFs)], and indeed several workers have
studied techniques to extract numerically the values of these
N-SIFs [6-9]. Also, their implication in the static and fatigue
strength of notched components has also been studied in
recent years quite intensively [10—19]. As a crude estimate,
the mode I singularity decays very slowly when the angle a
decreases from the crack case (@ = 180°) towards the limit-
ing half-plane ‘notch’ (a = 90°), and therefore it is not
surprising that most of the uses of SIFs for cracks extend to
the notch case, particularly for those quantities that are
significantly affected by the region of the notch singularity.
However, two important differences are as follows:

1. As soon as a crack forms, the singularity is the well-
known square root type for the crack case a = 180°.
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2. Mode II singularity is always lower than mode I, except
for the limiting crack case o = 180°.

Therefore, the tendency is to attribute to N-SIFs only the
initiation and short crack propagation phase, and to use
mostly opening criteria for these studies.

In this paper, the problem of extracting N-SIFs by an
easy and, at the same time, accurate way is considered. A
simple method is suggested to post-process the easily
accessible radial stresses on the edges of the notch and,
with a fitting procedure of the sum and difference of these
stresses, the N-SIFs are obtained with good accuracy in a
test case using an example case solved with boundary
elements.

2 THE STRESS FIELD

Consider the geometry in Fig. 1. The Airy function & that
Williams proposed for any contribution to the stress field
has a separate variable form, with power-law dependence
on r, both assumptions that can be made a priori due to
self-similarity of the geometry (see Barber’s book [20] for a
more complete and modern treatment):

@ = AUE@; 1) )]
where

F(0; 1) = C, cos[(A + 1)0] + Cysin[(A + 1)6]
+ Cycos[(A — 1)B] + Cysin[(A — 1D0]  (2)

and the stress field turns out to be

Fig.1 Coordinate system and notation
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0,7, 0) (A + 1)F(O) + F"(0)
ooo(r, 0) p = r*! AR+ 1)F(6) 3)
o.6(r, ) —AF'(6)

The coefficients C; and A are constants to be determined by
imposing the boundary conditions

Oy = 0gg =0, 0 = +a 4

obtaining a homogeneous system of four equations in the
unknown C;. As a consequence of the symmetry in the
geometry and boundary conditions, symmetric and anti-
symmetric solutions are separated, and given by the
condition that the determinant of the system should be
zero. For symmetric solutions,

Asin(2a) + sin(2Aa) = 0 %)
whereas for antisymmetric solutions
Asin(2a) — sin(2Aa) = 0 6)

Of the entire spectrum of solutions, only those A giving a
finite energy at the apex should be considered, i.e. 1 > 0.

Turning the attention to stress components, a special
attention is required for complex A, as the stress function
becomes a complex function, corresponding to oscillatory
functions at constant 6 (both the real and the imaginary
parts of the stress function are valid separately™). Summar-
izing, the behaviour is [1-5, 20]

or*=1 real 1

o= £-1y ) sin(7lnr) _ .
o(r ){ cos(y In ) complex 1 =&+ iy

M

The case of complex eigenvalues is of no interest in this
context as the first eigenvalue for our geometry is always
real; for more complex cases such as bimaterial cracks or
notches, or when the complete series expansion is required,
this case is better dealt with in the context of the complex
variable theory of elasticity, with the use of Mushkelishvi-
li’s potential or the Mellin transform [20], paragraphs 11.3
and 16.5)]. In the present paper, eigenvalues are computed
with a standard library root finder routine [21]. At each
angle, the real part of the eigenvalue is shown on the
positive side of the ordinate, and the imaginary part on the
negative side (Fig. 2a for symmetric and Fig. 2b for
antisymmetric eigenvalues). For a given angle, moving
vertically at increasing values of &, the eigenvalues are
crossed in sequence. Considering firstly the symmetric
terms (Fig. 2a) the first eigenvalue is real in the region of a
proper notch (a > 90°) whereas, for non-re-entrant corners
(@ <90°), the lowest eigenvalue is not in the singular

*For the special case at A = 1 the determinant and its derivative are zero
and logarithmic terms appear, but this is not the case in wedge problems
such as this.
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Fig.2 Eigenvalues of the Williams expansion for (a) symmetric
and (b) antisymmetric terms

region (& < 1) and becomes complex at around a = 70° as
can be seen from the lower part of the diagram where the
imaginary parts of the eigenvalues are displayed. However,
the circumstance that £>1 suggests that the stress field
always tends to zero at the apex in this case, and there
could be little use of the complex regular term for
calculation purposes. Regarding higher-order eigenvalues,
the behaviour is similar to that discussed for the first
eigenvalue. In particular, starting from the crack case, the
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eigenvalue is always real but, when the angle a decreases
sufficiently, a region of complex eigenvalue is met when
the appropriate vertical broken line is reached, after which
the imaginary part of the eigenvalue can be read on the
lower part of the diagram. When another broken vertical
line is met, the region of complex conjugate eigenvalues
ends, and another branch of real eigenvalues starts. The
same qualitative behaviour obtained for antisymmetric
terms is shown in Fig. 2b, with the significant difference
that the first eigenvalue is in the singular region only for
a>127°, suggesting that there are notches for which only
the symmetric term is present at the notch apex.

3 POST-PROCESSING

The stress field is given by a series of contributions
according to equations (1) to (7). In particular, on the edge
boundaries of the notch, radial stresses can be separated
into symmetric and antisymmetric contributions. Therefore,
their sum and difference will correspond to twice the
symmetric part and antisymmetric part only respectively.
This helps to distinguish between the contributions having
close eigenvalues. From Fig. 2a it is evident in particular
that the dominant mode I eigenvalue has almost the
singularity of standard fracture mechanics if o > 135°, i.e.
& =1 =0.5, whereas for mode II in Fig. 2b the antisym-
metric term always has a quite significantly lower singular-
ity.

N-SIFs and higher-order terms are here defined accord-
ing to reference [10], by taking advantage of the fact that
on the symmetry line of the notch the circumferential stress
is only due to the symmetric contribution, whereas the
tangential stress is only due to the antisymmetric contribu-
tion. In particular,

As—1
om(r,0) = Y owlr i) = 2 )

-1
0r0(r, 00 = 00(r, 0; Aa) = Z% (8b)

where K, and K, correspond to the eigenvalues A5 and A,,
symmetric and antisymmetric respectively.

For each symmetric contribution of the series expansion,
due to the separate variable dependence of the Airy
function, the ratio of the radial stress along a notch edge to
the circumferential stress on the symmetry line is a
constant, R;, depending only on a and As. The same
applies for antisymmetric functions for the ratio of the
radial stress on the edge to the tangential stress on the
symmetry line, R;,. Using equations (2) and (3), with a
little algebra,
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R;, and R;, for the singular eigenvalues are shown in Fig. 3
as functions of a varying from 90° (half-plane) to 180°
(crack). Note that, as R;, = 0 for the crack case, it is not
possible to obtain the mode I SIF K from radial stresses in
this case. As the vast majority of the fracture mechanics
papers are dedicated to the crack case, this may well
explain why this technique has not been proposed before.

In other words, it is possible now to write the radial
stresses using the definitions (8a) and (8b):

Ry, K ! Ry, K, r'!
e — E SeAAT @ — E el LA
I = vam o T V2n

(10

where the superscripts (s) and (a) indicate the symmetric
and antisymmetric contributions respectively.

4 EXAMPLE CASE

Consider the case in Fig. 4, for which several independent
numerical results are available in the open literature [7, 9]:
a rectangular plate with a deep notch of 90° opening angle,
under a self-equilibrated system of forces. The loads can be
split into symmetric and antisymmetric contributions.

The problem is discretized with a grid of isoparametric
quadratic boundary elements, with the base grid (mesh 1)
indicated in Fig. 5, and more refined grids obtained by
multiplying by 2, 3 and 4 the number of elements on the
original base grid (meshes 2, 3 and 4) and keeping the size
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Fig. 4 Sharp notched plate loaded in the mixed mode (@ = 135°,
w/a=25andw/h=1)

ratios constant. It is clear that mesh 3 is already quite
refined (with a ratio #,/¢= 0.02). The parameters Y are
defined as

K,
—_— 11
O'nom\/ﬁal_}val ( )

Yiw =
To obtain these parameters from the stress boundary
element method results, the following procedure is adopted.
First, only the asymptotic values, which are arbitrarily
decided to be in the region »/# € [0, 0.2] (but this decision
is not as important when later the extrapolation procedure
is completed), are considered. Then, considering only the
dominant term of equations (10), an estimate of the
parameters Y can be obtained at different distances from
each stress data. Finally, using a standard extrapolation
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Fig.3 Ratios R;, and R;, for the first symmetric and antisymmetric terms of the Williams expansion
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Fig. 5 Boundary element reference mesh

least-squares fitting routine available in any commercial
spreadsheet (in particular, here the software GRAPHER v.4
was used) a better estimate of the parameters Y is obtained
at r = 0, i.e. at the notch apex. The results obtained for the
example case are shown in Table 1, where both linear
extrapolation and quadratic extrapolation have been used.
The results are very accurate already with mesh 2 but, from
the refinement of mesh 3 and above, the results are
indistinguishable from those reported in the literature. With
a quadratic fitting, the results are more accurate at
convergence but present a greater sensitivity with a small
number of data.

5 CONCLUSIONS

A simple method has been presented for obtaining the N-
SIFs of a notched structure by processing radial stress data
along the free edges of the notch in the proximity of the
apex. These are likely to be the simplest data to obtain
experimentally and also numerically, and therefore the

Table 1 Parameters Y for the problem in Fig. 4 (reference [9]
gives Y3, = 2.473 and ¥, = 0.151)

Linear extrapolation Quadratic extrapolation

Mesh B By % Y

1 2737 0.152 4.121 0.152
2 2527 0.156 2.979 0.153
3 2.489 0.151 2463 0.150
4 2484 0.150 2472 0.149
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present paper gives specific formulae to correlate these with
standard definition of N-SIFs. The results with a simple
numerical experiment show that it is simple to obtain quite
accurate results of both mode I and mode II N-SIFs, with no
need for other than standard least-squares fitting routines.
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