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Conditions of yield and cyclic plasticity around

inclusions

M Ciavarella™®

Department of Mechanical Engineering, University of Southampton, UK

Abstract: In this paper the stress field in the proximity of a circular (cylindrical) inclusion is considered.
The conditions for in-plane plastic flow in the matrix are examined from a classical elasticity solution
obtained by Goodier. Elementary cases are considered such as remote loading ranging from pure tensile
and pure shear to equibiaxial tension. For proportional loading, it is argued that the upper bound to the
shakedown limit is always twice the elastic limit; therefore, within the limits of our assumptions, if the
elastic stress concentration for the equivalent stress is greater than two, there is a possibility of cyclic
plasticity before bulk yielding, which means that possibly an arbitrarily large plastic strain can cumulate
with increasingly high risk of exhaustion of ductility and void nucleation or detachment of the interface.
Consequently, conditions under which it is possible to reach twice the elastic limit before full-scale
yielding are shown in the Dundurs plane representing all possible combinations of elastic parameters.
Following these lines, it is shown that there is no possibility of cyclic plasticity under remote shear; there is
a limited area of the Dundurs plane for tension, including the hole case; finally, in the equibiaxial limiting

case, cyclic plasticity is always possible for any combination of elastic properties.
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1 INTRODUCTION

The study of inclusions involves several areas of research,
namely the study of polycrystals, metal matrix composites
(MMCs) and more general particulate materials [1-4].
Knowledge of the mechanical properties of an MMC are
essential for the design of structural components, in
aerospace, automotive and other applications. Typically, the
metal matrix has a well-defined plastic behaviour; however,
the yielding limit and strain-hardening characteristics of a
metal matrix depend on several factors, e.g. ageing
treatments, and has been found to influence significantly
the strength of an MMC [1, 3]. Often theoretical predic-
tions are made with models based on Eshelby’s equivalent
inclusion method [2,5], which basically replaces the
material of the inclusion with an equivalently strained
material of the same elastic constant as the matrix. This is
an easy task because of the simplicity of the stress field
inside the inclusion, as discovered by Eshelby. However,
this method covers mainly elastic behaviour, whereas here
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we are interested in finding the conditions of yield and
cyclic plasticity in the matrix.

Because of the many parameters involved, it becomes
important to simplify the treatment and the presentation of
the result by initial assumptions. However, not only is there
no study in the literature of the elastoplastic strains in the
general case of elastic dissimilarity, but also not even the
elastic stress concentration is studied to the best of the
present author’s knowledge. This note is therefore mainly
concerned with the details of the stress field that arises in
proximity of an elastic inclusion, with particular reference
to study of the elastic limit, shakedown and cyclic plasticity
regimes. Cyclic plasticity is the regime above the shake-
down limit and below bulk yielding which may lead to the
cumulation of large strains around the inclusion, with an
increasingly high likelihood of void nucleation or detach-
ment of the matrix—inclusion interface or other damage in
the matrix.

Conditions for incipient in-plane flow to arise in the
matrix are considered as functions of the elastic constants
(for our purposes, the Dundurs reduced dependence on just
two constants a and 3 will be considered). For this purpose,
the classical solution firstly developed by Goodier [1] and
put into a modern form according to the Dundurs a and 8
parameters (see, for example, references [7] to [9]) is used,
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and results are shown for the inclusion subject to far-field
loads, ranging from pure tension or pure shear to
equibiaxial tension. Some interesting properties of the
elastic stress field were discussed by Greenwood [10] for
the limiting case of a hole, namely a relation between the
stresses in the absence of a hole, and the stresses in the
presence of the hole; this may prove useful to extend the
present analysis to the case where the unperturbed stress
field is not uniform.

2 FORMULATION

It is well known that the stress state in a homogeneous
material undergoing plane deformation (in the xy plane,
say) depends on only two elastic parameters (Young’s
modulus and Poisson’s ratio). In general, in-plane stresses,
i.e. 0, 04, and 0y, for a bimaterial composite depend on
three parameters, whereas displacements depend on all four
elastic parameters (for a more complete explanation, see,
for example, reference [11] or [12]). Dundurs [7], however,
showed that the in-plane stresses in a perfectly adhesive
bimaterial joint undergoing plane deformation and loaded
only by tractions on the boundaries depend on only two
parameters: a and (8 [8]. Next the Dundurs parameters are
defined and whether use can be made of this reduced
dependence is examined.

2.1 The Dundurs parameters

Let w1, vi and up, v, be the modulus of rigidity and
Poisson’s ratio of material 1 and material 2 respectively.
The Dundurs parameters are then given by (see, for
example, references [7] to [9] and [12])

_at+ ) —mia+1)
Ua(kr + 1)+ ui( + 1)

_ (e =D — (o —1)
pa(rr + 1) + p (i + 1)

(M

where x is the Kolosov constant: k; = (3 —v;)/(1 +v,) in
plane stress and x; =3 —4v; in plane strain, v; being
Poisson’s ratio of material i, and i = 1, 2.

This reduction in the dependence on elastic constants
turns out to be extremely useful. Note, however, that
displacement fields do not depend on only two parameters,
but on three, namely v}, v, and the ratio u,/u;. Further, the
out-of-plane stress depends on the local value of Poisson’s
ratio, and therefore the correct version of the Tresca or von
Mises criterion for plastic yielding requires knowledge of
all the constants. As this greatly complicates the possibility
of showing general results, and as out-of-plane flow is
anyway limited if the loads are in plane, only the possibility
of in-plane flow will be considered. This does not introduce
any approximation, in the case of the Tresca criterion,
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when the out-of-plane stress is intermediate between the
two in-plane principal stresses, as is often the case;* the
equivalent stress is then o, = 0y — 7, which is twice the
maximum in-plane shear stress Tpmax, and so, at yield,

Oy
Tmax = 7 (3)

The aff plane provides a convenient means of classifying
composite materials [7-9, 12] and for displaying results
that depend on elastic constants, adopted in this paper for
all the results (Fig. 1 and the following). It is clear that the
magnitudes of a and B describe the degree of mismatch
between the materials (the origin represents identical
materials). The line @ = § indicates the cases for which
1 = . Therefore, to the left of this line, 4) > uy, i.e. the
matrix is more rigid than the inclusion.

2.2 Elastic solution

The starting point for the solution is to use the well-known
result for the stress state induced in an infinite body with a
circular inclusion by uniaxial remote tension [1], 04:

o, = 5'-22 {[1 — cos(20)]

+—r1—2 {—l —m (;35 - 4) cos(ZH)} }

Oop = %o {[1 + cos(20)] + iz {l + m% cos(zﬁ)} }
2 r r
O = %o {1 - mrl—2 (% - 2)] sin(26)
4)

where the radial coordinate has been normalized with
respect to the radius of the inclusion, a. Further, rearran-
ging in modern notation the parameters / and m become

___

I=2r a1 ©)
_p-a

"=Br ®

*The von Mises criterion in general can be written as

2

H©o1 =02 + (02 —03) + (03 —01)’] = 0% @

Considering only in-plane flow is therefore strictly correct for the von

Mises criterion only when the out-of-plane stress is exactly the mean value

between in-plane stresses, i.c. for incompressible materials, in which case
we obtain

372

_ 2
max — UY
50 that ¢ = v/3Tmax.
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Fig.1 Results for a stress ratio of —1 in the Dundurs a3 plane

An analogous solution is available for shear; it can be
obtained by superposition, as well as biaxial tension, and
all intermediate combinations.

2.3 Elastic limit, shakedown limit and cyclic
plasticity

For a material which possesses an elastic—ideally plastic
stress—strain curve, i.e. no work hardening, the only
material characteristic to add to the elastic description is £,
the yield stress in shear (or, equivalently, oy that was
introduced earlier, the yield stress in tension). Now con-
sider that, as a result of the presence of the inclusion, there
is a stress concentration. In the presense of a crack, the
stress concentration would be infinite, but linear elastic
fracture mechanics could classify the effect of the crack by
means of a stress intensity factor, which depends on the
-nominal stress and the size of the crack, and decide then
what kind of damage could occur in the material. In this
case, no points of singular stress exist, so that the elastic
limit is finite; however, it is clear that the concentration
factor is not dependent on size. In other words, in the
idealized model of assigned values for the stress field at
remote boundaries, there is a corresponding stress concen-
tration which is not dependent on the actual size of the
inclusion. This is true of course also for the case of the
crack, where the stress is infinite independently of the size
of the crack, but there the theory has found the concept of
the stress intensity factor to quantify the severity of the
concentration induced. Here, if the onset of plasticity is
considered as the limiting condition, it is clear that this is
not dependent on the dimension of the inclusion but only
on the remote state of stress (for a given combination of
materials and the given shape of the inclusion). In other
words, there is no damage at all if this limit is not
exceeded. In general, however, once the elastic limit is
exceeded, yielding occurs in the region close to the point of
maximum stress, and the location and dimension of this
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region are clearly dependent on the dimension of the
inclusion (the radius, in the circular case), the dependence
being obviously linear for geometrical similarity. However,
this region is not necessarily affected entirely by plastic
‘damage’; if cyclic loading, which is common in most
applications, is considered, as soon as the region of plastic
deformations is entered, beneficial residual stresses, which
are usually of opposite sign to the applied load, produce
shakedown. The shakedown limit is actually defined as the
largest applied load for which the residual stresses summed
with the applied stresses lie exactly on the yield surface at
the most highly stressed point, therefore providing the limit
load for which a steady state elastic state exists. It is well
known that this process is to be considered possible with
elastic—perfectly plastic materials such as those here under
consideration, and for which Melan’s theorem applies to
find a lower bound to the shakedown limit [13]. If a self-
equilibrated distribution of residual stresses can be found
that satisfies the limit shakedown condition, then shake-
down will occur at least to that limit. Of course, if the
loading is increased above the shakedown limit and cycled,
the material may exhibit cyclic plasticity, if full yielding
does not occur first.

The lower bound proves difficult to find. However, an
upper bound is almost invariably obtained immediately.
Indeed, the maximum effective stress always occurs at a
point on the interface between matrix and inclusion. Then,
a reverse plasticity mechanism where equal and opposite
increments of plastic strain occur at the two extremes of the
cycle will yield an upper bound which corresponds to when
the difference between these extremes is equal to twice the
yield. Therefore, it can almost always be said that, above
twice the elastic limit, elastic shakedown is exceeded, and a
damage mechanism acts, by either cyclic plasticity or
ratchetting. As these mechanisms can be responsible for
cumulation of strains, it is therefore important to show the
conditions under which it is possible to reach twice the
elastic limit before full yielding.
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In Figs 1 to 5, the maximum in-plane tangential stress
is shown, rescaled as an equivalent von Mises para-
meter. Specifically, the parameter indicated in the figures
is

\/_3'Tmax

01

Maximum of von Mises parameter

— 0

3

max

N

where o and 0, are the in-plane principal stresses; this is
shown for several cases of remote loading. Note that one
component of the applied remote stress is kept constant and
equal to +1, whereas the other component of remote stress
varies between —1 and +1. In Fig. 1 is shown the
maximum of the von Mises parameter for the stress ratio
01/ 0, = —1, i.e. in pure shear. The @ = B = 0 case (when
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the inclusion has the same properties as the matrix)
indicates a maximum of /3 and for the hole limiting case
(the vertical line of the far bottom left of the Dundurs
parallelogram) a maximum of 2v/3 which means that there
is no possibility of cyclic plasticity before the full yielding
of the specimen. For a less negative stress ratio (in Fig. 2,
01/0, = —0.5), the maximum of the von Mises parameter
is lower than that for the @ = 8 = 0 case; here it is about
1.3, but for the hole limiting case it is higher than twice
this value, namely about 3.03 in this particular case. This
indicates that there is an entire region in the Dundurs
parallelogram with a possibility of cyclic plasticity beha-
viour (below full yielding), and it is the area exterior to the
contour 2.6 in the diagram, including the hole limiting
case. Increasing the stress ratio further, o, /0, = 0, i.e. the
pure tensile case (Fig. 3), is reached; the maximum of the
von Mises parameter is v/3 /2 for the & = 8 = 0 case, and
for the hole limiting case it is about 2.6. Therefore, the
region with a possibility of cyclic plasticity behaviour,
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Fig. 2 Results for a stress ratio of —0.5 in the Dundurs aff plane
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Fig. 3 Results for a stress ratio of 0 in the Dundurs af plane
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exterior to the contour /3 in the diagram, is larger,
including the hole limiting case, and also a region close to
the upper line of the parallelogram. With a higher stress
ratio, 01/, = 0.5 (Fig. 4), the maximum of the von Mises
parameter becomes very small for the @ = 8 = 0 case; in
this particular case it is 0.433, and also for the hole limiting
case it decreases to 2.165. The cyclic plasticity region is
now a large area around the origin, including also some
cases of rigid inclusions (the a = 1 line), close to the limit
of ¥; = 0 (the point a = 1, f = 0.5). Finally, in the limiting
case of equibiaxial tension (Fig. 5) for which the solution is
clearly axisymmetric, and the value of the maximum von
Mises parameter is clearly attained around the entire circle,
the @ = 8 = 0 case gives a zero von Mises parameter, in
agreement with the fact that there is no distortion in this
case, and therefore the cyclic plasticity region is now the
entire parallelogram.

69

3 CONCLUSION

The elastic stress concentration (specifically, the maximum
in-plane tangential stress) in a plane problem for a material
containing an inclusion of different elastic properties has
been studied. It is clear that the presence of the stress
concentration implies that the yielding limit is reached
always (near the interface) before the stress level needed to
reach the onset of plasticity in the bulk of the matrix.
However, as in the case of proportional loading it is argued
that an upper bound of the shakedown limit is twice the
elastic limit; if the stress concentration is lower than two, no
significant plastic damage can occur due to the presence of
the inclusion. Given that the stress concentration (from the
elastic solution) does not depend on the dimension of the
inclusion but only on the pair of materials of matrix
inclusion, it is possible to draw general conclusions when
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Fig. 4 Results for a stress ratio of 0.5 in the Dundurs af plane
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Fig.5 Results for a stress ratio of 1 in the Dundurs af plane
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considering an MMC. In other words, for a given matrix,
there are materials (for the inclusion) which, under a certain
remote loading, do not cause any possibility of plastic
damage, in the sense of possible cyclic plasticity. A series of
plots have therefore been shown in the Dundurs plane to
cover the entire range of loading conditions and material
combinations for the case of a circular inclusion. In
particular, no possibility of cyclic plasticity under remote
shear has been found, whereas any combination of elastic
properties in the equibiaxial limiting case may lead to the
cyclic plasticity regime; in intermediate cases, there is a
limited area on the Dundurs plane where cyclic plasticity is
possible, generally close to the hole limiting case, but also to
aregion near the upper line of the Dundurs parallelogram.
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