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On the post-processing of data obtained from cracked

components
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Abstract: The use of a simple singular value decomposition (SVD) technique to post-process far-field data
from cracked components is discussed. The technique employs the series expansion for stress or displace-
ments ahead of the crack tip, which is available for a wide range of configurations. The use of higher-order
terms, necessary for the post-processing, is beneficial for two reasons: (a) it permits the abstraction of the
maximum usable amount of information; (b) it gives a better understanding of the fracture mechanics, espe-
cially regarding crack tip plasticity and dynamic propagation. Several numerical cases are examined and a
comparison is made with analytical results, permitting an evaluation to be made of the pure numerical error

in the post-processing.
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NOTATION

a crack dimension (for an edge crack),
half-dimension (for an interior crack)

K., KL series expansion coefficients

KKy = Ko, K& stress intensity factors

n,n, number of unknown terms, number of
equations

(X)) polar coordinates

u displacement vector

2 stress component

1 INTRODUCTION

Providing the classical approximations of small-scale plas-
ticity are fulfilled, the stress field around a crack can be
characterized, apart from a region very close to the crack
tip,* by the LEFM (linear elastic fracture mechanics) series
expansion. Therefore, the classical argument for design pur-
poses is that, in the ‘asymptotic region’ where propagation
may occur, the first terms of the series, Kj, Ky;, dominate
the stress field and should consequently characterize the
fracture process. A single value of stress in the asymptotic
region (where Kj, Ky are directly proportional to 1/4/7)
could be sufficient for the determination of the parameter.

The MS was received on 21 May 1997 and was accepted after revision for
publication on 19 November 1997.
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However, the following questions arise immediately:

l. What are inner and outer limits of the ‘asymptotic
region’? Is the asymptotic region easily accessible?’

2. Where is the region of best choice for the extraction of
reliable data? Where is the ‘density” of information high-
est and could it be found in an automatic way?

3. If data are available in the ‘intermediate region’ and the
‘nominal region’, is it possibe to use any of them so as to
improve the reliability of the results?

These questions lead directly to a first reason for consid-
ering higher-order terms in the expansion, using data in the
proximity of the crack tip, but not only in the asymptotic
region, for determining the values of K, Kj; field para-
meters. A second reason is that higher-order terms are
now widely recognized as relevant in certain conditions:
the second term in the expansion, called the T-stress, quan-
tifies the transverse stress present near the crack apex,
affecting significantly the crack tip plasticity behaviour. In
dynamically propagating cracks, the local values of stresses

*Two different regions in the proximity of the crack tip can be distin-
guished: a close process zone, where finite deformations and void nuclea-
tion occur, and, further away, a region of elastoplastic deformations,
where the HRR stress field is eventually valid, behaving like 1/t ("*”, n
being the hardening coefficient of the material.

For example, in recent experimental work (1) it has been found that the
1/ elastic stress field is valid, for a typical test (an A1 6061 T6 aluminium
compact tension specimen), only in the region 100-300 CTOD, which cor-
responds in that case to about 0.3—-0.9 mm.
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depend on the time history of the values of crack tip speed
and stress intensity factor, related to higher-order terms in
the Williams-type expansion, with respect to time and
space. In particular, the second and third terms have proved
to be consistent in justifying the scattering in the theoreti-
cally predicted relation between Kj, Ky and propagation
speed (2—4).

To obtain the desired calculation of the terms of the series
for the stress or displacement fields, a form of ‘boundary
collocation method” will be used [see reference (5) for a
list of references]. As the classical least-squares fitting pro-
cedure becomes easily very ill-conditioned under these typi-
cally rapidly varying data, the following are proposed:

(a) always an overdetermined number of conditions;
(b) a singular value decomposition (SVD) procedure to
solve the system of equations.

2 THE WILLIAMS-TYPE SERIES EXPANSION

The stresses a(r, 6) and the displacement vector u(r,8) on
the point defined by the polar coordinate system r, § centred
on the crack tip can be obtained for the homogeneous static
case, with little algebra, from (6)

o (n=1)2

o(r,6) = ; Tam (Ko + K0 0) M
and
oo (n+1)/2 - -
u(r,9) = ; T Kt ® + Ky u, 0)] @
where K,I,, K,I,I, for n =0,1,..., are the coefficients of the

series expansion and for n = 0 are the well-known stress
intensity factors (SIF) corresponding to mode I and mode 11
deformations; af,(()) and 03(0) and uf,(ﬁ), uE(G) are given in
Appendix 1. From equations (1) and (2), it is clear that K}
gives a rigid-body rotation, and hence gives the null stress
field, whereas the only regular term to produce a non-zero
stress field at the crack tip is K7, which for the form of dis-
placement is called the T-stress.

3 SVD PROCEDURE

SVD is the recommended procedure for a general badly
conditioned linear least-squares problem, either underdeter-
mined or overdetermined. In the former case, SVD produces
a solution whose values are smallest in the least-squares
sense; for the latter, the solution is the best least-squares
approximation, and in both cases this is what is usually
desired [see reference (7), Sections 2.6 and 15.4]. Here
the problem is to find the coefficients of a series expansion
matching some values of the stress and/or displacement at
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certain positions. If a proper number of conditions is given
for the elastic solution to be unique, it is sure also that the
expansion will converge, and uniformly, to that solution
(8). Unfortunately, for an infinite number of coefficients,
an infinite number of conditions would be needed. However,
the SVD procedure corresponds to a usually successful
search for the physically reasonable solution. The engineer-
istic criterion to be used, then, is convergence of the coeffi-
cients upon increasing the collocation points number.

The procedure is implemented in the MATLAB software
(9) and a synthesis is listed in Appendix 2. A matrix
matr[neg X n] is written for the coefficients, directly
obtained in terms of the series expansions in Appendix 1,
and a vector vect from the known values (of stresses and/
or displacements), where 7 is given by the number of con-
ditions that are written, whereas the number of unknowns »
is equal to the number of terms K, and K that need to be
extracted (and neq > n). The parameter fo/ is introduced
that gives the lowest value in the diagonal matrix s of the
SVD procedure to be considered significant [see reference
(7), Section 2.6]. Finally, x gives the solution of the pro-
blem, i.e. the vector of the coefficients K. and K.

4 NUMERICAL EXPERIMENTS

The case of a homogeneous disc with a radial edge crack
under isotropic tension (see the sketch in Fig. 1) is consid-
ered as the benchmark test, but it is clear that any crack in
a homogeneous body surrounded by a sector of material
like this can be considered; moreover, the disc is considered
to be in a state of isotropic tension, because for this particu-
lar loading case the solution is analytical for any geometri-
cal ratio a/r (10, 11). The solution is given by

K2 (Z_a)-s/z;

=— - K, = , Ky =0.355715
X K, - 0= opa, K,

3

where the value of X, is correct to six significant figures.
Here oy is the applied tension, a is the dimension of the
crack and r is the radius of the disc.

4.1 Collocation of stresses at r= 1

Figure 1 shows the result of collocating o, = 0y and 0,y = 0
at 7 = 1. The number of collocation points 7, varies with a
ratio of equations to unknowns =2. It may be appreciated
that the error is immediately under 10 per cent, for n, greater
than about 10, even for non-optimal aspect ratios
(0.4 < alr < 1.6), and becomes less than 2 per cent for
n. > 24. Also, if the aspect ratio is kept closer to the opti-
mum a/r =1, say 0.8 <a/r < 1.4, the error is under 0.1
per cent if n, > 10,

The values at convergence have been checked for the case
alr = 1 with reference (12). Table 1 shows the first 10 coef-
ficients obtained with 360 uniformly spaced collocation
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Fig. 1 Convergence of K| with collocation of stresses at the
boundary as a function of the number 7, of collocation
points; for n, <35 the number of terms in the series
expansion n = n, (ratio of equations to unknowns is 2);
for n, > 35, n is held constant, » = 35 (ratio of equations
to unknowns is greater than 2)

points with the number, n, of terms equal to 100 and a tol-
erance parameter in the SVD procedure (see procedure 1)
equal to fol = 1.0E — 4. The comparison with the two
references (where only the significant digits given by the
authors are shown) shows that agreement is excellent.

4.2 Collocation of displacements at r=1

To check the capability of keeping separated information
due to symmetrical and antisymmetric contributions, the
case of Fig. 2 was investigated, where the boundary condi-
tions of the previous case are superposed to a self-equili-
brated antisymmetric load condition. Symmetrical
coefficients are obviously the same as for the previous ana-
lysis, whereas antisymmetric coefficients, for which there is
no analytical solution, are compared with those obtained
with values converged to six significant digits. The interior
displacement field is generated using coefficients obtained
from the previous experiments, accurate to six digits. The
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Fig. 2 Convergence of Kj, K} and T-stress with collocation of
displacements at the boundary as a function of the number
n, of collocation points (the number of terms is chosen as
n= %nc, so that the ratio of equations to unknowns is 4/3),
uniformly spaced along afr = 1

overdetermination ratio (ratio of equations to unknowns)
has been varied between 1 and 4, but the best results are
obtained for a ratio of about 4/3. The results (Fig. 2) there-
fore show a better behaviour with respect to the stress col-
location of Fig. 1 (with #, greater than 10, the error is less
than 1 per cent).

5 DISCUSSION AND CONCLUSION

The use of a simple SVD collocation technique to the com-
plete Williams-type expansion of the stress and the displace-
ment fields of a crack has been analysed, considering either
stresses or displacement boundary data (or a combination of
the two). This is proposed as a tool for the post-processing
of data in a fast, automatic and reliable way. Using displace-
ment data at a constant distance around the crack tip (equal
to the crack dimension, a/r = 1) and with a ratio of equa-
tions to unknowns of 4/3, an error was obtained of under
0.1 per cent with 10 collocation points. This is the numerical
error associated with the post-processing procedure only:
depending on the source of the data, other kinds of error

Table 1 K}/(0pa"™?) with a convergence to six significant digits, obtained using 360 uniformly spaced
collocation points at a/r =1 (Fig. 1), compared with values in references (11) and (12).
Number, n, of terms used = 100; to/ = 1.0E—4

n Present Reference (12) Reference (11) n Present Reference (12)

0 5.62252 5.623 5.62247 5 —0.153202 —0.15

1 2.37648 2.377 - 6 0.126 648 —

2 —9.208 00 —9.208 -— 7 0.0515203 —

3 0.892847 0.891 — 8 —0.066 6865 —

4 —0.297936 -0.30 e 9 —0.0213146 —
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can be present, and the total error is not given by the linear
superposition. It is outside the scope of this note to give a
detailed analysis of all possible situations, because the kinds
of error depend on which numerical or experimental method
is used to obtain the data. However, a check on the conver-
gence must always be done, and the character of SVD
ensures that the procedure will not blow up unless the
data are completely unreliable. The technique is particularly
efficient in the case where a large number of analyses is
required with a large number of data to be processed, like
in the case of full-field techniques in dynamically propagat-
ing cracks, where the manual fitting of asymptotic data would
lead to a time consuming analysis which was prone to error.
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APPENDIX 1

Series expansion for a crack in a homogeneous domain

Here the functions giving the variations with 6 in equations
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(1) and (2) are given. Firstly, as regards the stress field (1):

()
oy(0) = 3 (6)
()
( n—1 n—1. . n—3
cos 5 0— 5 sin @ sin 3 (]
= cosn;10+n—lsin0sinn_30
—n—lsinecosn_30
n=20,24,... 4
()
ah® =X o), ©
()
2c0s" Lo "= LGngsin =20
M) 2 2
= nglsin@sinn_30
2
.n—1 n—1 . n—3
—sin 7 0— 3 sin 6 cos 0
n=1335... (5
O (0)
0y (0) = oy ()
R ()
2sin—’z—%~10+nz;lsinﬁcosn_30
= —n.—lsint?cosn_?’&
n—1 n—1 n—3
_ e 9
cos > 0 > sin @ sin
n=20,2,4,... (6)
[a)‘;n ®)
HOERE NG
LA ()
. n—1 n—1 . n—3
sin 3 0+ 5 sin 8 cos 0
= sinnglﬁ—n_lsinﬂcosn—g’ﬁ
——n_lsinﬁsinn*?’ﬁ
2
n=135... (7
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With respect to the displacements field (2):

I
) 1
1 6 _ Uxp e
u,(6) {u}n(ﬁ)} 2u(n+1)

1 -1
——(K——l)cos%@—i—(n—i-l)sinﬁsinn 0
X
1 —1
(x+1)sinn+ 6——(n+1)sin0c:osn 0

n=0,2,4,... (8

Uen(
uz,«»:{ I“}=;
uyn(g) 2u(n+1)

(K+1)cosn+10—(n+1)sin0sinn—10
% 1
(k — 1)sinZ——0 — (n+ 1) sinf cos ——
n=13735.. 9
) = Uy (6) 1
1y, (6) T 2un+ 1)
(K+l)s1n 0+(n+1)smﬁcos 10
——(:c—-l)cos 10—(n~i-1)si110sinn—-10
n=20,2,4,... (10)
1l
Uy, (0
doy={ OV 1
Uy (6) 2un+1)
(K—1)sinn+10+(n+1)sin0003n—16
X
—(K-{—l)cosn—;10—(n+1)sinﬁsinn—10

n=135.. (@11
where p is the shear modulus of the material, « is the Kolo-

sov constant, equal to k = 3 — 4» under plane strain condi-
tions, where » is the Poisson ratio of the material.
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APPENDIX 2

A MATLAB procedure to implement the SVD solution
of the system

build matr and vect

[u, s, v] = svd(matr,0),
for i =1 size(matr,2)
if s(i, i) = tol
s(i, 1) = 0;
end
if s(i, i) < tol
s(i, i) = 1/s(i, i),
end
end

X =vxs*xu xvect
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