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Abstract

A 2D multilayered model has been considered to estimate the transient evolution of temperature and pressure perturbations in multi-disk
clutches and brakes during operation. The mode! proposed by Decuzzi et al. [1] has been modified here to estimate the variation of
b-perturbation growth rate—with V—relative sliding speed. It has been verified that the perturbation with the lowest critical speed has
also the highest growth rate, and that low frequency perturbations are less critical than high frequency perturbations, at fixed critical speed.
Therefore, when comparing perturbations with identical critical speed, those with higher wave numbers are responsible for more intense
thermomechanical damages. Also, for perturbations with wave number smaller than the critical me;, the temperature increases with m; vice
versa for perturbations with wave number larger than m., the temperature decreases with m. A reduction in thickness ratio ai/a; between
friction and metal disks has the effect of increasing the temperature and growth rate. An approximate formula for the temperature variation
with time has been derived for a linearly decreasing engagement speed.

© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known since the pioneering experiments of
Parker and Marshall {2] that concentration of frictional heat-
ing over zones smaller than the nominal frictional interface
can occur in clutches and brakes, thus leading to large local-
ized temperature and mechanical pressure. In 1969, Barber
[3] has proposed a physical explanation of the phenomenon
introducing the idea of frictionally excited thermoelastic
instability (TEI): non-uniform thermomechanical deforma-
tions modify the surface profile and contact pressure which
in turn alters the frictionally heat generated at the slid-
ing interface, thus modifying again the thermomechanical
deformations. Few years later, in 1973, Burton et al. [4]
presented the first theoretical model of TEI and introduced
the idea of a critical speed V., above which the system is
always thermoelastically unstable. Since then, several ex-
perimental and theoretical analysis have been carried out
aiming at better understanding the phenomenon and defin-
ing the governing parameters. Most of the theoretical works
have been focused on the analysis of the onset of instability
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and were dedicated to the estimation of the critical speed
Ver for different geometries and material properties (see Lee
and Barber [5,6]; Yi et al. [7], Decuzzi et al. [1]; Decuzzi
and Demelio [8], Davis et al. [9]).

Nowadays the rush towards higher performances has
increased sliding operative speeds of clutches and brakes.
Also, in practical applications engagement speeds might
be larger than critical speeds for TEI, and typical service
consists in frequent and quick engagements cycles, so that
clutches and brakes operates predominantly in a transient
regime. Consequently, it has been recognized the impor-
tance of studying the occurrence and evolution of TEI for
a time-dependent sliding speed. One of the first transient
analysis of a multi-disk clutch was performed by Zagrodzki
[10] who, to make the problem numerically tractable, com-
bined a finite difference discretization in time for solving the
thermal problem with a finite element scheme for solving
the elasticity contact problem. He monitored the evolution
with time of the temperature distribution and mechanical
deformations at the disks’ surface and along the pack of
disks. A finite difference discretization was also used by
Jang and Khonsari [11] in modelling the transient ther-
mohydrodynamic engagement of a single-disk wet clutch.
More recently, efficient transient analysis of clutch/brake
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Nomenclature

a; half thickness of layer i (m)

b growth rate (s~1)

c perturbation absolute speed (m/s)

Ci perturbation relative speed with respect
to layer i (m/s)

Cpi specific heat of layer i (J/kg°C)

E; Young’s modulus of layer i (N/m?)

f frictional coefficient

j imaginary unit

ki diffusivity of layer i (m2/s)

K; thermal conductivity of layer i (W/m °C)

m wave number (m™')

me  critical wave number (m™!)

N hot spots number

p contact pressure distribution (N/m?)

q heat flux per unit area (W/m?)

i heat flux per unit area entering layer i (Wim?)

to stopping time (s)

t time (s)

Ty initial amplitude of the perturbed
temperature field (°C)

T; temperature field in the layer i (°C)

u; displacements at the sliding interface
of layer i (m)

Vo initial sliding speed (m/s)

Vv sliding speed (m/s)

Ver critical sliding speed (m/s)

Greek letters

o thermal expansion coefficient
in layer i (°C™1)

A wave length of the pertubation (m)

i shear modulus in layer i (N/m?2)

Vi Poisson’s coefficient in layer i

Oyy; normal tractions at the sliding interface
of layer i (N/m?)

Toy; shear tractions at the sliding interface

of layer i (N/m?)
Oi density of layer i (Kg/m3)
#i, w; Green and Zerna harmonic potential functions
v; thermoelastic strain potential

engagement have been proposed by Al-Shabibi and Barber
[12] adopting a reduced order model.

In this work, a 2D multi-disk model is used, derived by
Decuzzi et al. [1], which is based on a small perturbation
analysis: it is assumed that the otherwise uniform contact
pressure at the sliding interface is perturbed. It is then esti-
mated: (i) the variation of the growth rate b of the perturbed
solution with the sliding operating speed V > V,; (ii) the
effect of the wave number and disk thickness on the b(V)
relation; (iii) the evolution with time of the surface temper-
ature and pressure distribution, assuming a linear variation

of the sliding‘ sjjéed in the engagement prbc‘esrs; (i\‘/)‘ah ap-
proximate formula for the temperature variation with time.

2. Model and formulation

Multi-disk brakes and clutches are made up of homoge-
neous metal disks and friction disks, where a core metal layer
is covered on both sides by friction linings. In the present for-
mulation, a multilayered structure is employed to reproduce
amulti-disk clutch or brake as proposed in Decuzzi et al. [1].
The system is symmetrical with respect to middle-planes of
the friction and metal layers, thus the analysis of the prob-
lem can be condensed to a half frictional layer (1) sliding
on half metal layer (2) (Fig. 1), where suitable boundary
conditions are imposed at the planes of symmetry. Inspired
by Burton et al. analysis [4], the thermoelastic stability of
the system is assessed by perturbing the otherwise uniform
contact pressure at the sliding interface, that is to say

p(x, 1) = poe? ™ (1

where the growth rate b could take up negative values (b <
0) for stable perturbation, positive values (b > 0) for unsta-
ble perturbation, and zero (b = 0) at the onset of instability,
for which the critical sliding speed V¢; can be determined. In
Fig. 1 two frames of reference (x1, y1) and (x2, y,) are fixed
on the middle-planes of the two layers, while a third frame
(x, y) is moving with the perturbation having absolute speed
c. The migration speed c; is defined as the relative speed
of the perturbation with respect to layer i, i.e. ¢; = ¢ — V;.

The following formulation is an extension of that pre-
sented in Decuzzi et al. [1], where a non-zero growth rate,
b is considered. Therefore, only the main features of the
method are presented in the sequel. The reader is then
referred to the above paper for a more detailed and com-
prehensive description of the possible sets of boundary
conditions and physical meaning for the migration speed c;.

2.1. Temperature field

The temperature distribution is governed by Fourier’s
equation k; V2T; = 3T, /0t, where k; = K;/ piCp;i is thermal

N
Xy plane of symmetry

I

a

Yy
frictional interface X 1
2 ! -
Vv
ay

Ya
Xy plane of symmetry
Yo
Fig. 1. Metal half layer (2) in sliding contact with friction half layer (1)
with relative speed V.
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diffusivity, K; the thermal conductivity, p; the density and
cpi the specific heat of the material i. The perturbed solution
of the above equation is given as

Ti(xi, yi, 1) = (Age™" + Bye™4)ePim (=it @

with

Xi(m, b, Ci)z\/<m2+k£i) _J<mk_fl> 5

where the four constants A; and B; (i = 1,2) are defined
by the thermal boundary conditions:

e continuity of the temperature field at the sliding interface
(y=0)
Ti(x, y; 1)y=0 = Toe"&™ = Tye?e™ = Ty(x, y: 1),—0
4
being from (2),
To=A1+ B =A,+ B, %)
e for symmetrical layers, the heat flux through the middle-
plane (y; = 0) is zero: gy,|y,=0 = —K; (T;/3y)|y,=0=0;

e for antisymmetrical layers, the temperature at the
middle-plane (y; = 0) is zero: T;| yi=0 = 0;

Therefore, after simple algebraic manipulation, it is found

gl(=1D)'Aiyi] ghrtimx 6
<Dhvar] ©

where g(-) = cosh (-) for symmetrical layers and g(-) =
sinh (-) for antisymmetrical layers.

Ti(x,yi, ) =Tp

2.2. Thermoelastic stress and strain fields

The general solution of the thermoelastic problem is
attained by superimposing a particular solution on the
general isothermal elasticity problem.

As suggested by Barber ([13], Section 12), the particu-
lar solution of the thermoelastic problem may be expressed
in terms of the strain potential 1, satisfying the equation

V2 = BT,

BiTo [8Giy) 87 priime .
_ - th
vi 22 —m? [ g(hia)  g(ma) © .
14
Bi =2pia; 1= vl_ ™)

where @; is the coefficient of thermal expansion, ni =
E; /[2(1+v;)] is the shear modulus and E;, v; the Young and
Poisson moduli, respectively. The displacement and stress
fields are given by:

oo L Layi, &%
%= 2ui ax S T 2u; 8y i Fros
94

®

Toi = dxady

Whilst, the general solution is obtained by employing the
Green and Zerna ([14], Sections 12 and 13.2) harmonic
potential functions ¢; and w; given by:

’ N .
b = C; (myz) e]mx : g/(myl)e,mx ©)
g(may) §'(maj)
with the displacement and stress fields

1 9¢; L1 1 dw;
Uy, = ;
i 2,u, ox 24 are ax

e

1 a¢z 1 ac‘)i 3—41),'
Uy, — Vi — w;i;
BTy om ay 2w O
92¢; 2w, dw;
Oxy; = ax + zaxz _2‘)1'3,
a2¢ 3% w; dow;
M= =53 — +i % — =2l =) —;
82¢; 32w dw;
= j—— — (1 = 2u;) — 10
7o = axay T Vigray T 2E (10)

where the apex denotes differentiation and g(-) is defined
as above. Notice that for symmetrical layers uy, = 0 and
oy = 0 at y; = 0, whilst for antisymmetrical layers u,, =
0 and oy, = 0 at y; = 0. The four constants C; and D;
(i = 1,2) can be calculated by imposing the mechanical
conditions at the frictional surface (y = 0), that is to say

Uy, — Uy, =0; 0y — 0y, =0 (1)
Ty — Oxpy =05 0y + foyy, =0 (12)
The pressure amplitude po at frictional interface is

p(x, 1) = poe?le™ = — 0y (13)

2.3. Characteristic equation

The fourth thermal boundary condition imposes energy
conservation at the sliding interface, that is to say the fric-
tional heat flux ¢ = fVp must equal the heat partitioning
between the two layers,

ah

% 8T2
4yl — gy2 = 1 3y

2% =ﬂ/P (14)
y=0 y

From (1), (6) and (14) the following not linear complex
characteristic equation is derived

"(Ma ! (A2a
I:Kl)nlgl( 1a1) +K)»zg2( 202)
g1(r1ap) g2(h2a2)

For fixed material properties and geometry (m and a1 /ay), the
real fre and imaginary fim parts of (Eq. (15)) together with
the kinematics condition V = ¢; — ¢, provide a non-linear
system of three equations in the four unknowns V, b, ¢;
and c. Hence, by fixing b = 0, the critical speed V,; is
determined as from Decuzzi et al. [1], conversely by fixing
the sliding speed V, the variation of the growth rate b with
V is estimated. The above system of complex equations is
solved by a classical bisection method.

} To—fVpo=0 (15)
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Fig. 2. Variation of the dimensionless critical speed Vaa/k, against the wave parameter mas for different valucs of the thickness ratio aila;.

3. Results

The geometrical symmetry of the system leads to two
possible sets of boundary conditions to be prescribed at the
layers’ mid plane: antisymmetric or symmetric. As shown
in Decuzzi et al. [1], the most critical condition is for the
antisymmetric case on the metal layer and symmetric case
on the friction layer. Therefore, the results in the sequel
are for the asymmetric/symmetric case, i.e. the most critical
condition.

The well-known behavior of the dimensionless critical
speed Ver(=Viraa/ks) against the wave number ma, for
different values of the thickness ratio aj/as is plotted in
Fig. 2.

e the critical sliding speed reduces as the thickness ratio
decreases;

o the Burton’s solution is approached for ma; — oo;

e the Lee and Barber solution is approached for a/ay —

The material properties used throughout the paper are those
listed in Table 1, typical of automotive applications. Three
different representative values of the sliding speed for
ai/ay = 0.25 have been highlighted with the letters A, B
and C. For a; = 3 (mm), two different perturbation wave
numbers m4, = 26.53 (m™!) and m4, = 666.67 (m™!);
mp, =38.15(m ') and mp, = 500 (m™"), correspond at A
and B, respectively. Whilst C is the most critical condition
with mer = m¢ = 136.67 (m™1).

3.1. The growth rate b

In this section, the estimation of the growth rate for slid-
ing speeds larger than the critical value has been presented.
By doing so, the following two questions can be answered:
how fast the perturbation grows beyond the onset of insta-
bility and how fast the system is thermally and mechan-
ically damaged by hot spots formation. Also, in order to
estimate the variation of the temperature distribution during

0. engagement, it is necessary to know the growth rate b at
Table 1
Material properties for metal (cast iron) and friction layers
Material E (N/m? x 10%) v o (°C~1 x 1076 K(W/m®°C) k (m?/sec x 10~)
Cast iron 125 0.25 2 54 12.98
Brake friction material 0.53 0.25 30 0.5 0.269
Clutch friction material 0.3 0.12 14 0.241 0.13
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Fig. 3. Variation of the growth rate b against the sliding speed V for different values of the wave number m (ai/az = 0.25 and ay = 0.003 (m)).

each sliding speed. This in fact permits to define the function
b(t) = b(V(1)), as described in Section 3.2. Tacitly, it is
assumed here that contact is maintained at all times along
the sliding interface.

In Fig. 3, the curves b(V) are shown for three working
conditions listed above, and a typical value of ¢, = 3 (mm).
The perturbation with the lowest critical speed (point C) is
also associated with the highest growth rate, thus it is the
absolutely dominant perturbation. In addition, comparing
perturbations with identical sliding speeds but different wave
numbers (points A; — A and By — B»), it can be deduced
that the smaller the wave number the lower the growth rate.
Therefore, perturbations with lower wave numbers are less
critical. However, it must be noticed that the finite circular
extension of disks in clutches and brakes imposes a limit on
the minimum supportable wave number, or maximum wave
length, as observed in Lee and Barber [5]. If a2 mean radius
Ry of the disk is considered, the wave length A = 27/m
of the perturbation has to be a submultiple of the medium
circumferential length 27 Ry, that is

- 27 R

or conversely m = N (16)
Rm

where N is the number of hot spots. In Table 2, for Ry, = 50
(mm), the wave length and the wave number corresponding
to different values of NV are listed. Clearly, perturbation with
m < 20 (mm™') must not be considered.

Fig. 4, presents the variation of the dimensionless growth
rate b(= b/m?ky) with the dimensionless sliding speed

V(= Vap/ky) for a fixed wave parameter (may = 1.5) and
different values of the thickness ratio, namely aj/a; =
0.2,0.25, 0.3. Tt is observed that as the ratio a;/a; increases,
the growth rate decreases at fixed sliding speed, whilst the
critical speed increases. Therefore, the effect of increasing
the thickness ratio is that of reducing the susceptibility to-
wards hot spotting (critical speed increase) and the severity
of the thermomechanical damage (growth rate decrease).
Notice that such a result obliges to rethink at the classi-
cal clutches and brakes design procedures where thicker
metal disks are preferred to reduce the mean temperature
of the system and thinner friction layers are employed to
reduce costs and duration of the engagement cycle: what is
beneficial for classical design is deleterious for TEI.

In addition, the effect of the material properties on the
growth rate, b is shown in Fig. 5, as a function of the sliding
speed. Two sets of materials are considered as from Table 1:
a brake friction material which is less compliant and more
conductive than a clutch friction material. Friction materials

Table 2

Wave length and wave number for different values of N (R = 50 (mm))

A (mm) m N

314 20 1

157 40 2
78.5 80 4
39.25 160 8
19.625 320 16
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Fig. 4. Variation of the dimensionless growth rate b= b/m%k> against the sliding speed V= Vay/k,, for different values of the thickness ratio a/ay
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Fig. 5. Variation of the growth rate b against the sliding speed V for two different sets of friction materials.
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used in clutches are less proned to thermoelastic instability
leading to a larger critical speed and smaller growth rates.
On the contrary, brake friction materials with larger elastic
modulus, i.e. smaller wear rates, are generally more suscep-
tible to TEI.

3.2. Transient evolution of the temperature field

Al-Shabibi and Barber [12] have shown that surface pres-
sure and temperature in the transient regime can be written
as

t
T = T(0)exp {/ b(V(1)) dt] a7
0

t
p=r0ee | [ovayal (18)
where T (0) and p(0) are the temperature and contact pres-
sure at the time 7 = 0, and b(z) is the dominant growth rate
at each speed V (¢). The above two expressions derive from
the fact that the transient evolution of the system with V (¢)
can be considered as the superposition of quasi-static prob-
lems with different sliding speeds, corresponding at different
time instants. In that case the temperature field is given by an
eigenfunction series as T'(x, y, 1) = Y I_; Ciebi'6;(x, y),
where C; is an arbitrary constants determined from the ini-
tial condition T (x, y, z, 0). However, the transient response

1E+3

L. Afferrante et al./Wear 254 (2003) 136-146

is dominated by the term with the largest value of b;, which
is the only that needs to be considered. Thus,

. aT
T(x,y,t)=Cie"'6;(x, y) - =
= Cdombdome” ™ o (x, y) = baomT (x, y)
19)
where bgom is the dominant growth rate at a fixed sliding

speed.

Therefore, knowing the variation of b with V from the
characteristic equation for fixed geometry and material
parameters, and assuming that during a clutch/brake en-
gagement process the sliding speed V reduces linearly with
time V(1) = Vo(l — t/19), from Egs. (17) and (18), the
transient evolution of the temperature and pressure at the
sliding interface can be derived. ‘

The evolution with time of the temperature amplitude
normalized with respect to its initial value 7'(0) is shown
in Fig. 6, for fixed layers’ thickness. In agreement with
what depicted in Fig. 3, perturbations with lower wave
number leads to lower temperature increase (points A and
B). Therefore, for fixed sliding speeds, perturbations with
larger wave numbers cause more intense thermomechanical
damages.

In Figs. 7 and 8, the evolution of the normalized temper-
ature T/T(0) with respect to the dimensionless time t
kym?t is presented, for wave number higher and lower than

my=38.15

g a,/a; =025
o a, =0.003 [m]
1E+2 | .
E -7
— Ve
] Ve
— //
1E+1 — /////
~ -+ 7
(=] 4
E 1E+0 —
= 3
1E-1 |
1E-2
1E-3 | i !

t [sec]

Fig. 6. Transient evolution of the normalized temperature 7/7(0) for sliding speed decreasing linearly with time.
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Fig. 7. Transient evolution of the normalized temperature 7/T(0) for sliding speed decreasing linearly with time: wave numbers greater than the critical

value (mg = 136.67 (m~1)),

the critical value m¢, = mc = 136.67 (m™!). Two different
trends are found:

e the temperature increases with m (Fig. 7), for perturba-
tions with m < mg;;

e the temperature decreases with m (Fig. 8), for perturba-
tions with m > mg,.

From Fig. 9, where the transient evolution of the normalized
temperature 7/T(0) is shown for different thickness ratio
(a1/az = 0.275; 0.2925; 0.3) and may = 1.5, it can be de-
rived that a small reduction of a;/a, leads to a large increase
of the temperature.

3.3. Approximated analysis of the transient
temperature field

From Fig. 3, it can be observed a fairly linear variation of
the growth rate with the sliding speed. Thus, an approximate
expression for b = b(V) can be written as

B*=nV +¢& (20)

where the coefficient » and & depends on the thickness ratio
and wave parameter. Once aj/a> and ma, have been fixed, 7
and & can be calculated with a classical least squares method.
In particular for may = 1.5, the values of n and £ are listed
in Table 3 for different thickness ratio.

It is tempting to think that a simple relationship between
the parameters 1 and & and the wave parameter ma; could
exist. Unfortunately, it has been verified that this is not the
case, thus n and & should be determined for each ma; inde-
pendently.

A comparison between the actual solution (dashed line)
and the approximate solution (solid line) is presented in
Fig. 10, using the values given in Table 3. The largest devi-
ations are observed for negative growth rates as the sliding
speed goes to zero, which are not of practical interest (de-
caying perturbations). Also, the error on the critical speed
(b = 0) is generally smaller than 5%. Consequently, the
linear approximation proposed can be employed to estimate
the evolution of the system, and considering again a linearly
decreasing sliding speed, from (17) an explicit formula is
obtained for the transient evolution of the temperature

- Vi
T = T(0) exp [(nvo +E)7 — "Er—‘)rz} @n
0
Table 3 s
Coefficients for the linear relation h(V)
ai/a n §
0.25 1.37 x 1073 —2.865
0.275 1.19 x 1073 —2.828
0.3 1.02 x 1073 —2.782
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Fig. 8. Transient evolution of the normalized temperature 7/7(0) for sliding speed decreasing linearly with time: wave numbers smaller than the critical
value (mer = 136.67 (m™h)).
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Fig. 9. Transient evolution of the normalized temperature T/7(0) for sliding speed decreasing linearly with time, for different values of the thickness
ratio aj/ay (maz = 1.5).
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Fig. 10. Growth rate-sliding speed curves: a comparison between the approximate (solid line) and actual solution (dashed line).
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Fig. 11. Normalized temperature-time curves: a comparison between the approximate (solid line) and actual solution (dashed line).
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In Fig. 11 (Eq. (21)) (solid line) is compared with the actual
solution (dashed line), for Vo = 6000 and 70 = 3.82. The
approximated curves overestimate slightly the temperature
growth, and the percentage difference is generally smaller
than 10%.

It is possible indeed to approximate the curve b(V)
linearizing the sole positive part of the curve, ie. V >
V.. However the improvement with respect to the above
proposed linearization is generally negligible.

4, Conclusions

A small perturbation analysis of a 2D multilayered model
has been performed beyond the onset of instability for TEI
(b > 0). The model reproduces the finite thickness of the
disks and the actual material properties used in clutches and
brakes for automotive applications. ‘

The variation of the growth rate b with the operative slid-
ing speed V has been studied and it has been found that
(i) the perturbation with the lowest critical speed has also
the highest growth rate, i.e. it is the absolutely dominant
perturbation; (ii) when comparing perturbations with iden-
tical critical speed, those with smaller wave numbers have
lower growth rates and are then less critical. In addition, it
is observed that the growth rate b decreases at fixed sliding
speed as the thickness ratio aj/a; increases, thus confirm-
ing that thinner metal disks and thicker frictional disks not
only reduce the susceptibility towards hot spotting (critical
speed increase) but they also reduce the severity of thermo-
mechanical damage (growth rate decrease).

From the analysis of the transient evolution of the tem-
perature field, it has been derived that (i) when comparing
perturbations with identical critical speed, those with higher
wave numbers ‘cause more intense thermomechanical dam-
ages (larger growth rate); (ii) for perturbations with m <
mer (critical wave number) the temperature increases with
m; whilst for perturbations with m > m¢; the temperature
decreases with m; (iii) the surface temperature increases as
ai/ap reduces.

Finally, it has been observed that in general the relation
b(V), between the growth rate and the sliding speed, for a
given perturbation can be approximated by a linear regres-
sion. Consequently, assuming an engaging speed linearly de-
creasing with time, a closed form solution for the evolution
of the temperature distribution with time has been proposed

as a function of the engagement conditions. For geometry
and material properties typical of automotive applications,
the difference between the approximated and actual solution
is smaller than 10%.
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