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Abstract

In the study of the essential features of thermoelastic contact, Comninou and Dundurs
(J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called “Aldo model”,
where the full 3D body is replaced by a large number of thin rods normal to the interface
and insulated between each other, and the system was further reduced to 2 rods by Barber’s
Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat
flux at the interface driven by temperature differences of the bodies, and opposed by a contact
resistance, finding possible multiple and history dependent solutions, depending on the imposed
temperature differences.

The Aldo model is here extended to include the presence of frictional heating. It is found that
the number of solutions of the problem is still always odd, and Barber’s graphical construction
and the stability analysis of the previous case with no frictional heating can be extended. For any
given imposed temperature difference, a critical speed is found for which the uniform pressure
solution becomes non-unique and/or unstable. For one direction of the temperature difference,
the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions
occur, outermost solutions (those involving only one rod in contact) are always stable.

A full numerical analysis has been performed to explore the transient behaviour of the system,
in the case of two rods of different size. In the general case of N rods, Barber’s conjecture is
shown to hold since there can only be two stable states for all the rods, and the reduction to
two rods is always possible, a posteriori.
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Nomenclature

A; sectional area of rod i [m?]

b growth rate [s7!]

E Young’s modulus of rods [N/m?]

f frictional coefficient

F total contact force [N]

k diffusivity of rods [m?/s]

K thermal conductivity of rods [W/m°C]

L length of the rods [m]

Di contact pressure on rod i [N/m2 ]

gi heat flux in rod i [W/m?]

R; contact resistance of rod i [m2°C/W]

t time [s]

Tz, Ty wall temperature [°C]

T4 temperature of fixed end of rods [°C]

Te, temperature of free end of rod i [°C]

Vv sliding speed [m/s]

14 dimensionless sliding speed

o thermal expansion coefficient of rods [°C~!]
4; unrestrained thermal expansion of rod i [m]

1. Introduction

Thermoelastic contact problems show non-existence or non-uniqueness and as a
result, instability. This behavior is a consequence of inequalities (non-linearities) regu-
lating the problem at the interface. When more than a stable solution is present, the sys-
tem shows obviously history-dependence. Problems of this class are found in many ap-
plications, one of the most important being sliding systems such as brakes, clutches and
seals, where thermoelastic effects manifest themselves as frictionally-excited thermo-
elastic instabilities or TEI (Barber, 1969; Dow and Burton, 1972; Lee and Barber,
1993; Zagrodzki, 1990) and is of critical importance in the design of brakes and
clutches (Parker and Marshall, 1948; Kennedy and Ling, 1974). Such systems are un-
stable if the sliding speed is sufficiently high, or more precisely, for a certain critical
product of friction coefficient and speed (f¥ )uit, the contact pressure perturbations
grow, leading to localization of load and heat generation and hence to hot spots at
the sliding interface. This behavior is obviously undesirable with respect to the trivial
uniform pressure distribution solution, and it is known to cause material damage, wear,
noise and frictional vibrations (Lee and Dinwiddie, 1998).

Until recently, although a qualitative connection was sometimes suggested, TEI was
treated separately from instabilities in heat conduction across an interface. Apart from
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fundamental models of tribology, specific applications of this class are duplex tube ex-
changers (Srinivasan and France, 1985), solidification of a metal against a plane mould
(Yigit and Barber, 1994), and many others. Again, non-existence or non-uniqueness
of solutions is found, even in the context of a simple one-dimensional model (Barber
et al., 1980). The problem of non-existence of the steady-state solution can be resolved
by postulating a constriction resistance at the interface, a subject of extensive experi-
mental (Clausing and Chao, 1965; Thomas and Probert, 1970) and theoretical (Shlykov
and Ganin, 1964; Cooper et al., 1969) investigations, although the effect of slid-
ing is less well known. Existence was proved by Duvaut (1979) for the general
three-dimensional thermoelastic contact problem for the special case where the ther-
mal contact resistance varies inversely with the contact pressure. The problem of
non-uniqueness, vice versa, is a more profound one and although Duvaut (1979) gave
a condition in terms of the constriction resistance parameters, reported experimental
measurements show that this condition is unlikely to be met in practice.

Recently (Ciavarella et al., 2003), an attempt has been made to study the connection
between TEI and “static” thermoelastic instabilities, in the context of the simple Barber
rod model (Barber et al.,, 1980). There, a single rod is built in a wall and slides
with respect to a target wall, from which the displacement in the normal direction
is prescribed. It was found that equalities and associated inequalities for the normal
pressure p (positive if compressive) and the gap g (positive if measuring separation)

contact : p>0;g=0 (1)

separation: p=0;g> 0 2)

can be combined into a single equation for a certain functional #, whose zeros give
steady state solutions and whose derivative %’ dictates stability. Since the system has
prescribed displacement, the pressure may grow without limit, causing seizure, similarly
to what had been suggested in a shaft rotating in a bearing (Burton and Staph, 1967;
Tu and Stein, 1995).

Hence, a critical speed was defined in terms of the limit resistance value R., for
large pressures p — oo, the length of the rod L, and K the thermal conductivity, !

N L
=14 —

where the dimensionless speed is defined as
o Eal
V=fV—- 4
e @)

i.e. a function of friction coefficient f, elastic modulus E, and « thermal expansion
coefficient. For low sliding speeds V < Vo, the results are qualitatively similar to
those with no sliding. In particular, the number of steady-state solutions is odd; if the
steady-state is unique it is stable and if it is non-unique, stable and unstable solutions
alternate, with the outlying solutions being stable. By contrast, for ¥ > V. either there
are no steady-state solutions (non-existence of solution) or the number of steady states

! Notice that the original notation in the paper (Ciavarella et al., 2003) was ¥, instead of Vo, used here.
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is even. In the latter case, stable and unstable states again alternate, so that there is
always an outlying unstable steady-state. A numerical study for the special case where
the resistance function is defined as R =d + ¢/p showed that when the system has no
steady states, the contact pressure grows without limit from any initial condition. If it
has steady states, but ¥V > V., the system will either tend to a stable steady state or
the contact pressure will increase without limit, depending on the initial condition. In
all cases, if ¥ < Vo, the system will tend to one of the stable steady states.

It is immediate to extend this model to the case of multiple rods, as if the condition
is still maintained in terms of the gap, the rods will remain independent from each
other, and therefore the steady state of the system and its stability will simply be given
by the independent steady states and stability of each rod. Therefore, a critical speed
can be defined for each of the rods and it will be a single value if material properties
and the contact resistance function are the same for all rods.

More interesting is the case where the total force is prescribed, which requires the
additional cffort described in this paper. The system becomes morc complex, because
of the coupling dictated by the equilibrium equation. If there is no wear, it is generally
believed the system will then tend to an alternate stable steady-state involving a reduced
contact area (Burton et al., 1973; Zagrodzki et al., 2001). The model with independent
rods has been studied in the simplest case of no frictional heating by Comninou and
Dundurs (1980), see Fig. 1, and named “Aldo model”. The original intention was
to model a full 3D contact problem reducing the solid to a large number of thin
rods normal to the interface and insulated between each other. Barber (1981) further
conjectured that because they are insulated, the exact distribution of the rods does not
matter; moreover, the basic features of the system are found in the case of two rods
of different cross sections. For prescribed force for a true system of N rods, there will
probably be many steady states: however, for every particular steady state there must
be a corresponding particular value of the location of the free (loaded) end of the
system of rods. Each of the many rods must be in a state that is possible for a rod

l F

T, =0

A%

——

Y/

Wall (rigid and perfect conductor)

Fig. 1. The Aldo model.
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with a fixed end at this location, which is the model studied in Ciavarella et al. (2003).
Thus, all the rods for any particular steady state must be in one of three states, and for
stability, in one of two states (two different contact pressures or one contact pressure
and one separation). Therefore, for a system of a given total area, if the steady state
is not uniform pressure, the solution must involve two states, and the only unknown is
the partition of areas between the two states. Obviously, since the partition of the area
varies with speed, or with a perturbation, it remains to be investigated if the stability
of the full system coincides with the stability of the reduced system. Here, we extend
the results in Barber (1981) to the case where the rods slide with respect to the rigid
wall, thereby introducing the effect of frictional heating.

¢

2. Steady-state solution

The system is generalization of that in Comninou and Dundurs (1980), and in Barber
(1981). With reference to Fig. 1, consider two rods maintained at constant temperature
(T4=0) from one end, and pressed against a perfect conductor at temperature T = T,
at the other end. For each of the rods, the end temperature of the rods, T, c;» 18 given
by heat flux balance?

T() - Tc Tc.
= Vpi=K—, 5
q A 7 (3)
oTc, :
qi - "'K a'c“‘ B (6)
Y oly=L
and eliminating 7¢, from the first equation, we find
To+ fVpiR;
To = —t—1 1 7
“T TITKRJL @
The unrestrained thermal expansion of each rod is found by elementary integration as
L . [al
4= 22T = fi (S RipifV 4 ), ®)
207 2
where
0; 9: >0, pi=0,
Ji= L €))
KR,+L’ %ZO, p1>0

and

u=LalTy. (10)

2 Notice that here the heat flux is per unit area, different from total heat flux notation in Barber (1981)
and Barber et al. (1980).
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Using these results, the equalities and associated inequalities of the contact problem
(1,2) result in the following three cases:

e Rod I in contact:
L ol L
=d—p==f1| =RpfV - p = 1
G=4i—pg f1(2 ipf ‘l-M) pig >0, (11)

F
g1 =0; pxzz; p2=0. (12)

e Rod 2 in contact:

L ol . L
(II:AZ"pZE:,fZ <7R2P2fV+u>“P2§>O, (13)

F
g2 =0; P2=A—2; p1=0. (14)

e Both rods in contact:

L
4, ‘412:([’1 *Pz)E, (15)
i.e.
oL . (ol X L
1 (Frnsrvu) - 12 (S repasv +u) = (o por % (16)
and
g1=¢2=0; p;,p,>0. (17)

We then define x = 4, — 4, as the difference of the unrestrained thermal expansions.
From (11)(17) we find

L F
X=¢+ p1 —; > 0; =— =0 18)
92 PlE g2 P1 1 P2 (
L
x=(P1~P2)E; g1=¢g»=0 (19)
L F
X g1 PzE, 9 )4 b2 4 (20)

and all equalities and the associated inequalities of the system for the 3 conditions
(18)—(20) can be combined into a single equation on a function &

K K
ﬁ(x):x—fl (Rlpl-E—V-i-u)+f2(R2p2E-V+u>=O (21)
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3. Stability

The stability of the system can be investigated by performing a linear perturbation
analysis about the steady state of (3),

Ty — Tc, ATc
Agi=—-2S AR - =S 4 fVAD, (22)
R; R;
We write
/\R' ’\i
AR; = OA -Ax=RIAx; Ap = opi Ax = p/Ax (23)
Ox Ox
and using (7), (9) and (22)
K fi fi K _fi
Ag;=—— —LL_ AT, V{p — p—— To— ————| Ax. 24
4 L1-7i C’+{f (P, pl"fi>+ol’l_fi ¥ (24)

Following Barber (1981) the perturbation in temperature in the rods can be written as
AT = B;exp{ht} sinh[ /], (25)

where b is the growth rate of perturbation and 4 = /b/k. From (6) the perturbation
in heat input will assume the following form

Ag; = —B;KA exp{ht} cosh[ L] (26)

and

‘ (B — By)
Ax = oc/ (Te, = Te,) dy=u — exp{bt}(cosh[AL] — 1) 27)

I} )
from Eq. (25). Substituting (25)-(27) in (24) the following two equations can be
obtained:

K K ; .
—B; 7 2% cosh[z] = —B; T 1 flfi z sinh[z]
+ Wi(By — By)(cosh[z] — 1), i=1,2, (28)
where z = AL and
K 7! K f! ,
W, =2V =1\ p, — p; —— 2u — : =1,2. 2
z E(pl pll_f1>+ uLl—‘f;‘, 14 > (9)
Eqs. (28) permit elimination of the coefficients By and B, by defining
K /(L L .

and the characteristic equation is found as
Ci(cosh[z] — 1) B Cy(cosh[z] — 1) _1
(f1 —1)z2cosh[z] + fizsinh[z]  (f, — 1)z2cosh[z] + fozsinh[z]

(31)
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The perturbation is unstable only for a root with positive real part, but as shown in
Barber (1981), the roots of Eq. (31) satisfy Re[z] > 0, only for real roots and if

Ci—Cy>2. (32)

After relatively trivial algebraic manipulation the above condition can be written, from
the definition of the function & (21) as

g
Q‘_{ > 0. (33)
Ox

Some insight into the question of uniqueness and stability of solutions can be gained
by considering the behavior of # as x — doo. In particular, when x — +oo, the
resistance of rod 1 tends necessarily to a limit, Ry — Ry = Ri(F/Ay). Then,

KLR1 ]ij/Al ~ + Lu
E(KRjim + L) KRitim + L

fuyeﬁmzx—( (34)

and Z o, — +00, at any speed. At the other extreme, when x — —00, Ry — Ry jim =
Ry(F/4y),

(35)

7 KLRZ limF/AZ 5 Lu

9 — =

T2 T o =t (E(KRZIim +L) v KRy tim + L)
and & _., — —o0, at any speed.

Therefore, # is always a continuous function of x extending from —oo to +oo and
hence there must be an odd number of roots (except in the case of repeated roots).
In particular, the external roots will be always stable whereas when there is a single
(the trivial) solution, this will be stable. Notice that uniqueness does not necessarily
imply stability in all thermoelastic contact problems, see for example the system of two
opposed rods of different materials in Zhang and Barber (1993). When there are three
or five roots, etc., the solutions at highest and lowest x will be stable, involving either
only rod 1 or 2 in contact, and in the case of five roots also the intermediate solution
will return stable. Notice that when there are multiple solutions, as the linear stability
condition suggests more than one stable solution, the system becomes path dependent,
and for a sufficiently large perturbation, may move from one stable solution to the
other.

4. Special case R; = d + clp;

We know that, due to roughness, a nominally flat surface generally shows an inverse
dependence on pressure (Clausing and Chao, 1965; Thomas and Probert, 1970; Shlykov
and Ganin, 1964; Cooper et al., 1969). Also, to take into account that frictional heating
will be generated somewhere “between” the two bodies, we should certainly avoid
frictional heating to flow out of the interface, not making any effect on the rod, when
the pressure is very high. Therefore, we suggest a limit finite resistance in the “wall”,
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using the following relation for the contact resistance:

d+c¢/p; pi>0,
R = (36)
00; pi=0.
For the case of both rods in contact, we can write from (16)
K/E)V
S (Ld(py — pa) +Le(fy ~ )] +u(fy — f2) =3 (7)
which can be rewritten as
38
fi—=fa= it (38)
where
. Leju K " Kd
Vy=—"—"—2=7p 1; Fy=1- V 9
"=ty xkag T =R (39)

This corresponds to the same graphical construction of the static case (Barber, 1981 )
where steady state solutions are represented by intersections between the curve f; — f>
(independent of the temperature difference and speed, but dependent on the total force
and the rest of material propertles) and various lines where the effects of imposed
temperature difference and speed V are concentrated (see Fig. 2). The central re-
gion of the figures indicates full contact solutions (i.e. both rods are in contact for
—FL/(EAy) <x < FL/(EA,)), whereas the region x > FL/(EA;) indicates only rod 1
in contact, and obviously the region x < — FL/(EA,) indicates only rod 2 in contact,
according to the definition of the variable x (18)—(20). In particular, the slope of the
lines in the full contact area range, depends on m,n. In the range where only one rod
is in contact, the curve becomes horizontal at both ends, while the lines change slope
in the regions of separation, depending on speed.

For only rod 1 in contact (g, > 0; p, =0; p; = F/A4; and f, =0), (37) reduces to

1x

fi=-=-x (40)
nu
whilst for rod 2 in contact (g; > 0; p; =0; p, = F/4; and f, =0)
1 x
_f2'“__+x25 (41)
where
K . ILd F
p _Ldlu i=1,2. (42)

MEWE L1 Kd A

In Fig. 2 an example of steady-state solutions of Eqs. (38), (40) and (41) for the case
u>0is shown. The number and location of intersections between the curve and the various
lines are clearly indicated in few sample conditions. Various critical speeds can be
defined, which we shall specify more precisely later; at present it can be noticed that:

e the number of solutions is always odd, 1, 3 or 5, and changes with increasing V;
e as the dimensionless sliding speed V' is increased, for the initial conditions of Fig. 2,
a progression from one solution (V < Vl,) to three (V, <V < V;) and, finally, to
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!

. N
Increasing V

Flles, Fl/gA,

 — —> —>
8 : (p,-p)L/E g
Rod 2 in contact I Both rods in contact Rod 1 in contact
u>0

Fig. 2. Graphical construction of the problem solutions for different sliding speed, ¥ > 0 and 4, = 24;.

five solutions (V; < ¥ < 172) is observed. However, with a further increase in sliding
speed, the system passes into a new regime with again three solutions (V > V).

Further, according to the stability criterion (33), stable and unstable solutions alter-
nate with increasing x and, hence, the outermost solutions are always stable, whereas
the interior solutions are always unstable, except when there is only one solution, or
when there are 5, in which case the uniform pressure solution becomes stable again:
given it is non-unique, for some initial conditions, the system may not be reaching the
uniform solution, but one of the other two.

In Fig. 3(a)—(b), the dependence of the steady-state temperatures (T’ ¢, and T%) of
the rods on the sliding speed is shown for u > 0. Stable solutions are presented with
solid line, whilst unstable ones with dashed line. These figures show that uniqueness
implies stability, but stability does not imply uniqueness. This is the opposite of Zhang
and Barber’s result (Zhang and Barber, 1993), where uniqueness did not guarantee
stability, so equally stability does not guarantee uniqueness. It is possible therefore
that in general, neither uniqueness implies stability nor stability implies uniqueness.
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1 solution 3 solution 5 solution 3 solution
1

]

I et
N
o s

i ,/‘)

Both r:ods in contact p, > p,
i

Both rz)ds in contact p, P p;
; ~
I

i -

i .
tontact Py~ P2

””//BWA ’
-,
1
i _ | — ~Kod 2 g contact

0 v v, V.V, v

u 1

e table solutions
(a) u>0
——————— unstablesolutions

88
Te, 4 I ] !
1 solution | 3solution | 5 solution 1 3 solution
500 | | !
! ! Rod 2 in contadt
= T
| N 1
1 t
i i
\\ X
Both|rods in contact p, b p, A :
i A}
(S|
Both rods in coftact py = Py N | R
| |
{ 1
{ |
'
|
i
§
{
{ #
Both rods i contact pji> p, i
i !
I 7
' /
1 s
! - Rod 1]
- od 1 finfcontact
0 vV, \ V. v, \%
stable solutions
u>0
——————— S lution:
(b) unstable slutions

Fig. 3. (a) Dependence of the steady-state end temperature T ?S] of rod 1 on the sliding speed V for u > 0;
(b) Dependence of the steady-state end temperature TZ’? of rod 2 on the sliding speed V for u > 0.
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We shall return to this point in the discussion, to show that this result is not due to
the varying contact resistance.

For the system with u > 0 there can be either 1, 2 or 3 stable solutions. It is
clear that the greatest steady state temperatures are reached for only rod 1 in contact
(notice that the scale of temperature in Fig. 3(a) is about two times larger than that
of Fig. 3(b)): this was expected, given in our case the area A4, is twice larger than
area A;. Notice as well that, as long as the pressure does not vary with speed, the
resistance being constant, the steady-state temperature increase linearly with speed. It
is only when non-uniform full contact solutions appear that they change non-linearly
with speed. Obviously, a sudden jump in the temperature is found when the steady
state changes from two rods to only 1 in contact.

For u <0 (i.e. for the temperature 7, larger than wall temperature Tz = T) the
behavior of the system changes as shown in Fig. 4 and Fig. 5(a)—(b). In particular,
for the initial conditions of Fig. 4, it can be observed that as dimensionless _sliding
speed ¥ is increased the solution number changes from one to three. Then, for ¥V > V,,

fl'f?A I

: i

v x

AN
Increasing V 2

I~
A
o | |
i f
I
] . —>
g | (01 -pJL/E | &
Rod 2 in contact : Both rods in contact ! Rod 1 in contact
u<0

Fig. 4. Graphical construction of the problem solutions for different sliding speed, ¥ < 0 and A5 = 24 1.
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85
Te

3 solution

1 solution

2400+

‘

Both rods in contact p"l > P

e

Both rods in ¢ontact p’l >p,
]

C({maﬁm -
- !Rod 2 in contact

Both rods in contact P, > P,

0 V., V, v, v, v
stable solutions
. u< 0
(a) ——————— unstable solutions
$S
TC 4 . !
2 |1 solution : 3 solution
N !
i !
2400 | : !
| i
i : i
\ 1
1! !
! !
i ! !
|
| |
| : i .
i e
: 1 P oA con!
i L
i : [
1
)
Both rods ig con ol |
=~ " Rod in cqntact
|
t
!
1
Both rods in confac tp']' > Pf ]
Both rods in contact p > psl :
! i
0 vV, V, v, v, \%
————  stable solutions
() s "0
——————— unstable solutions

Fig. 5. (a) Dependence of the steady-state end temperature 25‘ of rod 1 on the sliding speed V for u < 0;
(b) Dependence of the steady-state end temperature 7T ¢, of rod 2 on the sliding speed V' for u < 0.
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it is possible obtain the following stable steady-state solutions:

e with both rods in contact (p; > p, or p, > p;), when V < 171,
e with rod I (p2 =0) or both rods (p, > p1) in contact, when Vl <V <V,
e with rod 1 (p2 =0) or rod 2 (p; = 0) in contact, when ¥ > V,.

Therefore, the main difference with respect to the previous case ¥ > 0 is that there
is a wider range of conditions for which non-uniform full contact solutions exist, and
indeed in the range ¥, < V < V there are two full contact solutions, one being the
uniform one, and in the range V; < ¥ < 7, there are two full contact solutions, both
involving different pressures in the two rods. Notice also that the only distinct “jump”
in the steady state occurs at ¥, as otherwise, both at ¥, and ¥ 2, despite separated
solutions appear, they emerge gradually from the full contact non-uniform solutions.

4.1. Critical speeds

The “critical speed” as it is generally intended in the TEI literature, is the speed
for which the uniform pressure solution becomes unstable. The closest to this “critical
speed” concept here is probably ¥,. However, the classical TEI literature doesn’t con-
sider the effect of constriction resistance varying with pressure, and there is no general
equivalent method to search for the speed when uniqueness is lost or to examine all
the possible steady states of the system. Therefore, we will define various “critical
speeds”, making clear the meaning of each definition. We shall consider separately the
cases ¥ > 0 and u < 0.

4.1.1. Case u>0 i
The sliding speed for which the uniqueness of the solution is lost, ¥, can be easily
found by computing (41) with x = —FL/EA,, obtaining immediately that
P Ay(cK —uE) + (dK + L)F
v (cAy + dF)K

(43)

It can be shown that this is the lowest critical condition, defined as the speed for which,
for some initial conditions, the system will evolve towards non-uniform solutions, in
the form of separated solutions with only rod 2 in contact (for u < 0 both rods in
contact under different pressures). Therefore, although the system will not necessarily
evolve towards these solutions, there is a first bifurcation of the solutions. Notice that
V. depends only on the size A, and therefore systems of various total size but having
the same A4, will show the same critical speed for uniqueness, as this is the speed at
which separated solutions with only rod 2 in contact are possible.

A second bifurcation appears when the solution with only rod 1 in contact appears,
and precisely at sliding speed V| which can be immediately written by computing (40)
with x = FL/EA,, obtaining

A1(cK — uE) + (dK + L)F
(cA) + dF)K

V= (44)
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clearly depending, this time, only on the area A; of the rod which remains in contact.
Again, the solution with uniform pressure remains stable, so the system can gravitate
towards each of the 3 (for u > 0) or 2 (for u < 0) stable solutions, depending on the
initial conditions.

The sliding speed 7, corresponds to the appearance of the solution with rod 2 in
contact (for u < 0) but to the loss of the stable full contact solution with different
pressures for u > 0. Its expression can be derived resolving the following system:

d(fi=f2) _m1

A nuw

fi-fa==s , (45)

SIS

It is observed that ¥, separately depends on 4, and 4,.

Further, a characteristic sliding speed can be defined as that speed for which the
uniform solution (p; = p, = F/(4; + 4;)) becomes unstable. Such speed is referred
to in the Figs. 2-5 as ¥, and, as already noticed, is close to the standard concept
of critical speed Vo in the TEI literature. However, initially a full contact solution
remains possible, having two different pressures for rods 1 and 2. This speed therefore
has a distinctly different character as the steady state does not show a jump in the
values of temperature and pressures. Its expression can be obtained by imposing that
the straight line mx/nu is tangent to the curve f; — f5 in x =0, i.e.

d(/f1—/2) _ml (46)
dx v nu
Therefore, the dimensionless critical sliding speed assumes the following form:
p_ Lol + K + (L + dK)F — cuEK (A; + 4, )
i K2[c(4) + 4y) + dFP + dKLF? '

Notice that the critical speed depends on the total area A, = 4; + A4, of the rods.
Let us now consider the various speeds more in detail. When F — 0, the character-
istic speeds V', V1 and V, tend to the limit value

(47)

uk
Vo=1- e (48)
which is negative if
u > f—[i, (49)
E

indicating in this case that for those conditions (in particular, at light forces) and
for large enough positive temperature difference (i.e. the heat flow is directed into
the rods), the system shows always multiple solutions. This conclusion agrees with
the general behavior of thermoelastic contact, where multiple solutions are generally
observed for this direction of heat flow (Barber, 1987). For example, in Afferrante and
Ciavarella (2003), where the problem of an elastic half-plane in sliding contact with
a rigid perfect conductor wall is considered, it is demonstrated that when the contact
pressure tends to zero the instability conditions is for the heat flow directed into the
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more distortive material (the half-plane, which in our case is simulated with rods) and
greater than a certain threshold.

At the other extreme, of very large force (F — o00), we get for all the characteristic
speeds the limit

L
Voo =142 (50)

which is certainly positive and does not depend on temperature difference, and coincides
with the most important critical speed for the single rod system studied in (Ciavarella
et al.,, 2003) for imposed gap. Also, the above speed is similar to the critical speed
found for constant constriction resistance of a half-plane in sliding contact with a rigid
wall (Afferrante and Ciavarella, 2003), provided as scale length one considers the rods
length instead of the wave number of the perturbation.

Finally, if we define the parameter

Vo 1 —uE/cK
_ o == —'—'—’ 51
S W Y 1)

we can write that for y < 1, i.e. u > —Lc/dE, including all cases with u > 0, increasing
the force F stabilizes the system (critical speeds increasing with F).

This is illustrated in Fig. 6(a), where the variation of characteristic speeds V,, ¥,
and ¥, with the force F are plotted for u > 0. Notice that when u > cK/E the limit
speed 7, is negative and the system shows always multiple solutions at light forces.
Further, it is interesting to observe that for any finite force F, the sliding speeds V',
and 7, again tend to the limit V., when Ai/A2 — 0 (small separation zone).

4.12. Case u<0

This case is somewhat counterintuitive, as it is not expected that the temperature is
lower where frictional heating is produced The main difference is that the expressions
for V, and V, change In other words, ¥, (1 < 0) depends on both areas, and vice
versa obv10usly 7,y (u<0) depends only on the size 4. When F — 0, the limit for
V,, Vy and V, is still Vo, which is never negative for u < 0, indicating that at light
forces and for negative temperature difference (i.e. the heat flow is directed out of the
rods), the system always has unique solution for low speeds.

Further, for the above defined parameter v, we can write that:

e for y <1, ie. —Lc/dE < u < 0, increasing the force F stabilizes the system (critical
speeds increasing with );

e for y > 1, i.e. u < — L¢/dE, increasing the force F destabilizes the system (critical
speeds decreasing with F).

This is illustrated in Fig. 6(b), where the variation of characteristic speeds Vs Vi
and V with the force F are plotted for y < 1 and y > 1.
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Fig. 6. (a) Dependence of characteristic speeds V,, V,, ¥; and ¥, on the applied force F, for u > 0;

(b) Dependence of characteristic speeds '(7,,, Vs, 17; and V > on the applied force F, for u < 0.
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Table 1

Values of parameters used in the numerical analysis

a k K E 4 d f F Al Az L
24 x 1073 1 1 1 1 100 1 1 1 2 1

5. Numerical simulation

A companion numerical analysis confirms the results outlined in the previous sec-
tions. In particular, both rods were divided into 100 elements of equal length and, as
initial conditions, a linear variation of the rod’s temperatures was considered with 7=
and 21 evenly spaced values of T¢, (¢=0) between 0 and 2000 and 7, (¢=0)=1000.
The numerical analysis was performed for # > 0 and the example 4,=24, and the tran-
sient evolution of the end temperatures of rods was plotted. The values of parameters
used in the numerical simulation are listed in Table 1.

A range of systems and initial conditions were considered and in all cases the
transient behaviour confirmed the conclusions of the stability analysis. For example
in Fig. 7(a)—(b) the evolution of end temperature of rods is presented for V = P,
(sliding speed for which the uniqueness is lost). Notlce as the system evolves toward
the steady-state solution with only rod 2 in contact (7 =0 and T¢, = 416.67) for
initial conditions with low values of T ¢ (t=0), and toward the umform solution for
large values of T¢, (1=0) (T¢ = TE = 280.95).

Fig. 8 (a)—(b), where a sliding speed V > ¥, was chosen corresponding to the case
with unstable uniform solution, shows that for low initial values of T¢,, the system
evolves towards the solution with rod 2 in contact (7& =0 and T, ¢, = 628.64), whereas
for high initial values it tends to solution with rod 1 in contact (T ¢, = 1247.55 and
T¢, =0). The system has also an unstable uniform steady-state solution. Starting from
an initial condition close to this state, initially the deviation is slower, but ultimately
the system tends to solutions with only one rod in contact.

6. Discussion

The Aldo model is certainly very idealized with respect to actual contact systems of
engineering interest such as brake or clutch systems. However, since the behaviour
of thermoelastic contact is very rich, and the classical theorems of existence and
uniqueness do not apply, the scope of the present paper was to investigate general
features of existence, uniqueness and stability of the system. In the previous paper on
gap-prescribed boundary conditions (Ciavarella et al., 2003), which applies also triv-
ially for a system of N rods, it was shown that the most relevant critical speed was
defined at the limit value of the contact resistance at high pressures, Voo =1+ L/dK,
and above this speed seizure was possible, a condition corresponding not just to the
mathematical “loss of existence”, but in practice to possibly very serious damage. In
the present paper, it has emerged that for force controlled conditions, where existence
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Fig. 7. (a) Transient evolution of end temperature 7¢, for u > 0, V =V, and different initial conditions;

(b) Transient evolution of end temperature T¢, for u > 0, V =V, and different initial conditions.
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Fig. 8. (a) Transient evolution of end temperature T¢, for u > 0, ¥ >V, and different initial conditions;
(b) Transient evolution of end temperature T, for u >0, ¥ > V', and different initial conditions.
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is guaranteed (and seizure is not possible), the most interesting general result is that
stability does not imply uniqueness. Classical TEI investigations are based on the as-
sumption that for low speed, since the stability of the uniform pressure solution is
guaranteed, this is the obvious steady state: also, since the variation of contact re-
sistance with pressure is neglected, under these full contact conditions, linearity of
the system holds, and because the contact is recessive, this is true even in the sepa-
rated regime (Joachim-Ajao and Barber, 1998). Therefore, the usual TEI analysis is to
find the critical speed of the system as a function of the material properties and the
geometry with efficient analytical (Yi et al.,, 1999) or eigenvalue numerical methods
(Yi et al.,, 2000). In the present paper, it has emerged that other solutions may be pos-
sible below the critical speed, and this is not due to the functional form of the contact
resistance. In fact, for constant contact resistance in the contact regime (maintaining
infinite resistance for separation condition), the general stability analysis holds true, but
since the function f'; — f> is not continuous, the number of roots is not directly related
to the stability of them (hence we can have two solutions and both may be stable).
However, any discontinuity in the function has to occur at the separation points, and
therefore any solution near the two extremes follows the usual stability analysis, and
in particular separate solutions are stable. It is fairly easy to show that the condition
of both rods in contact (37) leads to p; — p, =0, and therefore, any rod in the system
can cither have contact at one level of pressure, or separation. Therefore, the system
with two rods identifies even better an arbitrary system of rods, since only the partition
of contact and separation area needs to be adjusted according to the state.

Turning to the issue of stability, putting ¢ = 0 in the general expression of V (47)
we obtain

Vi=Ve =1+ (52)

dK’
which is obviously independent on F and does not depend on temperature difference.
The stability of the uniform pressure steady state solution for R = const is obviously
independent on the pressure. However, the uniform pressure solution may coexist with
stable separate solutions. For example, if we assume A, > 4, the speed at which
uniqueness is lost indicates the speed at which the solution with rod 2 in contact
appears,
N —ukEA,
V=
dF K

and this speed decreases with increasing 4, (for ¥ > 0) and in particular if

V=V, (53)

F
Ar > T (dK + L) (54)

then ¥, < 0. Solutions with only rod 2 in contact may exist well before the stability
boundary of the uniform pressure is passed. Notice that ¥, is highest when 4, =0
which obviously gives

n

L
Vu = s

X (55)

001171:1‘{‘

<
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Moving to the case u < 0 the expressions for V,and V, change
L

V. (u<0)=1700=1+d—K, (56)
R —uEA;
Vo(u<0)= il + Vs (57)

dF K

and this time the separate solution and uniqueness boundaries coincide.

7. Conclusions

This paper has extended the Aldo model to the case of frictional sliding. It has
emerged that when the solution is unique (the uniform pressure solution), it is al-
ways stable. Vice versa, the stability of the uniform pressure solution, does not imply
its uniqueness. Also, by increasing the sliding speed, more steady states emerge (in-
volving separation) and eventually the uniform pressure solution becomes also unsta-
ble. A graphical construction permits the evolution of the solutions and their number
as a function of the speed to be followed. Various characteristic speeds have been
defined, V,, Vi, Vs, V,. All speeds depend generally non-linearly on the parame-
ters, including the force, and the imposed temperature difference which is implied
in u.

The speed V7, corresponds to loss of uniqueness, where non-uniform solutions appear,
cither in the form of separated solutions (for u > 0), or in the form of full contact
solutions involving different pressures in the rods (u < 0). Also, the sliding speed V,
cotresponds to the appearance of the separated solution with only rod 1 in contact,
whereas ¥, corresponds to the separation of rod 2 (for u < 0) but to the loss of the
full contact solution for u > 0. Finally, V, is the speed for which the uniform solution
becomes unstable, and is closest to the critical speed as intended in standard TEI
literature. Notice also that for the most realistic case of u > 0, increasing the force
tends to make the system more unstable, as the characteristic speeds decrease and tend
to the critical speed Voo already defined in the previous paper (Ciavarella et al., 2003)
for the single rod with imposed displacement. There, ¥, indicated the possibility of
seizure, here is the minimal critical speed for the system. Finally, the case of N rods
remains to be further investigated, and in particular the number of possible solutions,
how the partition of the area in the various states varies with speed, and the general
stability of the full system.
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