
Letter to the Editor

On the Ekberg, Kabo and Andersson calculation of the Dang Van high
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A B S T R A C T Recently, various methods have been proposed to assess the risk of rolling contact fatigue
failure by Ekberg, Kabo and Andersson, and in particular, the Dang Van multiaxial fatigue
criterion has been suggested in a simple approximate formulation. In this note, it is found
that the approximation implied can be very significant; the calculation is improved and
corrected, and focused on the study of plane problems but for a complete range of possible
friction coefficients. It is found that predicted fatigue limit could be much higher than
that under standard uniaxial tension/compression for ‘hard materials’ than for ‘ductile
materials.’ This is in qualitative agreement, for example, with gears’ design standards,
but in quantitative terms, particularly for frictionless condition, the predicted limit seems
possibly too high, indicating the need for careful comparison with experimental results.
Some comments are devoted to the interplay of shakedown and fatigue.
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Rolling contact fatigue (RCF) occurs in railways, but also
in gears and rolling bearings, and many other mechan-
ical applications. It has various forms (plastic deforma-
tions, macro- and micro-pitting, spalling, crack initiation
from inclusions, etc.) and is generally interacting with
other forms of surface damage, and in particular wear.
Both phenomena (RCF and wear) strongly depend on sur-
face roughness and lubrication conditions, and therefore
it is not surprising that a general understanding or de-
sign methodology has so far been lacking. Recently, Ek-
berg, Kabo and Andersson (EKA),1 have suggested an ap-
proach to the problem with independent consideration of
various mechanisms at play, corresponding to various in-
dexes. The first (surface-initiated fatigue) derives from the
classical approach based on plasticity theory, shakedown
and ratcheting, as described, for example, in Chapter 9 of
Johnson’s book.2 Ratcheting in particular would seem to
dominate the process at sufficiently large pressures, and its
modelling was initially apparently successful with simple
analyses using elastic–perfectly plastic constitutive equa-
tions. More recent FEM plasticity models quite efficiently
take account of more complex constitutive laws and also
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can compute the steady-state response (if there is one) di-
rectly,3–5 but the ratcheting response modelling remains
today one of the most complex in plasticity theory. For
example, in the celebrated RCF experiments by Merwin6

also reported in Merwin and Johnson,7 the choice of yield
limit was quite arbitrary (1% of permanent strain in the
monotonic curves for dural and mild steel, but 25% for
copper) and probably motivated by the need to justify the
experimentally observed beginning of ratcheting under
RCF conditions, rather than the measured yield limit in
standard monotonic tests of the material.8,9 The use of
shakedown maps and the EKA Eq. (4) seems therefore
a little questionable without a clearer idea of what the
yield limit should be. Further, as recently remarked in
Afferrante et al.,10 another celebrated set of RCF exper-
imental results, those by Clayton and Su11 and Su and
Clayton,12 show a fatigue limit around p0/ky = 2.5 (p0 be-
ing the Hertzian peak pressure and ky the nominal and
initial yield limit in shear) rather than the p0/ky = 4 ex-
pected from shakedown theory. After all, this is not really
surprising, as it is well known that the shakedown and fa-
tigue limit are not directly connected. Indeed, according
to Dang Van et al.,13 they involve at most the same pro-
cess but occurring at different scales (fatigue limit being
the shakedown at grain, so-called ‘mesoscopic’ level). This
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is why fatigue limit properties of materials are generally
directly measured from experiments, rather than extrapo-
lated from plasticity constants, which perhaps would be a
lot faster and cheaper to obtain! It is true that Dang Van’s
criterion13 permits the use of shakedown theories, but this
is limited to the examination of the effect of multiaxiality
of the stress cycle by making assumptions on the relation-
ship between macroscopic and microscopic stresses, but
ultimately makes use of fatigue limit properties (generally,
the fatigue amplitude limit under bending σ e and under
torsion τ e, where we use the subscript ‘e’ standing for ‘en-
durance’). As a general rule (see [14]) very soft metals and
alloys show cyclic hardening and a large fatigue ratio (σ e >

σ y) whereas heavily work-hardened metals tend to cycli-
cally soften and have low fatigue ratios (σ e < σ y). There
is perhaps a better correlation of fatigue limit with cyclic
yield strength, as fatigue limit is often close to correspond
to cyclic strain amplitudes of 0.2–0.35%.

As a second criterion, EKA suggest considering for sub-
surface initiated fatigue a very simple approximate calcu-
lation of the Dang Van criterion (see their Eqs (6)–(14)),

σeq = max
t

(τa(t) + aDVσh(t)) < τe, (1)

where τ a(t) is a time-dependent shear-stress amplitude,
defined as

τa(t) = |τ (t) − τm|. (2)

Here, τ (t) is the shear-stress vector, and τm is its mid-value
during the stress cycle. Also (in Eq. (1)), aDV is a material
parameter, which can be computed from two known val-
ues of the equivalent stress. In particular, from alternating
bending and alternating torsion limits, it is simply defined
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Fig. 1 The RCF limits (p0/τ e)lim , (p0/σ e)lim according to the Dang Van criterion for line rolling contact and no friction (in terms of ratio
between limit pressure and fully reversed shear stress or tension/compression fatigue endurance limits), as a function of the material constant
aDV = 0.5.

as

aDV = 3
τe

σe
− 3

2
. (3)

Finally, σ h(t) is the hydrostatic pressure, and includes both
the elastic component and the residual stresses. EKA show
that the Dang Van criterion in pure rolling, in the absence
of residual stresses, does not depend greatly on the hydro-
static pressure term, and obtained their Eq. (11)

σeq,PR = τmax

2
. (4)

Applying this result for the 2D pure rolling problem for
which τmax = 0.3p0 (Section 4.47 of Ref. [2]), this would
give (p0/τ e)lim ≈ 2/0.3 = 6.67. If we consider the in-plane
shear stress, then τmax = 0.25p0 and (p0/τ e)lim ≈ 2/0.25 =
8. Finally, they also suggest Eq. (13) in terms of normal
load, F,

σeq,PR = F
4πab

, (5)

where a, b are ellipse semiaxes for Hertzian 3D con-
tact. In this case, taking F/πab as the average pres-
sure, and specializing for 2D pure rolling pmed = πp0/4
(Section 4.45 of Ref. [2]), we would obtain (p0/τ l)lim ≈
16/π = 5.09. These various options are already a little
confusing.

A detailed calculation considering the full 3D state of
stress in the plane strain problem and the full Dang Van
criterion, using Poisson’s ratio 0.3, has been attempted.
Figure 1 shows the results for the line contact problem
using the frictionless stress distribution of the Hertz so-
lution (see Ref. [2]), as a function of the material constant
aDV, varying between 0 (when σ e/τ e = 2) and 1.5 (when
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σ e/τ e = 1). It is found that, contrary to what was sug-
gested by EKA, there is a significant effect of the constant
aDV (i.e., of the hydrostatic component), because the ob-
tained range of limit is (p0/τ e)lim ≈ 4−9.2 and (p0/σ e)lim ≈
2−9.2. A detailed analysis shows that the critical cycle is
always found subsurface for pure rolling, the depth being
z/a = 0.5 for aDV = 0; and slowly moving further subsur-
face for increasing aDV, moving slowly to z/a = 0.6 for
aDV = 0.45; and then suddenly jumping to z/a = 0.833
and staying constant, for larger aDV.

Moreover, in terms of the ratio (p0/σ e)lim the variation is
close to linear, whereas in terms of (p0/τ e)lim the variation
is rapid up to aDV = 0.7 and then stops, indicating that
the following variation in terms of (p0/σ e)lim is only due
to the variation of the ratio σ e/τ e = 2 with aDV. Finally,
notice that the EKA approximate calculation in its various
possible tentative forms, (p0/τ e)lim ≈ 5.09, 6.67, 8, indi-
cates possible results but only for special values of aDV,
and in particular for low aDV in the range 0.2–0.5.

Next, the effect of frictional tractions is considered, in
full sliding. EKA suggest adding a quadratic decay of the
limit with the friction coefficient, but again this is found to
be a strong and inaccurate approximation. In Figs 2 and 3,
results are presented in terms of (p0/τ e)lim and (p0/σ e)lim ,
respectively, as a function of friction coefficient and for
various values of aDV = 0, 0.5, 1, 1.5. It is evident that
the effect of friction is much weaker for ductile materials
(those with high aDV), and indeed for aDV = 0, the limit
pressure stays constant. Also, notice that for high friction
coefficients, the criterion becomes essentially uniaxial in
the sense that the limit cycle moves to the surface and
is dominated by the tensile stresses that are nearly fully
reversed. In these conditions, since the maximum tensile

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5

Friction coefficient f

R
C

F
 f

at
ig

u
e 

lim
it

   
  p

0/
τe

 

Fig. 2 The RCF limit according to the Dang Van criterion (in
terms of ratio (p0/τ e)lim between limit pressure and fully reversed
shear stress fatigue endurance limit) for line rolling contact and full
slip conditions, for various material constants aDV.
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Fig. 3 The RCF limit according to the Dang Van criterion (but in
terms of ratio (p0/σ e)lim between limit pressure and fully reversed
tensile stress fatigue limit) for line rolling contact and full slip
conditions, for various material constants aDV.

stress is 2fp0, the limit varies in an inversely proportional
manner. Notice, moreover, that in this case it is the curve
(p0/σ e)lim which shows the simplest behaviour as for a
low friction coefficient, the limit is a clearly monotonic
increasing function of aDV, at all friction coefficients, but
it becomes independent of aDV for a friction coefficient
larger than about 0.27. Vice versa, for the curve in terms
of (p0/τ e)lim , we obtain for low friction, again that the
limit is a monotonic increasing function of aDV, but for a
friction coefficient greater than about 0.27, the situation
is reversed, and the limit is decreasing with aDV, and not
independent of it.

It appears that very hard materials resists a lot better
under pure compressive (frictionless) rolling, than under
frictional rolling (where there are tensile stresses). This is
not particularly surprising, and qualitatively in agreement
with gears design standard such as BS ISO 6336-215 or
ANSI/AGMA 2001-B88,16 for pitting resistance of gears,
for which materials such as grey cast iron have a lot higher
value of recommended pressure than bending stress. The
typical ratio between pitting fatigue limit pressure and
uniaxial bending fatigue limit varies between 1.5 and 5–6,
and therefore although the design practice evidently takes
account of many factors and is essentially empirical, the ra-
tio seems to be of the same order of magnitude as the Dang
Van criterion applied here. Notice that the gears standards
give both bending strengths and pitting strength as vari-
ous linear functions of hardness of the material based on
equations originally recommended by Buckingham, such
as for steel with a fatigue limit at 107 cycles of1

p lim
0 = (2.8HB − 69) (MPa), (6)

1Since Brinell hardness has [Kg f mm−2] units, the notation 3HB really in-
dicates roughly 0.3 the pressure in the hardness test, and the notation 10HB
roughly the hardness pressure itself.

c© 2004 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 27, 523–528



526 M. CIAVARELLA and H. MAITOURNAM

and for the entire life curve, a factor CLi is used (i.e.,
CLi = 1 at 107 cycles). For example, CLi = 1.7 at 104

cycles, and CLi = 0.65 at 1011 cycles. A number of other
linear relationships are found for particular materials, and
for the bending fatigue strength. An equivalent of (6) for
a very approximate estimate is perhaps

σe = 1.7HB (MPa), (7)

which would give a ratio plim
0 /σ e around 1.6, which is lower

than any of the results from the Dang Van criterion, and
particularly for the large aDV. The reasons for these dis-
crepancies may be many, for example, the multiaxial Dang
Van criterion is not accurate in the region of compressive
hydrostatic stresses where very few experimental data are
available (in particular, it is possible that the increase of
resistance with hydrostatic compression is not as benefi-
cial as indicated by Eq. (1) in the entire range), or that
a special modification is needed for the non-proportional
conditions induced by RCF. More comparison with exper-
imental values would certainly be beneficial. The over-
all philosophy in gears standard seem to be appropriate
also for rail materials,10 although they become particu-
larly conservative at low number of cycles.
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Response

Answer to the Letter to the Editor from M. Ciavarella
and H. Maitournam

A. EKBERG, E. KABO and H. ANDERSSON

It should first be noted that the model, referred to by
Ciavarella and Maitournam was developed for the predic-
tion of rolling contact fatigue (RCF) of railway wheels.
In the letter to the editor, Ciavarella and Maitournam ap-
ply the model to two-dimensional line contact for which it
was not intended. However, from this extrapolation, some
interesting findings arise as will be discussed below.

Regarding surface-initiated fatigue, the choice of a
shakedown map approach is obviously a sacrifice in accu-
racy for computational speed. The entire material charac-
teristics then need to be incorporated in the yield limit in
shear, which has to be chosen to account for plastic hard-
ening. More sophisticated models of surface-initiated fa-
tigue may be found in the literature (see, e.g., Ref. [1]).
However, incorporating plastic simulations calls for ex-
tensive simulations and is inappropriate if the model is to
be integrated into multi-body simulations of train–track
interaction, which was a primary goal.

Turning to subsurface initiated RCF, the influence of the
material parameter aDV is interesting. It should first be
noted that aDV might be evaluated from the fatigue limit
in alternating (±σ e) and pulsating (σ ep ± σ ep) bending as

aDV = 3
2

σe − σep

2σep − σe
. (1)

The choice of aDV = 0.32 as used in Ref. [2] is motivated
by the engineering rule σ ep/σ e = 0.85. According to (1),
the choice of aDV = 0 predicts σ ep = σ e, which is non-
physical.

Study the case of two-dimensional line contact as dis-
cussed by Ciavarella and Maitournam and in particular
stresses occurring in two shear planes: a plane parallel
to the surface and a plane inclined 45◦ to the surface
(below denoted as the 45◦ plane). The evolution of the
shear stress and the ‘Dang Van stress’ at a normalized
depth of z/b = 0.6 at these two shear planes are plotted in
Fig. 1. The ‘Dang Van stress’ is here defined as σ EQ(η) =
|τ (η) − τmid| + aDVσ h(η) with η = y/b being the normal-
ized lateral position (for a moving load, each position is
equivalent to a certain instant in time). It is seen that for
aDV = 0, the plane parallel to the surface will experience
the highest σ EQ. This will occur at positions marked 1 and

2 in Fig. 1a. The non-influence of an applied frictional
load in this case (as noted by Ciavarella and Maitournam)
is probably due to an equal increase of the shear stress at
positions 1 and 2 causing |τ (η) − τmid| to be unaltered. As
aDV increases, the magnitude of τDV at the plane paral-
lel to the surface will decrease. As seen from Fig. 1a, an
approximation of σ EQ at this shear plane is σ EQ = (1 −
aDV)p0/4. Eventually, as aDV increases, the 45◦ plane will
become critical. The highest σ EQ will now occur close to
position 2 in Fig. 1b. As aDV increases further, the posi-
tion of maximum σ EQ will shift towards 3 in Fig. 1b. Here
the hydrostatic stress is zero and we will have no further
influence of the hydrostatic stress.

Naturally, the Dang Van stress has to be evaluated at
all possible shear planes (which is made automatically by
the original procedure outlined by Dang Van and co-
workers) and at all material points to identify the criti-
cal combination. However, we believe that Fig. 1 shows
the basic principles behind the influence of aDV in line
contact.

In rolling contact of railway wheels, the issue is differ-
ent. Here the contact patch is elongated in the rolling di-
rection (line-like contacts may appear, but typically corre-
spond to benign contact conditions with very large contact
patches). The evaluation of the Dang Van stress is more
complex due to the three-dimensionality of the problem.
The tip of the shear stress vector (at a chosen shear plane)
will form a closed path during a cycle. At the critical shear
plane, the path will resemble a pulsating evolution for
most magnitudes of aDV (similar to the case for the 45◦

plane in the line contact case); see Ref. [4]. This ‘pul-
sating’ evolution is the assumption underlying Eq. (1) in
Ref. [2].

Results for some simulations with realistic geometries
and loads are compiled in Table 1. The case of aDV = 0
here corresponds to a critical shear plane parallel to the
surface, but the effect on σ EQ is much less dramatic than
in the line contact case.

From the fourth row of Table 1 it can be noted that an
applied friction (Fx, Fy) will have a pronounced effect at
aDV = 0. However, as mentioned above, this is a fairly
academic case.
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Fig. 1 Evolution of shear stress and Dang Van stress (normalized
with peak contact pressure, p0) in line contact at a shear plane: (a)
parallel to the surface and (b) inclined 45◦ to the surface. Stresses
adopted from Ref. [3].

The approximate friction correction employed in Ref. [2]
is, as seen from Fig. 5 and Table 1 in Ref. [2], targeted at

Table 1 The influence of the material parameter aDV in wheel–rail
rolling contact conditions.

Fz Fy Fx Rail σEQ FIsub Error
aDV (kN) (kN) (kN) radius (m) (MPa) (MPa) (%)

0.00 185 0 0 0.15 340 331.8 2.5
0.32 185 0 0 0.15 319 331.8 4.0
1.00 185 0 0 0.15 315 331.8 5.3
0.00 185 18.5 18.5 0.3 305 254.8 19.7
0.32 185 18.5 18.5 0.3 246 254.8 3.6

Wheel diameter 0.88 m, no residual stresses. FIsub is the approxima-
tion of σEQ proposed in Ref. [2].

low to moderate friction for which it works well. In cases of
high friction the material damage will occur at the surface
(as mentioned in Ref. [2] and also noted by Ciavarella and
Maitournam). This will result in surface-initiated fatigue
for which FIsub is irrelevant.

In conclusion, the results of Ciavarella and Maitournam
stem from their application of the criteria to a case of two-
dimensional line contact. This is of practical interest since
today’s RCF testing is often carried out as twin disc tests,
resulting in line contact. In cases of wheel–rail contact for
which the criterion was developed, the accuracy is good
as evidenced by results presented here and in Ref. [2].
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