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ABSTRACT

This paper presents a probabilistic analysis of the effect of
erosion on the performance of compressor fan blades. A real-
istic parametric CAD model is developed to represent eroded
blades. Design of Experiments (DOE) techniques are employed
to generate a set of candidate points, which are combined with
a parametric geometry modeling and grid generation routine to
produce a hybrid mesh. A multigrid Reynolds-Averaged Navier
Stokes (RANS) solver HYDRA with Spalart Allmaras turbulence
model is used for Computational Fluid Dynamics (CFD) simula-
tions. The data generated is used to create a surrogate model
© for efficient uncertainty propagation. This method is applied
to a typical Rolls Royce compressor fan blade section. Monte
Carlo Simulation, using the surrogate model, is executed for the
probabilistic analysis of the compressor fan blade. Results show
upto 5 % increase in pressure loss for the eroded compressor fan
blades.

INTRODUCTION

The behaviour of compressor fan blades is central to the per-
formance of modern gas turbme engines. Such fan blades have
subtle aerodynamic shapes’ desxgned after decades of research
and insight. However, airfoils inevitably exhibit deviation from
their intended shape and size. Geometric uncertainty may be
introduced for instance, by manufacturing errors, icing or opera-
tional wear and damage.

The geometry variations in airfoils due to erosion, manufac-
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turing errors and icing are distinct and require different modeling
tools. Manufacturing errors introduce subtle and smooth shape
changes to the desired airfoil shape and can cause an increase
or decrease in the airfoil profile. Icing is deposition of ice on
the airfoil surface and always causes protrusion. Erosion on the
other hand leads to blade surface deterioration and causes loss of
material in the original airfoil. Hence for modeling eroded ge-
ometries, a tool that can model local dents in the original airfoil
shape is required.

The effect of geometric variability, primarily caused by man-
ufacturing errors, on the performance of axial compressors has
been studied by Garzon et al in [1]. The probabilistic model
used by them was based on Principal-Component Analysis [2]
of the blade surface measurements. They employ a full scale
Monte Carlo Simulation to understand the effects of manufactur-
ing uncertainties on the aerodynamic and aerothermal properties
of high-pressure axial compression systems. Their study sug-
gests that the overall compressor efficiency could deteriorate by
approximately 1% due to blade passage effects arising from rep-
resentative manufacturing variability.

Bragg et al [3,4] have studied the aerodynamic performance
of airfoils with added ice shapes. They have conducted numer-
ical studies to investigate the effect of leading-edge ice shapes
and simulated ridge ice shapes on the aerodynamic behaviour of
airfoils and wings, over a range of Reynclds numbers and Mach
numbers. The effect of ice shape size and location has been stud-
ied on the stall condition, lift and drag values by Pan et al [5].
They have validated their RANS based studies with experimental
data and suggested use of higher fidelity methods, such as Large
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Eddy Simulations or Detached Eddy Simulations, for post-stall
analysis where the flow tends to be unsteady and separated.

During operation, compressor fan blades are exposed to a
number of erosion processes [6]. This can lead to reduction of
the blade chord, alteration in the shape and increase in the sur-
face roughness [7, 8]. In their study Tabakoff et al use a semi-
empirical erosion model, derived from erosion tests of material
samples at different particulate flow conditions, to predict the
blade erosion patterns and locations. Roberts [9] has shown that
geometric variability in the form of leading edge erosion in com-
pressor airfoils may account for an increase of 3 % or more on
the thrust specific fuel consumption.

In this work a novel parametric CAD representation of
eroded compressor blade sections is developed using Hicks-
Henne bump functions [10]. Since running a full scale Monte
Carlo Simulation [11] would be computationally very expensive,
DOE techniques [12] are used for the probabilistic analysis. LP;
sampling [13] is used to create the DOE candidate points. This
is combined with PADRAM [14] (Parametric Design and Rapid
Meshing) to generate a hybrid C-O-H mesh. The multigrid solver
HYDRA with four multigrid levels is used to carry out CFD
simulations at the DOE candidate points. The Spalart Allmaras
model is used for modeling turbulence.

The present study uses a Gaussian stochastic process model
as a surrogate to the computationally expensive CFD simulations
for probabilistic analysis. Jones and Ong et al [15, 16] have
discussed the use of surrogate models for optimization involv-
ing computationally expensive problems. A Bayesian surrogate
modeling technique [17] is used here to construct an interpolant
with the data generated from the DOE runs. It creates a hyper-
surface which approximates the pressure loss as a function of the
geometric variables. This is further used to understand the effect
of each geometric parameter on the performance of the airfoil.
Finally, Monte Carlo Simulation (MCS) with 10,000 samples is
executed to perform a probabilistic analysis of the effect of ero-
sion on the pressure loss of compressor fan blades.

The remainder of the paper is organized as follows. In the
next section, we discuss how the eroded compressor blade geom-
etry is parametrized and flow analysis is conducted. This is fol-
lowed by the theoretical and computational aspects of surrogate
modeling approach. The last two sections present the numerical
studies and conclusions.

MODELING AND PARAMETRIZATION

‘We consider a typical Rolls-Royce compressor fan blade ge-
ometry section for our CFD analysis. The Rolls-Royce propriety
code PADRAM, a parametric design and meshing routine is em-
ployed for creating the geometry and grid generation. PADRAM
makes use of both transfinite interpolation and elliptic grid gen-
eration to generate hybrid C-O-H meshes. An orthogonal body
fitted O mesh is used to capture the viscous region of the air-

foil whilst an H mesh is used near the boundary where stretched
cells are required, for example in the wake region. After Grid
refinement studies we select a mesh of the order of 28,000 cells.
Figure 1 shows a typical compressor fan blade section geometry
with the CFD mesh.

HEZ = Gopeight RoligRepne BL

Figure 1. A typical C-O-H mesh used for CFD analysis

In Figure 1 abdc is the CFD domain where boundary ab
is the inlet and boundary cd is the exit. A non-linear, unstruc-
tured viscous flow solver HYDRA [18] is used for the CFD sim-
ulation. It solves the steady Navier-Stokes equations with the
Spalart-Allmaras turbulence model. To accelerate the conver-
gence to steady-state it uses preconditioning and multigrids [19].
A four level multigrid is used for the present simulations. The
inlet boundary conditions for the CFD analysis are Total temper-
ature = 290 Kelvin, Total Pressure = 63400 Pascal, Whirl Angle =
-37.28 Degrees and the outlet boundary condition is Static Pres-
sure = 52000 Pascal. An initial uniform flow condition with Den-
sity = 0.7675 kg/m>, Velocity = 0 and Pressure = 66932 Pascal
is considered. The converged CFD solution is used to calculate
the pressure loss at the nominal geometry. The equation for the
pressure loss is:

Pin - Py
Loss = e~ 2 &5t o 100. (1)

inlet

where Pjy., is the total pressure at the inlet and P,y is the
total pressure at the exit.

The next step is to develop a parametric model of the eroded
compressor blade section. Erosion leads to blade surface deteri-
oration and causes a depression in the original airfoil. Hence for
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modeling eroded geometries, a tool that can model local dents
in the original airfoil shape is required. Hicks Henne functions
provide a flexible tool to model local variation in the form of
bumps. Erosion patterns observed in compressor fan blades can
be very complex. A combination of piece-wise cubic polynomial
and Hicks-Henne function is used here to create a simple but re-
alistic model of the erosion patterns. The eroded compressor fan
blade section is parametrized in terms of the location, height and
the width of the eroded section. The Hicks-Henne functions can
be expressed as:

b(x)=A [sin (nx’l‘i’)‘%)] 2,03x51. )

Here, A is the maximum bump magnitude, #; locates the maxi-
mum of the bump at x =11, and #; controls the width of the bump.
This model is combined with the parametric model present in
PADRAM. Clustering functions and continuity checks are em-
ployed to prevent negative volumes and high skewness during
grid generation. The aim is to construct a robust automated ge-
ometry modeler and grid generator which can be combined with
the CFD simulation code HYDRA for the probabilistic analysis
of the performance of the eroded compressor fan blade geome-
tries. A zoomed in view of a typical eroded geometry, with ero-
sion in the leading edge, with the CFD mesh, is shown in figure 2.

Figure 2. A typical PADRAM C-O-H mesh used for CFD analysis

SURROGATE MODELING

In probabilistic analysis the computational cost involved in
solving high-fidelity simulation models many times over is very
high. Surrogate modeling uses the basic idea of analyzing an
initial set of design points to generate data which can be used
to construct approximations of the original high fidelity model.
The high-fidelity model CFD simulation in this study can be rep-
resented by a functional relationship y = f(x), where x is the vec-
tor of inputs to the simulation code and y is the output. The ob-
jective is to construct an approximate model § = f(x, ) & £(x),
that is computationally cheaper to evaluate. o is a vector of un-
determined hyperparameters which is estimated by employing a
black-box approach {15] to the input-output data. In general,
black-box surrogate modeling involves the following steps: (1)
data generation, (2) model structure selection, (3) parameter es-
timation and (4) model validation.

Data Generation

A surrogate modeling approach needs a set of training data
and the quality of the approximate model crucially depends on
the location of these training points. Design of experiments
(DOE) techniques offer a way to choose the training points so
that the maximum quantity of information can be extracted about
the underlying input-output relationship. As computer exper-
iments are deterministic, it is important to choose the training
points which fill the design space in an optimal sense [20]. The
Monte Carlo Simulation (MCS) technique is among the most ro-
bust and simple techniques, wherein the basic idea is to employ a
random number generator to sample the design space. However
MCS is used as the method of last resort as the points are not es-
sentially space filling and the computational cost involved with
high fidelity models can be prohibitively high. Mckay et al [21]
proposed the Latin hypercube sampling (LHS) technique, which
is a computationally cheaper alternative to MCS for designing
computer experiments. The underlying idea is to divide the de-
sign space into regions of equal probability and generate pseudo
random points, such that no two points lie in the same bin. Other
commonly used methods are stratified MCS, Orthogonal arrays
and minimum discrepancy sequences. We use one of the mini-
mum discrepancy methods based on Sobol sequences [22] also
known as the LP; method. LP; sampling [13] is based on uni-
formly distributed sequences in space and gives a mechanism for
generating points in n-dimensional space which are uniformly
distributed.

Model Structure Selection

The next step in the surrogate modeling process is to se-
lect the model structure. In practice one can use a parametric
or non-parametric model. In a parametric model once the model
parameters are estimated using the training dataset, the dataset is
no longer needed for predicting the output at a new point. Typ-
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ical example of parametric models are polynomial models [23].
A non-parametric model requires the training dataset even af-
ter the undetermined parameters have been evaluated. Kernel
methods [24] such as radial basis functions (RBF), support vec-
tor machines and Gaussian process models are examples of such
models. Parametric models are easier to implement and facil-
itate the interpretation of the relationship between input-output
data, but they do not perform very well when the underlying re-
lationship is complex. The next decision of using a regression
or an interpolation model depends on the nature of the dataset.
Physical experiments usually contain some random noise in their
datasets and hence regression techniques are widely used there.
Unlike physical experiments, computer experiments are deter-
ministic with no random noise and theoretically the interpolation
models seem more appropriate.

In our study we use a Gaussian stochastic process model to
build the surrogate model. The foundations of this method were
developed in the field of geostatistics, where this model is re-
ferred to as Kriging and has been in use since the early 1960’s
[25]. It is also widely used in the neural network community
where it is referred to as Gaussian process regression [26, 27].
The model structure typically used in stochastic process approx-
imation of the relationship y = f(x) can be compactly written
as

Y(x) =B+Z(x), 3

where [ is an unknown hyperparameter to be estimated from the
data and Z(x) is a Gaussian stochastic process with zero mean
and covariance

Cov(Z(x,x)) =T'(x,x) = 6%,R(x,%'). 4

In other words, the observed outputs of the simulation code
y = {y',*,...,)'} are assumed to be realizations of a Gaussian
random field with mean B and covariance I'. Here R(.,.) is a
parametrized correlation function that can be tuned to the train-
ing dataset and o2, is the so called process variance.

A commonly used choice of covariance function is the sta-
tionary family which obeys the product correlation rule [20].

? .
R(x!,x?) = Hexp(—-ejlx}-xflp’), 5)
=1

where 8; > 0 and 1 < p; < 2 are the hyperparameters. In the
present study we have chosen pj = 2 assuming that the un-
derlying function being modeled is infinitely differentiable and
smooth. The values of the hyperparameter 6 can be used to un-
derstand the relative importance of each parameter on the perfor-
mance of the airfoil. Hence 8;, which is the value corresponding

to the jth parameter, is an indicator of the its influence on the
airfoil performance. It is possible to tune the parameters p; to
the data which allows for the possibility of modeling functions
which are discontinuous. In theory, the choice of an optimal co-
variance function is dependent on the data. However, in practice
it has been found that the parametrized covariance function in
equation (3) offers sufficient flexibility for modeling smooth as
well as nonlinear functions [17]. If a Gaussian process prior over
functions is used, the posterior process is also Gaussian. Hence
using standard statistical results from Bayesian inferencing, the
posterior mean and covariance can be stated as

I(x) = B+t(x)"R™}(y - 1p), ©6)
and
C(x,x) = 62 (R(x,x') - t(x)TR‘lt(x’)) . %)

Here R is the correlation matrix whose ijth element is calculated
as R(x),x()) and 1t = {R(x,x1),R(x,x)), ...,R(x,x(l))}T €
R* and 1 = {1,1,...,1} € R". This approach finally leads to an
approximation of the computational model as a multidimensional
Gaussian random field. The randomness in equation (7), given by
posterior variance 62(x) = C(x,x'), can be interpreted as an es-
timate of the uncertainty involved in predicting the output at any
new points using the given finite dataset.

Parameter Estimation

After choosing an appropriate covariance function for the
surrogate model the next task at hand is to estimate the set of
unknown model parameters. The covariance function I' can be
parametrized in the term of vectors 0 = {61,6,,...,8,}. Given
the training dataset, we need to estimate 8 and the other hyper-
parameters 3 and ©,2. Martin et al [28] have compared Maxi-
mum Likelihood Estimation (MLE) and Cross-Validation (CV)
technique for estimating the parameters. Here we use the MLE
technique as proposed in the Design and Analysis of Computer
Experiments (DACE) [20]. The MLE approach leads to those
values of the undetermined parameters that are most likely to
have generated the training dataset. For the Gaussian process
interpolation, since we assume that the observed outputs have a
Gaussian distribution, the likelihood function can be written as

(2m) 0, R esp (= 05197 R (7-19)).
€))
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Hence, the negative log-likelihood function to be minimized be-
comes

1 1 -
L0.B,02) == [minoi? + R + 523 (5~ 1R 5~ 19).
Z

®
By taking the derivative of the log-likelihood function with re-
spect to B and ¢, and equating them to zero, we get a closed
form solution for the optimal values of B and 6,2 as

B=("R"'1)""1TR 1y, (10)
and
.1
o2 = ~(y~1)'R™'(y~1B). (11)

A closed-form solution does not exist for 8, requiring an iterative
optimization procedure to minimize L as a function of 8. For
a given value of 0, estimates of B and o,? can obtained using
equation (10) and (11), respectively. These computed values of
B and o,2 can be substituted into equation (9) to calculate the
log-likelihood function. In principle, any standard optimization
routine can be employed to compute the maximum likelihood
estimate of 6.

Model Validation

To assess the quality of our surrogate model we need to per-
form validation studies. This assessment study can be performed
in a number of ways, two common methods are : (1) the accuracy
of predicting the output at a number of additional points and (2) a
leave-one-out type cross-validation procedure. The first method
can become computationally prohibitive for high-fidelity models
such as CFD simulation of a geometry with high mesh size. A
cross-validation procedure which does not need additional ob-
servation data can be a computationally cheap alternative. This

method involves leaving the ith training point out and computing

the posterior mean at the point j_;(x). By plotting the computed
values against the original values from the training dataset, the
quality of the surrogate model can be assessed. In a recent study,
Meckesheimer et al [29] noted that the leave-one-out procedure
may significantly underestimate the actual prediction error and
suggested that a k-fold cross-validation scheme (with k = 0.1n
or /n) may be better a indicator of the model quality.

Another measure of the quality of the Gaussian stochastic
surrogate model would be to validate our basic assumption, that
a Gaussian process prior is appropriate for the CFD simulation
code used as a black box here. Jones et al [15] have discussed
the use of Standardized Cross-Validated Residual (SCVR) which

is defined as

B~ g_(x
SCVR; = L= I-(x"7)

——S AT [ = 1,2,..., 5
o 2(x) i n (12)

where %) (x) and 6_;2(x) denote the mean and variance of the
metamodel prediction at a point x without using the ith train-
ing point. SCVR; can be computed for all the training points by
removing the contribution of the corresponding points from the
correlation matrix R. Here we can also use an additional valida-
tion dataset and calculate the SCVR; values.

NUMERICAL STUDIES

To estimate the parameters of the surrogate model, we carry
out a 50 point LP; DOE survey over the values of the ero-
sion parameters [location,width, height]. The parameters of the
eroded geometry are specified by upper and lower bounds. Fig-
ure 3 shows a few erosion patterns constructed by the parametric
model.
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Figure 3. Example of Erosion patterns Constructed by the Parametrized
Model

The automated grid generator and CFD simulator are run to
evaluate the pressure loss at each design point. The hyperparam-
eters 8,B,0,% are evaluated using a hybrid Genetic Algorithm
(GA) and Dynamic Hill Climbing (DHC) search method. The
scatter plot of the normalized values of pressure loss are shown
in figure 4. It can be observed that the pressure loss for most of
the eroded geometries have deteriorated. A few geometries with
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subtle shape changes had an improved performance as compared
to the nominal geometry.
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Figure 4. The Scatter Plot of Normalized Pressure Loss

The quality of the surrogate model is illustrated in figures 5
and 6. Figure 5 is a plot of the posterior mean value predicted
using leave-one-out validation test versus the observed values.
The regression coefficient for this test was R? = 0.9023. In fig-
ure 6 we observe that some of the SCVR; values do not lie within
[~30,+30]. A simple way to improve the surrogate model is to
add more points to the DOE dataset. A better method for im-
proving the performance of the surrogate model would be to add
points where the observed SCVR; values are high.

Here we increase the observed dataset by adding design
points created using a LHS technique. Figures 7, 8 show the
plot of posterior mean and SCVR; values predicted by the leave-
one-out method used on the new training dataset. The plot of
the posterior mean value predicted using leave-one-out valida-
tion method vs the observed values using the surrogate model
built using the new dataset indicates a better model. The regres-
sion coefficient for the new prediction is R? = 0.9395. It can
also be observed that most of the SCVR; in figure 8 lie within the
[~30,+30] bracket.

Having established the quality of the surrogate model we
use it to study the underlying behaviour of erosion parameters
on the blade at modest cost. A 10,000 point Monte Carlo sim-
ulation is run on the surrogate model to generate the probabil-
ity distribution of the pressure loss. The values of the parame-
ters [location, width, height] are defined to lie within a prescribed
lower and upper bound. A uniform distribution of the erosion pa-
rameters [location,width, height] is assumed for the probabilis-
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Figure 5. Predicted Posterior Mean Values Versus Observed Values with
R? =0.9023
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Figure 6. SCVR; Values Predicted with Leave-One-Out Validation

tic analysis. The histogram for the pressure loss evaluated using
MCS is shown in figure 9. The MCS using the surrogate model
takes a few minutes for carrying out 10,000 evaluations on In-
tel(R) Xeon(TM) CPU 3.06GHz dual processor machine.

The  values of the  hyperparameter 6 =
[B1ocation Owidehs Oneighe] can be used to understand the rela-
tive importance of the erosion parameters on the pressure
loss. We found the importance factors corresponding to
[location, width, height] to be [0.6581,0.2300,0.1119] respec-
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nearer to the leading edge as might be expected. Similarly, for
o wider erosion patterns the pressure loss is higher. It is interesting
] that erosion depth appears least significant.
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Figure 8. SCVR; Values Predicted with Leave-One-Out Validation with
Larger Dataset
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. o . . . Figure 10. Contour Plot of Pressure Loss against Location and Width
tively, indicating that the location and width have more influence

on the pressure loss. Figure 10 shows the contours of pressure

loss for variations of location and width. The values of location

and width have been normalized, so that a value of location

close to zero indicates proximity to the leading edge and a value

close to unity indicates that the erosion is located further toward CONCLUSIONS

the trailing edge. The contour plot suggests that the performance In this study we have presented a new way to model and
of a compressor fan blade deteriorates as the erosion is located parametrize an eroded blade geometry. This model has been
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used for a probabilistic analysis of the effect of erosion parame-
ters on the pressure loss of a typical high-pressure Rolls-Royce
compressor fan blade geometry. A robust automatic geometric
modeler and grid generator has been employed to create the ge-
ometry and high quality CFD mesh. To reduce the computational
costs associated with the probabilistic analysis of high-fidelity
simulation systems, we replaced the CFD simulation code by a
black-box based surrogate model. A Gaussian stochastic process
model (Krig) was developed using a training dataset created by a
combination of LHS and LP; based DOE techniques. The model
was assessed using leave-one-out methods, and consequently im-
proved by using additional dataset points. Finally a Monte Carlo
Simulation was executed to understand the effect of each param-
eter [location, height,width] on the pressure loss of the compres-
sor fan blade section.

The analysis shows upto 5% increase in pressure loss for the
eroded geometry types. It was also observed that some eroded
geometries performed better. The analysis suggests that the lo-
cation and width of the erosion pattern have more influence on
the performance of the airfoil compared to depth. This analysis
could also be used to understand the critical locations, width and
heights of the erosion patterns.

The parametric model used here could also be extended to
model manufacturing errors using combinations of Hicks-henne
functions. The work could be further extended to study the effect
of erosion on a cascade of compressor fan blades and multistage
systems. In future work we propose to use the approach set out
here, to allow the impact of erosion/damage to be included along-
side nominal performance, during shape optimization in a multi-
objective setting. This work will be further extended for robust
design against erosion/damage of the compressor fan blade.
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