The University of Southampton
University of Southampton Institutional Repository

Comparison of microtweezers based on three lateral thermal actuator configurations

Comparison of microtweezers based on three lateral thermal actuator configurations
Comparison of microtweezers based on three lateral thermal actuator configurations
Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.
0960-1317
1294-302
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3

Luo, J.K., Flewitt, A.J., Spearing, S.M., Fleck, N.A. and Milne, W.I. (2005) Comparison of microtweezers based on three lateral thermal actuator configurations. Journal of Micromechanics and Microengineering, 15, 1294-302. (doi:10.1088/0960-1317/15/6/022).

Record type: Article

Abstract

Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

This record has no associated files available for download.

More information

Published date: 2005

Identifiers

Local EPrints ID: 23336
URI: http://eprints.soton.ac.uk/id/eprint/23336
ISSN: 0960-1317
PURE UUID: dd362d41-bed5-4863-928e-7ceb7b02905c
ORCID for S.M. Spearing: ORCID iD orcid.org/0000-0002-3059-2014

Catalogue record

Date deposited: 13 Mar 2006
Last modified: 16 Mar 2024 03:37

Export record

Altmetrics

Contributors

Author: J.K. Luo
Author: A.J. Flewitt
Author: S.M. Spearing ORCID iD
Author: N.A. Fleck
Author: W.I. Milne

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×