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A power flow mode theory is developed to describe the natural power flow behaviour of a
dynamic system based on its inherent damping distribution. The system’s characteristic-
damping matrix is constructed and it is shown that the eigenvalues and eigenvectors of
this matrix identify natural power flow characteristics. These eigenvectors, or power flow
mode vectors, are chosen as a set of base-vectors spanning the power flow space and
completely describe the power flow in the system. The generalized coordinate of the
velocity vector decomposed in this space defines the power flow response vector. A time-
averaged power flow expression and theorems relating to its estimation are presented.

Based on this theory, power flow design approaches are proposed to identify energy
flow patterns satisfying vibration control requirements. The mode control factor defines
the measure of the correlation between a power flow mode and a natural vibration mode
of the system. Power flow design theorems are presented providing guidelines to
construct damping distributions maximizing power dissipation or to suppress/retain a
particular vibration mode and/or a motion.

The developed damping-based power flow mode theory is compared with a mobility-
based power flow model. It is shown that the proposed power flow model provides insight
into the power flow dissipation mechanisms in dynamic systems.

Examples are presented to demonstrate the applicability of the power flow mode
theory and the power flow design approach. These examples demonstrate the generality
of the theory, including non-symmetric damping matrices, and illustrate power flow
design applications through modifications of the system’s damping distribution using
passive and/or active control components.

Keywords: power flow mode theory; power flow space; power flow mode vector;
characteristic-damping factor; natural power flow characteristics; power flow design
Rec
Acc
1. Introduction

A power flow analysis provides a technique to describe the dynamic behaviour of
complex structures and coupled systems at medium to high values of frequency.
The approach focuses on the flow of vibrational energy rather than the detailed
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spatial pattern of the structural response. The fundamental concept of power flow
is discussed by Goyder &White (1980) and Pinnington &White (1981). In recent
years, this approach has been applied tomodel complex structures (Cuschieri 1990;
Langley 1990; Xing & Price 1999; Xiong et al. 2001, 2003a), structural-acoustic
problems (Petersson & Plunt 1982; Su et al. 1995) and to assess passive, active or
hybrid vibration control systems (Miller et al. 1990; Pan et al. 1992; Xiong 1996;
Xiong et al. 2000). To predict input power and power transmission in a system
requires knowledge of the excitations (forces or motions) and dynamic responses
(motions or forces) derived, for example, by analytical, numerical or experimental
mobility or impedance approaches, travelling wave methods, etc. (see, for
example, Price & Keane 1994; Fahy & Price 1999).

Based on the conventional modal decomposition technique described by
Timoshenko et al. (1974), Pinnington (1986) concluded that the total input
power equals the sum of the input powers to each vibration mode. Later, Su et al.
(1995) developed a power flow expression using the eigenvalues and the
corresponding eigenvectors of the real part of the mobility matrix. The concept
and formulation of the upper and lower bounds of power flows were presented by
Su et al. (1995), which was also investigated by Moorhouse (2002). These
contributions laid the foundation for the mobility-based power flow mode
approach proposed by Ji et al. (2003). This method uses the eigenproperties of
the real part of the mobility matrix and power mode force vector to describe the
time-averaged power input of the excitation forces applied to a system. However,
to predict input power and power transmission by this method, full knowledge of
the system’s mobility is required to determine its eigenproperties. This mobility
matrix depends on all the system’s physical properties including inertia, elastic
and damping parameters as well as the frequency of the external forces.

A similar dependence was found relating to sound power radiation from
structures. For example, in references cited byFuller et al. (1997), the application of
mode superpositionmethod andwavenumber Fourier transformation provided the
sound power output from a platePZ _wHM _w, where _w is the generalized velocity
vector corresponding to theN chosen naturalmode functions of the plate andM is a
matrix which has its eigenvalues Un and eigenvictors Pn (nZ1, 2, 3,., N ). Based
on analysis, this was shown to be expressible asPZ

PN
nZ0Unjbnj2, where bnZPn _w.

Here, again, the matrix M is dependent of the frequency of excitation,
wavenumbers and natural mode functions of the plate, and therefore involves
external excitations, stiffness and mass parameters of the system.

As is well known, for harmonic motions or stationary random processes, the
kinetic and potential energies remain unchanged after every cycle (Price &
Bishop 1974; Newland 1975), from which it is concluded that the time-averaged
power of a system equals the energy dissipated by its damping (Xing & Price
1999). Therefore, in theory, the natural characteristics of power flow should be
defined by the damping property of the system. This paper addresses this
problem through the development of a power flow mathematical model based on
the inherent damping characteristics of the system.

From this idea, a damping-based power flowmode theory is developed to describe
the essential power flow behaviour of a dynamic system. A characteristic-damping
matrix is introduced from physical damping matrix components. The eigenvalues
and eigenvectors of this characteristic-damping matrix are defined as the
characteristic-damping factor and the power flow mode vectors of the system,
Proc. R. Soc. A (2005)
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respectively, and these parameters are independent of external excitations. Power
flowmode vectors are chosen as a set of base-vectors spanning the power flow space to
describe completely the system’s power flow behaviour. The generalized coordinate
of the velocity vector decomposed in the power flow space is defined as the power flow
response vector, which depends on external vibration sources. The time-averaged
power flow is determined by the characteristic-damping factor and the power flow
response vector. For a unit power flow response vector, the time-averaged power flow
value depends only on the system’s characteristic-damping factor.

Based on this theory and the power flow design concept discussed by Xing
et al. (2002), power flow design theorems are proposed on which design
approaches are developed and demonstrated. Examples illustrating the general-
ity of the proposed mathematical model, theory, design procedure, etc. are
presented as well as applications for vibration analysis and control.
2. Generalized formulation of a dynamic system

For generality, consider the dynamics of a generalized linear system with N
degrees-of-freedom described by the matrix equation

M €~XCC _~XCK ~X Z ~f eiut; ð2:1aÞ

C ZCvCCh; ð2:1bÞ
where ~f denotes the complex amplitude of the excitation force vector, M is a
real, symmetric and semi-positive definite mass matrix, K represents a
symmetric and semi-positive definite stiffness matrix and C is a damping matrix
consisting of a viscous part Cv and a hysteresis component ChZðh=uÞ �Ch. Here,
h represents a loss factor and �Ch is a real symmetric matrix relating to the
subsystems in which hysteresis damping exists. Generally, �Ch is not the stiffness
matrix K of the system and in general C may be non-symmetric because of
active damping contributions arising from different sources of velocity feedback
gains (Xiong et al. 2003b; Xing et al. 2005). The matrices ~X, _~X and €~X represent the
displacement, velocity and acceleration vectors of the system, respectively. For cases
ofmotionexcitation, theexternal forcemayvanish, i.e. ~fZ0,but themotionsof some
degrees of freedom of the system are prescribed.

The solution of equation (2.1a) and (2.1b) takes the form _~XZ ~Veiut, which
allows equation (2.1a) and (2.1b) to be expressed as

~f Z ~Z ~V ; ð2:2Þ

~V Z ~Y ~f ; ð2:3Þ
provided the inverse matrix ~Z

K1
exists. Here ~V is a velocity amplitude vector of

the system, ~Z denotes the impedance matrix

~Z Z iuM CC C
K

iu
; ð2:4aÞ

and ~Y , the system’s mobility matrix, is defined by

~Y Z ~Z
K1
; ð2:4bÞ
Proc. R. Soc. A (2005)
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such that ~Y ~ZZIZ ~Z ~Y , where I denotes a unit matrix. In general, the complex
matrices ~Y and ~Z are non-symmetric because of the inherent nature of the system.

To aid discussion, it is assumed that XZ ½c1;c2;.;cN � represents the matrix
of normalized natural vibration modes satisfying the following orthogonal
relations (Bishop & Price 1979)

XTX Z I ; ð2:5aÞ
XTMX Z diagðMjÞ; ð2:5bÞ
XTKX Z diagðKjÞ; ð2:5cÞ

u2
j ZKj=Mj ; ð2:5dÞ

where u2
j denotes the jth natural frequency of the system.

3. Power flow mode theory

(a ) Characteristic-damping matrix

The total time-averaged power input by all excitation forces applied to a system
(Skudrzyk 1968) is given by the expression

P Z
1

2
Reð~fH ~V ÞZ 1

2
Reð ~VH~f ÞZ 1

4
Reð ~VH~f C ~f

H ~V Þ; ð3:1Þ

where the superscript ‘H’ denotes a conjugate, transpose matrix.
Taking the conjugate transpose of equation (2.2), we find that

~V
H

KiuMT CCTK
KT

iu

� �
Z ~f

H
; ð3:2Þ

where superscript ‘T’ denotes a transpose matrix. By continuing this matrix

manipulation by pre-multiplying equation (2.2) by ~V
H

and post-multiplying
equation (3.2) by ~V , we derive the results

~V
H

iuM CC C
K

iu

� �
~V Z ~V

H~f ; ð3:3Þ

~V
H

KiuMTCCTK
KT

iu

� �
~V Z ~f

H ~V : ð3:4Þ

Since M TZM and K TZK, a summation of equations (3.3) and (3.4) gives

~V
HðC CCTÞ ~V Z ~V

H~f C ~f
H ~V : ð3:5Þ

From equations (3.1) and (3.5), Xiong et al. (2004) showed that after matrix
manipulation the time-averaged input power takes the form

P Z
1

2
Ref ~V

H �C ~Vg; ð3:6Þ
where

�C Z
1

2
ðC CCTÞ: ð3:7Þ

This result demonstrates that the time-averaged power of a system equals the
power dissipated by damping, which is consistent with the result derived from
Proc. R. Soc. A (2005)



3385Power flow mode theory and design
the general theory of continuum mechanics developed by Xing & Price (1999).
For a simple system with one-degree-of-freedom of damping coefficient c and
velocity v, this reduces to PZð1=2Þcjvj2.

BecauseCCCT is a real symmetric matrix, it follows that �C is a real symmetric
matrix allowing exploration of the properties of real symmetric matrices. In
general, �C is a semi-positive definite matrix if there exists no negative active
damping in the system. As is subsequently shown, this characteristic-damping
matrix �C plays a significant role in determining the system’s power flow.
(b ) Power flow space

Based on matrix theory (Nering 1963), the characteristic-damping matrix �C
decomposes into

�C ZFLFT; ð3:8aÞ
where

LZdiagðljÞ; ð3:8bÞ

FZ ½41;42;.;4N �; FTFZFFT Z I : ð3:8cÞ

Here lj , of dimension Ns mK1, and non-dimensional real vectors 4j ( jZ1,
2,., N ), denote the eigenvalues and the corresponding eigenvectors of the
characteristic-damping matrix �C , respectively. These power flow mode vectors
are linearly independent of each other and they are chosen as a set of base vectors
spanning the power flow space of the system.
(c ) Natural power flow characteristics

The j th characteristic-damping factor lj and j th power flow mode vector 4j of
the characteristic-damping matrix �C are independent of external excitations.
For a dynamic system, the characteristic-damping matrix �C is prescribed and
accordingly its natural power flow characteristics, i.e. lj and 4j , are determined.
(d ) Power flow response vector

In the defined power flow space, the physical velocity vector ~V of the system
decomposes into the form

~V ZF~q: ð3:9Þ

Since F is the orthogonal matrix composed of the corresponding eigenvectors 4j

(jZ1, 2,., N ), we obtain

~q ZFT ~V ; ð3:10aÞ

~qj Z4T
j
~V ; ð3:10bÞ

which defines a complex valued velocity vector of dimension m sK1. For a
prescribed system, this power flow response vector ~q defined in the power flow
space depends on the external excitations and its j th element ~qj denotes the j th
power flow response corresponding to the j th power flow mode 4j .
Proc. R. Soc. A (2005)
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(e ) Power flow expression

A substitution of equations (3.8a–c) and (3.9) into equation (3.6) produces an
expression for the time-averaged power flow in the form

P Z
1

2
Ref~qHL~qgZ 1

2

XN
jZ1

lj j~qj j2 Z
XN
jZ1

Pj ; ð3:11Þ

where
Pj Z lj j~qj j2=2; ð3:12aÞ

Pj=j~qj j2 Z lj=2 ð j Z 1; 2; .; NÞ; ð3:12bÞ
defines the j th mode dissipation power that represents the j th time-averaged
power flow component of the system. These expressions are summarized in the
following theorem.

Power flow expression theorem 3.1. For a dynamic system described by
equation (2.1a,b), its time averaged power flow equals the sum of all mode
dissipation power components PjZlj j~qj j2=2 determined by the characteristic-
damping factor lj and characteristic velocity ~qj .

The system’s total time-averaged power flow comprises of the power dissipated by
allN independent power flowmodes, each relating only to its characteristic-damping
factor and power flow response vector. It also provides assessment of the role of
damping in power dissipation. For example, for unit characteristic velocities ~qj , the
time-averaged power flow component Pj depends only on the system’s natural
characteristic-damping factor lj, which is independent of all external forces. A large
value of lj implies significant energy dissipation in the j th power flow mode 4j .
(f ) Power flow bounds

Let us assume that l1 and lN denote the smallest and largest eigenvalues of the
characteristic-dampingmatrix �C . The time-averagedpowerP canbeestimated to lie
in the range defined by the lower bound Plow and the upper bound Pup as given by

Plow Z
1

2

XN
jZ1

j~qj j2
 !

l1!P!
1

2

XN
jZ1

j~qj j2
 !

lN ZPup: ð3:13Þ

Noting that ~qH~qZ ~V
H
FFT ~VZ ~V

H ~V , it follows thatXN
jZ1

j~qj j2 Z
XN
jZ1

j~vj j2; ð3:14Þ

and we can rewrite equation (3.13) in the form

Plow Z
1

2

XN
jZ1

j~vj j2
 !

l1!P!
1

2

XN
jZ1

j~vj j2
 !

lN ZPup: ð3:15Þ

Dividing this equation by the square of the velocity vector modulus, i.e.
j ~V j2Z

PN
jZ1 j~vj j2, we find that

l1

2
!

P

j ~V j2
!

lN

2
: ð3:16Þ
Proc. R. Soc. A (2005)
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Physically,P=j ~V j2 represents the power dissipated per unit square of velocity vector
modulus. This result is summarized as follows.

Power flow bounds theorem 3.2. For a dynamic system defined by equation
(2.1a,b), its time averaged power dissipation P=j ~V j2 per unit square of velocity
vector modulus is bounded by one half of the lowest and highest characteristic-
damping factor values of the system.

Equation (3.16) provides an estimation of the time-averaged power flow in
terms of the maximum and minimum characteristic-damping factors and these
relate to the damping of the system only and do not require any information of
vibration sources and responses of the system. It provides a measure to assess
and compare the power dissipation capabilities of dynamic systems. Based on
this theorem, the following corollaries are derived.

(i) Regardless of the external excitations and mass/stiffness distributions, the
power dissipated per unit square norm of velocity vector P=j ~V j2 is always
bounded by one half of the maximum and minimum characteristic-damping
factor values.

(ii) For any systemmodelled by equation (2.1a,b) and having the same damping
matrix C but different stiffness and mass distributions as well as different
external forces, the power dissipated per unit square of velocity vector
modulusP=j ~V j2 of all such systems are bounded by the same upper and lower
bound values given in equation (3.16).

(iii) Any modification of the stiffness and mass matrices, natural frequencies and
external excitations in equation (2.1a,b) do not change the bounds of P=j ~V j2
given in equation (3.16)provided thedampingmatrixof the systemC remains
unaffected.

4. Power flow design

The power flow mode theory developed in §3 establishes a theoretical basis for a
power flow design approach which aims to identify various appropriate power
flow patterns through designed damping distributions. Based on the presented
theory, three power flow design theorems are expressed as follows.

(a ) Maximum power dissipation

Theorem 4.1. For a dynamic system defined by equation (2.1a,b), the time
averaged power dissipated per unit characteristic velocity ~qj ( jZ1, 2, 3,., N) is
maximum if and only if the trace of its characteristic-damping matrix is a
maximum value.

Proof. On using equation (3.11), we find that the time-averaged power
dissipated per unit characteristic velocity of the system is given by

Pu Z ðl1Cl2 C/ClN Þ=2: ð4:1Þ
Based on matrix theory (Nering 1963), the orthogonal transformation
represented by equation (3.8a) does not change the trace of the real symmetric
matrix �C and therefore

Pu Z ðl1 Cl2C/ClN Þ=2Z tr �C=2: ð4:2Þ
Proc. R. Soc. A (2005)
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This equation demonstrates that the maximum Pu and tr �C of the system are
equivalent quantities and therefore the theorem is valid. &

Theorem 4.2. If a dynamic system defined by equation (2.1) dissipates the
maximum time averaged power for any external force vector ~f eiut, the trace of
its characteristic-damping matrix is maximum.

Proof. If the condition expressed in theorem 4.2 is valid, for any external
force vector ~f eiut the time averaged power dissipation represented by equation
(3.11) should be maximum. Now, we can find an external force vector by letting
j~qj jZ1 ( jZ1, 2, 3,.,N ) and using equations (2.1a,b) and (3.9) it follows that

~f eiut Z juM ~V CC ~V C
1

ju
K ~V Z juM CC C

1

ju
K

� �
F~q�; ð4:3Þ

where ~q�Z ½1; 1; 1;.; 1�T. The time averaged power dissipation corresponding to
the force vector given by equation (4.3) satisfies equation (4.2) which is also
maximum according to the condition of theorem 4.1 and therefore theorem 4.2 is
valid.The latter also provides the necessary condition onwhich to design adamping
distribution to obtain the maximum average power dissipated in the system. &

(b ) Power flow mode design for a natural vibration mode

The velocity vector ~V can be decomposed in the vibration mode space, defined
by the natural mode vectors given in equation (2.5a–d ), into the form

~V ZX ~R; ð4:4Þ
where XZ ½c1;c2;.;cN � is the normalized natural vibration modes of a system,
and ~R is a general velocity vector. Substituting equation (4.4) into equation
(3.10a,b) we find that

~q ZFTX ~R; ð4:5Þ
and

~qj Z
XN
iZ1

4T
j ci

~Ri Z
XN
iZ1

gji
~Ri; ð4:6Þ

where the mode control factor is defined as

gji Z4T
j ci ði; j Z 1; 2; 3;.;NÞ: ð4:7Þ

This is a dot product of the i th natural vibration mode and j th power flow mode.
Physically, the mode control factor gji represents the i th natural mode
component of the characteristic velocity ~qj .

On using equations (3.11) and (4.6), the energy dissipated in the pure (i.e. only
~Ris0) i th vibration mode ci is expressed as

Pi Z
1

2

XN
jZ1

lj jgjij2j ~Rij2: ð4:8Þ

The energy dissipated per unit square of the i th generalized velocity of the i th
natural mode is given by

Pi=j ~Rij2 Z
1

2

XN
jZ1

lj jgjij2: ð4:9Þ
Proc. R. Soc. A (2005)
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These two expressions relate the energy dissipation of the i th pure vibration
mode to the power flow modes in the power flow mode space. A large value of jgjij
represents a large component of ~qj produced by the i th natural vibration mode
and therefore a large energy dissipation ð1=2Þlj jgjij2 in the j th power flow mode.
The suppression of the i th vibration mode can be realized by designing a power
flow mode 4j that provides a large absolute value of mode control factor gji . In
the reverse case, to retain the i th vibration mode, we need to design power flow
mode 4j that provides a zero mode control factor gji . These findings can be
summarized in the following power flow mode design theorems.

Theorem 4.3. If a power flow mode j is designed orthogonal to a natural
vibration mode i, i.e. gjiZ0, there is no power dissipated by the ith natural
vibration mode in the power flow mode j and therefore the ith natural vibration
mode is not damped by the jth power flow mode.

Theorem 4.4. If a power flow mode j with a positive characteristic factor lj is
designed parallel to a natural vibration mode i, that is, gji has a maximum absolute
value, there is a maximum of energy dissipated by the ith natural vibration mode
in the power flow mode j and therefore the ith natural vibration mode is effectively
damped by the jth power flow mode.

(c ) Power flow mode design for a prescribed motion

From equations (3.10a,b) and (3.12a,b), we conclude the following power flow
mode design theorems for a prescribed motion.

Theorem 4.5. If a power flowmode j is designed orthogonal to a prescribedmotion
~V , i.e. ~qjZ0, there is no power dissipated by thismotion in the power flowmode j and
therefore this prescribed motion is not damped by the jth power flow mode.

Theorem 4.6. If a power flow mode j with a positive characteristic factor lj is
designed parallel to a prescribed motion ~V , i.e. ~qj has a maximum absolute value,
there is a maximum of energy dissipated by this motion in the power flowmode j and
therefore this prescribed motion is effectively damped by the jth power flow mode.

5. Comparison with mobility-based power flow model

(a ) Generalization of the mobility-based power flow mode approach

A mobility-based power flow mode approach was proposed by Su et al. (1995) and
extended by Ji et al. (2003) assuming a symmetric mobility matrix of the system.
This assumption is valid for many cases. However, the real part of the mobility
matrix of an active velocity feedback control system may become non-symmetric
as demonstrated by Xiong et al. (2003b). Therefore, in this paper the requirement
of the symmetric real part of a mobility matrix is released. In general, the
symmetry of the imaginary part of the mobility matrix involving mass and
stiffness matrices is valid. Based on the above description, the generalization of
the mobility-based power flow mode approach is presented as follows.

The time-averaged power flow in a mobility formulation is given by

P Z
1

4
Ref~fHð ~Y C ~Y

HÞ~fgZ 1

2
Ref~fH �Y ~fg; ð5:1Þ
Proc. R. Soc. A (2005)
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where
�Y Z

1

2
ð ~Y C ~Y

HÞZ 1

2
fReð ~Y ÞCReð ~YHÞg ð5:2Þ

is the real, symmetric characteristic mobility matrix of the system. If the
symmetry of the real part of the mobility matrix is assumed, it is obtained
that ð ~YC ~Y

HÞZ2Reð ~Y Þ as presented by Ji et al. (2003). This matrix �Y can be
decomposed into the form �Y ZJXJT; ð5:3Þ
where X is a real diagonal matrix of the eigenvalues mj of the characteristic
mobility matrix �Y and JZ ½j1;j2;.;jN � is a corresponding orthogonal matrix
of eigenvectors satisfying

JJT ZJTJZ I : ð5:4Þ
Here the j th characteristic mobility factor mj has dimension m(Ns)K1 of mobility.
Decomposing the force vector ~f in the power flow space defined by J, we obtain

~f ZJ ~Q ð5:5aÞ
and

~QZJT~f ; ð5:5bÞ
where the N input forces are represented by the power flow excitation vector ~Q.
The j th power flow excitation force element ~Qj corresponds to the j th mobility

power flow mode jj . Similarly, because
PN

jZ1 j ~Qj j2Z
PN

jZ1 j~f j j2, the time-
averaged power input of the N forces described in equation (5.1) takes the form

P Z
1

2
Ref ~QH

X ~QgZ 1

2

XN
iZ1

mij ~Qij2; ð5:6Þ

and the corresponding time-averaged power estimation is given by

Plow Z
1

2

XN
jZ1

j~f j j2
 !

m1!P!
1

2

XN
jZ1

j~f j j2
 !

mN ZPup: ð5:7Þ

(b ) Comparison of the two power flow mode approaches

Table 1 provides a comparison of the two power flow mode mathematical
models in terms of their inherent characteristics and definitions.

As shown in this table, the differences between the two power flow mode
approaches are as follows.

(i) In the damping power flow model (DPFM) the characteristic matrix
relates only to the system’s damping property, whereas in the mobility
power flow model (MPFM) the system’s mobility matrix requires full
knowledge of damping, stiffness, mass and excitation frequency.

(ii) The characteristic factor lj of DPFM relies only on the system’s damping
property. If the damping property is independent of the excitation frequency
(for example, only viscous dampingmodelling is used and hysteresis material
damping is neglected, i.e. hZ0), DPFM is independent of excitation
frequency. However, for MPFM, the characteristic factor mj needs mobility
information involvingmass, stiffness, dampingandexcitation frequency, even
if the damping property does not relate to the excitation frequency.
Proc. R. Soc. A (2005)



Table 1. Comparison of the two power flow mode mathematical models

characteristic model

damping-characterized power
flow mode model (DPFM)

mobility-characterized power flow
mode model (MPFM)

characteristic matrix characteristic-damping matrix characteristic mobility matrix

�CZ
1

2
ðCCCTÞ �YZ

1

2
ð ~YC ~Y

HÞ
depending only on system’s

damping
depending on system’s inertia,

elastic, damping parameters
and exciting frequency

�CZFLFT �YZJXJT

power flow space
power flow mode: eign-
vectors of the charac-
teristic matrix

FZ ½41;42;.;4N � JZ ½j1;j2;.;jN �

FTFZFFTZI JJTZJTJZI
characteristic factor LZdiag½lj � XZdiag½mj �
units Ns mK1 mðNsÞK1

power flow variable response vector ~qZFT ~V excitation vector ~QZJT~f

power flow formulation
PZ

1

2
Ref~qH

L~qgZ 1

2

XN
jZ1

lj j~qj j2 PZ
1

2
Ref ~QH

X ~QgZ 1

2

XN
jZ1

mj j ~Qj j2

j th mode dissipation power PjZlj j~qj j2=2 PjZmj j ~Qj j2=2
physical meaning lj represents the energy dissipated

per unit power flow response ~qj

mj represents the energy dissi-
pated per unit power flow

excitation ~Qj

power flow bounds
PlowZ

1

2

XN
jZ1

j~vj j2
 !

l1 PlowZ
1

2

XN
jZ1

j~f j j2
 !

m1

PupZ
1

2

XN
jZ1

j~vj j2
 !

lN PupZ
1

2

XN
jZ1

j~f j j2
 !

mN

Plow!P!Pup Plow!P!Pup

l1

2
!

P

j ~V j2
!

lN

2

m1

2
!

P

j~f j2
!

mN

2
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(iii) The power flow mode vectors F of DPFM and J of MPFM exhibit the
same characteristics described in (ii). Therefore, the power flow space
constructed using J changes with the excitation frequency. On the
contrary, the power flow space spanned by F is characterized only by the
system’s damping.

(iv) The total power dissipation of the system is expressed by PZ
PN

jZ1 lj j~qj j2=2
in DPFM and PZ

PN
jZ1 mj j ~Qj j2=2 in MPFM, respectively. The j th

characteristic velocity ~qj involves the damping property and velocity
response of the system, whereas ~Qj relates to the mobility and the
excitation forces. If the velocity is given (for example, prescribed designed
Proc. R. Soc. A (2005)
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motions or experimentally measured), the total dissipated power depends
only on the damping characteristics of the system. However, in MPFM, if
the excitation forces are known, the total power dissipated again depends
only on mobility data involving mass, stiffness, damping and excitation
frequency.

(v) In applications presented in §6, it is demonstrated that DPFM is
convenient for use in power flow design and control because of its
dependence on only the damping distribution which can be adjusted as
required. In contrast, MPFM requires mobility information which is
dependent on frequency and therefore its characteristic factors mj and the
corresponding power flow mode vectors jj vary with frequency. As an
explanatory example, we consider a simple idealized linear system with two
degrees of freedom under force excitation as shown in figure 1. This system
comprises of two mounts, each having viscous damping c1Z50 Ns mK1,
c2Z10 Ns mK1 and stiffness k1Z1200 N mK1, k2Z600 N mK1, supporting
an uniform rigid bar of length LZ1 m and mass density mZ100 kg mK1.
The two external sinusoidal excitation forces ~FjðtÞZ~f je

iut ( jZ1, 2),
of amplitudes ~f 1Z10, ~f 2Z5eip=6 and frequency u are applied to the ends of
the bar.

Numerical results derived by the MPFM of this system are presented in
figure 2 which displays the variation of power flow mode forms with frequency as
shown in figure 2a. Here, the C1 and K1 scale values represent a heave and
pitch motion, respectively. Figure 2b illustrates the variation of the characteristic
factor mj ( jZ1, 2) with frequency. It is observed that at frequencies f1, f2 and f3
shown in (a) the forms of the power flow mode associated with m1 (- - -) and m2
($$$) are exchanged. This causes a jump phenomena in the values of the
characteristic factor mj ( jZ1, 2) in (b) and the power flow dissipations Pm1 and
Pm2 (shown in (c)) corresponding to each mode. For the same system, numerical
results predicted by the DPFM are presented in §6a, where the characteristic
factors l1Z10, l2Z50 are constants and hence there are no such jumps in the
mode power characteristics as shown in figure 3. For a complex system including
material hysteresis damping (hs0) which causes a frequency dependent

characteristic-damping matrix �C , a further comparison is presented in §6c
with associated figures 14 and 15 for illustrative purposes.
Proc. R. Soc. A (2005)
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3393Power flow mode theory and design
6. Applications of damping power flow mathematical model

(a ) A force excited system

Let us examine the dynamic behaviour of the system shown in figure 1 using the
damping based power flow mode theory. The equation describing the dynamics of
this system can be expressed in the matrix form

mL=3 mL=6

mL=6 mL=3

" #
€z1

€z2

( )
C

c1 0

0 c2

" #
_z1

_z2

( )
C

k1 0

0 k2

" #
z1

z2

� �
Z

~F1

~F2

( )
; ð6:1Þ

where the damping matrix C is real and symmetric, thus �CZC . To predict
the system’s input power flow using the proposed damping-based power flow
mode theory, the eigenvalues lj of the characteristic-damping matrix �C are of
values l1Z10 Ns mK1, l2Z50 Ns mK1 with jZ1, 2.

The time-averaged total input power flow PZP1CP2 and the mode
dissipation power are calculated using equations (3.11) and (3.12), respectively.
Figure 3 displays the time-averaged input power P and two mode dissipation
powers P1 and P2. As demonstrated by calculations, the total input power flow P
Proc. R. Soc. A (2005)
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equals the value determined using the traditional method of Goyder & White
(1980) by multiplying the force and velocity responses given in equation (3.1).

In this example, the damping matrix is diagonal and its two characteristic-
damping factors equal its two physical damping coefficients, that is l1Z10Zc2
and l2Z50Zc1, and the power flow mode vector matrix is a unit matrix. As
shown in equation (3.12), the mode dissipation power PjZlj j~qj j2=2 ( jZ1, 2) for
the j th power flow mode depends on both the characteristic-damping factor lj
and the modulus of the power flow response ~qj . Therefore, in a range of
frequencies near to the dip in the curve, the mode dissipation power P1 is larger
than P2, although the characteristic-damping factor l1 is less than l2.

Figure 4 shows estimations of the total input power, its upper and lower
bounds and illustrates how the total power varies with frequency between these
outer limits.

Figure 5 shows the special case of c1Zc2Z10Zc, for which the eigenvalues of
the characteristic-damping matrix are the same, i.e. l1Zl2Zc. Therefore, PlowZ
PZPup and the three curves overlap as shown. However, the two mode
dissipation powers P1 and P2 are different because the power flow responses ~qj
( jZ1, 2) are different.

Figure 6 illustrates the effect of the damping ratio a on the total input power
spectra. It is observed that the peaks of the total power reduce in value and the
power flow spectra become flatter as the damping ratio increases. This is
dramatically observed when damping ratio aZ50 causing the second power flow
peak in the spectrum to decrease in value significantly.

Figure 7 shows the behaviour of the time-averaged input powerP of a symmetric
suspension system (k1Z1200 N mK1Zk2, c1ZcZc2, ~f 1Z10 NZ~f 2) influenced by
Proc. R. Soc. A (2005)
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3395Power flow mode theory and design
varying damping values. Again, in this case, the total and individual mode
dissipation powers are the same, i.e. PlowZPZPup. Because only heave motion is
excited in this system, only one peak exists in the power spectra. We again observe
that as the values of damping c1Zc2 increase the curves flatten.
Proc. R. Soc. A (2005)
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(b ) A simple vehicle suspension system subject to motion excitations

Figure 8 illustrates a simple vehicle suspension system to model different
components of the design (Rahnejat 1998). In this example, the system is subject
to road disturbance, i.e. the vibration source is a motion rather than a forced
excitation. To predict the input power, the power flow mode approach is applied
without a full knowledge of the force excitation.
Proc. R. Soc. A (2005)
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The parameters chosen in this example are: main body mass m1Z2500 kg,
suspension mass m2Z320 kg, wheel and tyre mass mZ25 kg, spring constant
of suspension system k1Z80 000 N mK1, spring constant of wheel and tyre
k2Z500 000 N mK1, damping constant of suspension system c1Z350 Ns mK1,
damping constant of wheel and tyre c2Z15 020 Ns mK1. It is assumed that the
representative road disturbance is described by a road profile wZWe jut. The
equation describing the dynamics of this suspension system is given by

m1 0 0

0 m2 0

0 0 m

2
664

3
775

€z1

€z2

€w

8>><
>>:

9>>=
>>;C

c1 Kc1 0

Kc1 c1 Cc2 Kc2

0 Kc2 c2

2
664

3
775

_z1

_z2

_w

8>><
>>:

9>>=
>>;

C

k1 Kk1 0

Kk1 k1 Ck2 Kk2

0 Kk2 k2

2
664

3
775

z1

z2

w

8><
>:

9>=
>;Z

0

0

F

8>><
>>:

9>>=
>>;; ð6:2Þ

where F(t) is an unknown interaction force between the tyre and the road surface.
The system’s damping matrix C is real and symmetric (i.e. �CZC) and the

eigenvalues of the characteristic-damping matrix �C are determined as l1Z0,
l2Z522 and l3Z30 218.

Figure 9 displays the total time averaged input powerP compared to calculations
derived using the traditional power flow method (Goyder &White 1980), together
with the energy dissipated by non-zero eigenvalue power flowmodes P2 andP3. An
application of the proposed theory gives P1Z0 since l1Z0 (see equation (3.12)),
which implies that the energy dissipatedby the first power flowmode is zero. In fact,
l1Z0 corresponds to a rigid vibration mode, hence the damper does not dissipate
anyvibratory energy.P1Z0 also indicates the lower boundof the inputpowerwhich
is not included in the figure. The total power predicted by the damping-
characterized power flow mode and the mobility-based power flow mode
mathematical models produce equivalent results. However, the latter requires
more computing time because the mobility expression is dependent on frequency,
hence, eigenvalues are solved for each frequency step as described in §5b. In
contrast, the damping matrix C (as chosen) is independent of frequency and,
Proc. R. Soc. A (2005)
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therefore, its eigenvalues are solved only once outside the frequency loop. This
demonstrates benefit of application over the mobility-based power flow mode
method. Moreover, the total time-averaged power calculated by the damping-
characterized power flow mode method equals to the predicted value obtained by
the traditional method (Goyder & White 1980), i.e. PZPin.

Figure 10 shows the total time averaged input power P and non-zero
power flow modes P2 and P3 for the suspension system but with damping: c1Z
c2Z1 Ns mK1and k1, k2 unchanged. In this figure, the top dashed line represents the
total input power of the original system (c1Z350 Ns mK1, c2Z15 020 Ns mK1). It is
seen from figure 10 that the peaks of the total time-averaged power P for small
damping are more pronounced than the case of large damping (the thin line).
However, the level of the total time-averaged power reduces as the damping
reduces. This suggests that a systemwith small damping component values has less
capacity for energy dissipation. Consequently, the value of the input power is small.

(c ) Active control system with a non-symmetric damping matrix

The third example analyses a system incorporating beam material damping
and active controls producing a non-symmetric damping matrix. Figure 11
provides a schematic illustration of this system used to model the interactions
between a human body, seat, suspension system and flexible vessel experiencing
wave excitations (Xiong et al. 2003b). To improve ride comfort, two active
controllers producing active damping are incorporated into the system. The
damping-based power flow mode method is again applied to investigate this
discrete-compliant system under wave excitation.

The equation describing the system’s dynamic interactions is expressed in the form

M €ZðtÞCC _ZðtÞCKZðtÞZF: ð6:3Þ
Proc. R. Soc. A (2005)
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Detailed information of the matrices M, C and K was discussed by Xiong et al.
(2003b). In this analysis, however, the damping matrixC, defined in equation (2.1b),
has the following components:

CvZ

ch Kch 0 0 . 0

Kch chCgsp KgbpW0c KgbpW1c . KgbpWnc

0 KgspW0c C0CgbpW
2
0c gbpW0cW1c . gbpW0cWnc

0 KgspW1c gbpW0cW1c C1CgbpW
2
1c . gbpW1cWnc

« « « « 1 «

0 KgspWnc gbpW0cWnc gbpW1cWnc . CnCgbpW
2
nc

2
666666666664

3
777777777775
; ð6:4aÞ

ChZ
h

u
�ChZ

h

u
diag½0;0;Ch0;Ch1;.;Chn�; ð6:4bÞ

where gspZcsCgs, gbpZcsCgb, gs and gb represent the two control gains shown in
figure 10. The parameters Wjc, Cj and Chj ( jZ0, 1, 2,., n), represent nC1 ship
modes, viscous fluid damping and the material damping of the ship, respectively. In
this active control system, the feedback gains gs and gb can be chosen independently
and it is assumed that gspsgbp causing both damping andmobilitymatricesC and ~Y
to be non-symmetric.Therefore, themobility power flowmodemethodproposedby Ji
et al. (2003) is not applicable. However, the characteristic-damping matrix �C and
characteristicmobility �Y (defined in equation (5.2)) remain symmetric and hence the
power flow mode theories discussed herein are applicable.
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For simplification of numerical simulations in a hydroelasticity analysis (Bishop
& Price 1979) of the beam-like ship, three beam modes are chosen (nZ0, 1, 2)
together with a two-degrees-of-freedom human body and seat suspension
subsystem. Hence the matrix C is of order five (NZ5). For illustrative purposes,
a sinusoidalwave ofwavelength 30 mandwave amplitude aZ1 mare assumed.The
parameters of the human body and seat suspension subsystem are assumed to have
values: mhZ37.3 kg, khZ36 667 N mK1, chZ450 Ns mK1, msZ59.7 kg, ksZ
14 350 N mK1 and csZ600 Ns mK1. The vessel is modelled as a composite uniform
beam of length LZ9 m, width BZ2.31 m, draughtDZ0.235 m, second moment of
area about the neutral axis IZ0.0768 m4, mass per unit length rbZ555.6 kg mK1,
Young’s modulus of the composite beam EZ25.91 Gpa and a range of loss factor
values, i.e. hZ0, 0.1, 0.01, 0.5, considered to assess sensitivity of predicted values.
The seat is located at 3.94 m from the stern of the boat, i.e. xcZ0.438L,
corresponding to a position approximately in the middle of the cockpit area of the
real vessel. Theposition of the seat canbe readily changed to analyse themotions for
different seating arrangements reflecting number of crewmembers.

Figure 12 shows the time-averaged total input power P and each mode
dissipation power Pj (1%j%5) assuming a passive control system with no
material damping (hZ0). In this case, the characteristic-damping matrix �C is
independent of frequency. Hence the eigenvalues of �C are of values lZ124.1,
914.3, 1062.6, 2744.7 and 3280.3 and independent of frequency.

When considering the influence of hysteresis damping of the material in the
beam-like ship (i.e. hZ0.1, 0.5), the characteristic-damping matrix �C in equation
(3.7) is frequency dependent. Therefore, the eigenvalues of matrix �C are
frequency dependent and need solving at each frequency. Figure 13 displays the
total input power P of the passive control system influenced by material damping
in the beam-like ship. These findings demonstrate that the power dissipation
curves with large values of hull damping are flatter producing the corresponding
large areas between the curves and the frequency axis, which implies that a large
value of hull damping globally increases the power dissipated.

To compare numerical results involvingmaterial damping (hs0) for component
powers decomposed in the two different power flow mode approaches, figure 14a,b
Proc. R. Soc. A (2005)
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3401Power flow mode theory and design
present the power dissipation component Pj by each power mode using the DPFM
and Pmj by mobility MPFM methods, respectively, whereas figure 15 displays the
corresponding characteristic factors of the two approaches. The essential difference
between each pair of mode powers Pj and Pmj ( jZ1,., 5) is the jump phenomena
Proc. R. Soc. A (2005)
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occurring at frequencies 0.4, 22 and 30 Hz in the mode power curves derived by the
mobility power flow mode method (see also the comparison between Pm1 and Pm2;
Pm2 and Pm3). These jumps are associated with the jump phenomena occurring in
the characteristic factor mj as shown in figure 15b. However, the characteristic
factor lj in figure 15a shows a clear pattern for each mode although hZ0.01 makes
the characteristic-damping matrix frequency dependent.

Figure 16 illustrates the influence of active control on the power per unit square
of velocity vector modulus P=j ~V j2. These findings are compared with a passive
Proc. R. Soc. A (2005)
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seat suspension system (gsZ0Zg b). The predictions show how power varies with
changes to the feedback gain values assumed in different controllers. The active
feedback controllers produce additional active damping and therefore the
dissipation of the vibration power in the active system is increased over a
significant region of the frequency band compared with the passive system. It is
also observed that the seat velocity feedback control gs provides better control
than the base feedback control g b. Further calculations demonstrate that the lower
bound is not affected by frequency and the larger the control gain gs, the larger the
power dissipated. This suggests a way to adjust actively, in a prescribed manner,
the system’s damping distributions to increase vibration energy dissipation.
Proc. R. Soc. A (2005)
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Figure 17 shows the influence of active and passive damping on the power flow
bounds. It is seen from figure 17a that the lower bound level (calculated by
equation (3.16)) increases for seat velocity feedback control gsZ5000, but
decreases for a base velocity feedback control g bZ5000 in comparison to passive
isolation control findings. However, further calculations show that these active
feedback controls have no effect on the upper bound value. In fact, the upper
bound for this coupled system is mainly controlled by the beam’s damping
property. As shown in figure 17b, for increasing h value from 0.01 to 0.05, the
upper bound increases up to five times of the previous bound value. This again
provides an approach to increase vibration energy dissipation by increasing the
upper power bound through utilizing appropriate material damping.
7. Application of power flow design approaches

(a ) Model of a suspension system

Figure 18 illustrates a suspension system used to demonstrate application of the
energy flow design and control method based on the power flow mode theory.

The difference between this system and the one shown in figure 1 is that the two
dampers with damping coefficients c1 and c2 are arranged at arbitrary positions l1
and l 2 measured from the left end of the bar. The two non-dimensional parameters
L1Zl1/L and L2Zl 2/L are adopted in the following equations.
(i) Dynamic equation

The dynamic equation of this system is given by

mL=3 mL=6

mL=6 mL=3

" #
€z1

€z2

( )
C

c11 c12
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_z1

_z2

( )
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k1 0

0 k2
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z1

z2
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~F1

~F2

( )
Z

~f 1

~f 2

( )
eiut; ð7:1Þ
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where the characteristic-damping matrix �C of the system is derived from
equation (3.7) in the form

�C ZC ZaT
c1 0

0 c2

" #
a Z ½cij �; ð7:2Þ

where

a Z
1KL1 L1

1KL2 L2

" #
: ð7:3aÞ

The element cij of this characteristic-damping matrix �C is calculated by the
following equation

cij Z
X2
sZ1

asicsasj ði; j Z 1; 2Þ: ð7:3bÞ

Equation (7.2) is rewritten as

�C Z c1
ð1KL1Þ2Gð1KL2Þ2 L1ð1KL1ÞGL2ð1KL2Þ

L1ð1KL1ÞGL2ð1KL2Þ L2
1GL2

2

" #
ð7:4Þ

for the two special cases c2ZGc1.
(ii) Characteristic-damping factor and power flow mode

The eigenvalue problem of the characteristic-damping matrix �C is defined as

�C4Z l4; ð7:5Þ
with characteristic equation

c11Kl c12

c21 c22Kl

�����
�����Z 0: ð7:6Þ

The solutions of equation (7.6) give the characteristic-damping factors of the
system

l1;2 Z
1

2
½ðc11Cc22ÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11Kc22Þ2 C4c212

q
�: ð7:7Þ
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The corresponding power flow modes are represented by

4i Z
ai

bi

" #
ði Z 1; 2Þ: ð7:8Þ

These satisfy the normalized relation used in equation (3.8a–c) and are derived
by solving equation (7.5). That is

c11Kli c12

c21 c22Kli

" #
ai

bi

" #
Z 0: ð7:9Þ

(iii) Trace of �C

The trace of the characteristic-damping matrix �C is obtained as

tr �C Z c1ð2L2
1K2L1C1ÞCc2ð2L2

2K2L2 C1Þ: ð7:10Þ

(iv) Natural frequencies and modes

The physical velocity response of the system is expressed as

_z1

_z2

( )
Z ~Veiut: ð7:11Þ

For the case of k1Zk2, the natural frequencies and the corresponding natural
modes of the system are calculated as follows.

Mode 1:
u2
1 Z 2k1=mL; ð7:12aÞ

j1 Z

ffiffiffi
2

p
=2ffiffiffi

2
p

=2

" #
: ð7:12bÞ

Mode 2:
u2
2 Z 12k1=mL; ð7:13aÞ

j2 Z
K

ffiffiffi
2

p
=2ffiffiffi

2
p

=2

" #
: ð7:13bÞ

(v) Mode control factor

By using equations (4.7), (7.8), (7.12a,b) and (7.13a,b), we express the mode
control factors of the system as

gji Z

ffiffiffi
2

p

2
½bj CðK1ÞiC1aj � ði; j Z 1; 2Þ: ð7:14Þ

(b ) Damping distribution design

(i) Maximum tr �C

Based on theorem 4.2, the necessary condition for maximum energy
dissipation is that tr �C is a maximum value. For the given dampers, we now
examine arrangement of their positions to obtain the maximum tr �C and thus
the maximum energy dissipation for unit power flow response ~qj , i.e. j~qj j2Z1.
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Figure 19 shows the tr �C values as a function of the position parameters L1

and L2. From this figure it is observed that the position of the minimum value of
tr �C is at the point (L1, L2)Z(0.5, 0.5) and its maximum value is at the four
points (L1, L2)Z(0, 0), (0, 1), (1, 0) and (1, 1).

From these findings, we conclude that to obtain maximum characteristic-
damping factors the two dampers are located at the ends of the rod, which also
includes the four cases. For the reverse, to obtain minimum characteristic-
damping factors, the two dampers are located at the middle point of the rod.

(ii) Mode or motion control

Now we investigate the suppression or retention of a heave or pitch motion of
the system using theorems 4.3–4.6.

Heave motion. Using equation (3.6), we deduce from equation (7.12a,b) that
the energy dissipated by the system in heave motion is given

P1 ZjT
1Cj1 Z c1Cc2; ð7:15Þ

indicating independence of position of the dampers. However, if the two dampers
are arranged non-symmetrically about the mid point of the rod, in general, the
motion of the rod is not a pure heave motion. To retain validity of this equation,
it is required that the two dampers are symmetrically arranged. That is

L1 CL2 Z 1: ð7:16Þ
Figure 20a shows the time averaged energy dissipation per unit velocity modulus
of the system, i.e. PmZP=j ~V j2 varying with location parameters L1 and L2 when
c1Zc2 and ~f 1Z~f 2Z10 N. This figure shows that the maximum vibration power
dissipation is achieved on the line L1CL2Z1 along which the velocities at both
ends of the rod have the same value as demonstrated in figure 20b and therefore
the motion of the rod is heave as defined by equation (7.12a,b).
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To obtain minimum energy dissipation in heave motion, an active damper
with negative damping coefficient (Xing et al. 2005) is required to make

P1 Z c1Cc2 Z 0: ð7:17Þ
Figure 21 shows the energy dissipation of the system when an active damper
satisfying equation (7.17) is applied. It is found that along the line defined by
equation (7.16) and shown in figure 21b, there is no energy dissipation as
indicated in figure 21a. Also along the line L1ZL2, the energy dissipation
vanishes. This is because the two dampers are arranged at the same point giving
a zero resultant damping in the system.

Pitch motion. In a similar manner, the energy dissipation of the system in
pitch motion described by equation (7.3a,b) is

P2 ZjT
2Cj2 Z c1ð1K2L1Þ2 Cc2ð1K2L2Þ2; ð7:18Þ

giving

P2 Z
0; L1 ZL2 Z 0:5;

c1 Cc2; L1 Z 0; 1; L2 Z 0; 1:

(
ð7:19Þ
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To excite a pitch motion of the rod requires a pair of anti-symmetric forces
~f 1ZK~f 2 applied to the system together with a symmetric arrangement of the two
springs and dampers.

The energy dissipated in this case is shown in figure 22a, and demonstrates the
result given in equation (7.19). For an arrangement of two dampers located at the
middle point of the rod, L1ZL2Z0.5, there is no power dissipated. Therefore,
the pitch vibrationmode is retained. However, either arranging the two dampers at
the ends of the rod or both dampers at one end (L1ZL2Z0 or L1ZL2Z1) or at each
end (L1Z0, L2Z1 or L1Z1, L2Z0), produces a maximum energy dissipation. To
retain pitchmotion, a symmetric arrangement of the two dampers (L1Z0,L2Z1 or
L1Z1, L2Z0) is appropriate. Figure 22b,c shows that for this case the velocities at
the two ends of the rod satisfy the pitch motion V1ZKV2.
8. Conclusions

A generalized power flowmode theory, based on the inherent characteristics of the
system’s damping distribution, is developed to describe natural power flow
behaviour of dynamic systems. The system’s characteristic-damping matrix is
constructed and the eigenvalues and eigenvectors of thismatrix identify the natural
Proc. R. Soc. A (2005)
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characteristics of power flow and allow insight into energy dissipation mechanisms
of the system. The proposed theoretical mathematical model describes the time-
averaged power flow in terms of system’s damping and velocity response (equation
(3.6)), which straightforwardly reveals vibration energy dissipationmechanisms of
a dynamic system.Furthermore, in the definedpower flow space, the time-averaged
power flow is represented as the sum of all independent mode power components
(equation (3.11)). A power flow bound theorem is proposed to approximate the
upper and lower bounds of the time-averaged power. Regardless of the complexity
of the dynamic system, its total time averaged power dissipationP=j ~V j2, as defined
in equation (3.16), is bounded by one half of the lowest and highest characteristic-
damping factors. This average is determined only by the damping properties of the
system and is independent of any external excitations, the distributions of stiffness
and mass and responses of the system.

Based on the proposed power flow mode theory, power flow design and control
approaches are developed to control energy flow dispassion levels and patterns
satisfying vibration control requirements. This is achieved by designing
passive/active damping distributions to adjust the values of the characteristic-
damping factor and mode control factors. The mode control factor reveals the
coherence of a natural vibration mode or a motion form with a power flow mode.
Theorems applicable for power flow design are presented in §4 and it is
demonstrated that the maximum trace of the characteristic-damping matrix of
the system is a necessary condition to obtain the maximum average power
dissipation. A particular vibration mode or motion form can be suppressed or
retained through modifying the mode control factor by adjusting the damping
distribution.

The success of the described theoretical model and power flow design
approaches is demonstrated in the analysis of a range of practical examples
demonstrating its applicability. The developed theory and design approaches can
be widely used for modelling, analysis, design and assessment of various complex
solid, fluid and acoustic systems in engineering.
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