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Abstract

An asymmetric repetitive pin-jointed structure, based upon a 3-D NASA framework, is analysed using a
state variable transfer matrix technique. A conventional transfer matrix cannot be constructed due to the
singularity of one partition of the stiffness matrix; instead, a cell (rather than cross-sectional) state vector
consisting of displacements only is employed, leading to a generalised eigenvalue problem. The asymmetry
of the structure leads to tension—torsion and bending—shear couplings, which may be explained in terms of
the tension—shear coupling of a single face of the structure. Equivalent continuum beam properties and
coupling coefficients are determined, and the effect of (a)symmetry discussed as a trade between, for
example, tension-Poisson’s ratio contraction for a symmetric structure, against tension—torsion coupling
for the asymmetric.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, a repetitive asymmetric pin-jointed structure modelled on a NASA deployable
satellite boom [1] is treated by eigenanalysis. Such structures have previously been analysed [2] as
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Nomenclature

cross-sectional area
B matrices of the generalised eigenvalue problem
member diameter
nodal displacement vector
Young’s modulus
force vector
shear modulus
transfer matrix
height of cell cross-section (H = +/3L/2)
second moment of area
identity matrix
torsion constant
Jordan block matrix, canonical form
coupling coefficient
stiffness matrix
length of longitudinal members
moment
index of cell or section, element of N
compliance matrix
shearing force
radius of bending curvature (1/R = Oy /dx)
state vector
column vector of T
tensile force
transmission matrix
displacements in the x-, y- and z-directions, respectively
eigenvector
transformation matrix of eigen- and principal vectors
principal vector
cartesian coordinate system
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Greek letters

shear angle

direct strain

rotation (twist) about the x-axis
shear coefficient

eigenvalue

Poisson’s ratio

cross-sectional rotation
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an eigenproblem of a state vector transfer matrix: the stiffness matrix K for a typical repeating cell
18 constructed first, and relates nodal force and displacement components as

[Fr] _ [Krz Kir] [dL-I.

(H
Fr Krrz Kgrr dg
The transfer matrix G is then
[de] [ —KiiKps K7y 17de ] 2
Fr Krr — KreKipKri —KreK7h  —Fr '

or, more compactly, sg = Gs;, where the state vectors consist of the nodal displacement and force
components on the left- and right-hand sides (subscripts L and R) of the single cell. An
eigenvector describes a fixed pattern of displacement and force components which is unique to
within a scalar multiplier; translational symmetry demands that this pattern is preserved as one
moves from cell to cell, allowing one to write sz = As;, which leads to the standard eigenvalue
problem Gsy = As;, or (G — A)s; = 0. Non-unity eigenvalues of G occur as reciprocals, and are
the Saint-Venant decay rates pertaining to self-equilibrated end loading. Multiple unity
eigenvalues pertain to the transmission modes of tension, torsion, bending moment and shear,
together with the rigid body displacements and rotations. From a knowledge of the eigen- and
principal vectors associated with the unity eigenvalues, equivalent continuum beam properties of
cross-sectional area, Poisson’s ratio, second moment of area, torsion constant and shear
coefficient may be calculated. The example chosen in [2] was pin-jointed, as the finite element
analysis (FEA) of such structures involves only exact elements, so predictions from the
eigenanalysis may be verified by comparison with what may be regarded as exact FEA results.

For the pin-jointed idealisation of the example structure [1], matrix K;z is singular, so the
transfer matrix as defined above cannot be constructed; instead the approach is redefined as a
generalised eigenvalue problem, with vectors consisting of the displacement components on both
sides of the cell, rather than displacement and force on one side. Beside the 12 unity eigenvalues
for the transmission modes, eigenanalysis of the structure shows three eigenvalues equal to zero,
and three equal to infinity since they must occur as reciprocals. This implies that any self-
equilibrated load is confined to the cross-section on which it is applied, and does not penetrate
into the structure; indeed, this is precisely why the matrix partition is singular-—nodal
displacement components on the right-hand side of the cell are quite unaffected by some force
components applied at nodes on the left-hand side of the cell, resulting in a complete row and
column of zeros within the matrix partition.

Since the eigen- and principal vectors of the generalised problem contain only displacement
components, a transmission matrix T is defined, consisting of transmission vectors of both
displacement and force components. Physical interpretation of the vectors in T shows coupling
between various modes of displacement; tension is coupled with torsion, which is reminiscent of
the established behaviour of pre-twisted beams, while pure bending is coupled to a shear
deflection perpendicular to the plane of curvature, with a reciprocal coupling for a shearing force
(Fig. 1).

Finally, we note that Noor [3] has provided a review and classification of the approaches to the
analysis of repetitive structures, and the present work represents a combination of his periodic
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Fig. 1. A ten-cell asymmetric 3-D pin-jointed framework having equilateral triangular cross-section.

Structure method in order to determine the relevant properties for his substitute continuum method.
Earlier, Sun and Kim [4] simulated static loading, numerically, in order to effectively measure the
equivalent properties of a typical cell of the lattice; however that approach required a prior
knowledge of the magnitude and distribution of the nodal forces, and also boundary constraints
must be carefully specified to allow, for example, Poisson’s ratio effects in a simulation of tension.
More recently, Lee [5] has employed equality of kinetic and strain energies of a typical cell, to that
of a finite element model of an equivalent continuum, and noted that natural frequency
predictions were an overestimate compared to conventional FEA; one would expect as much,
since the fewer continuum degrees of freedom implies additional constraints and hence increased
frequency according to Rayleigh’s principle.

2. Generalised eigenvalue problem

Consider two consecutive cells of the 3-D framework shown in Fig. 2; let d,—, d,, and d,
denote the nodal displacement vectors associated with the (n — 1)th, nth, and (1 + 1)th sections,
respectively. The corresponding nodal force vectors F,_;, F, and F,.1 are related to the
displacements through the equations

(Bl fdi] TRl [ ]
F n dn F n+1 dn—l—l
where K has partitions as in Eq. (1). The force component F,, appears in both of the relationships
for the two adjacent cells, and can be eliminated to give

Kredy1 + (Kzz +Krp)d, + Kzrd, ) = 0. 4)

Define displacement state vectors for adjacent cells ass, = [d}_, d!]" and s, = [d] ], |7, s0 (4)

can be expressed as

(3a,b)

>

As, = Bs,, 1, (5)
where
0 1 | 0
W 1 gt 1 (63.5)
—-K RL -K RR KLL KLR

and I is the identity matrix. Now set
Sntl = ASn, (7)
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Fig. 2. Two consecutive nth and (n + 1)th cells of the framework shown in Fig. 1.

to give the generalised eigenvalue problem
As, = ABs,, or (A - AB)s, =0. (8a,b)

Eigenvectors for the non-repeating eigenvalues are determined from the MATLAB eig command.
The principal vectors are determined from the near diagonalised form

AV = BVJ, ©)

where V is the similarity matrix of eigen- and principal vectors, and J is the Jordan canonical form
(JCF). For the multiple unity eigenvalues this implies the chain of equations
(A - B)V] =0
A — B)w, = By
( W) 1 (10a—k)

.................................

(A —B)w; = Bw;_,

for a Jordan block of size k x k, and a principal vector w;,; is found using the reduced row
echelon form (rref) command on the augmented matrix [A — B, Bw;]. In fact the JCF cannot be
determined numerically through a similarity transformation, since matrix B cannot be inverted;
however, the structure of the Jordan blocks for the vectors pertaining to the unity eigenvalues are
obvious through physical reasoning: thus one has a 2 x 2 block coupling extension and the
combination of loads necessary to produce that extension, and likewise a 2 x 2 block coupling
rotation (twist) and the loads necessary to produce that rotation. On the other hand, one has two
4 x 4 blocks coupling transverse displacement, rotation, bending, and shear in two planes.
Since the eigen- and principal vectors consist of displacement components only, a transmission
matrix T is defined, consisting of vector pairs t,_; = [d,{_1 - Fg_l]T and t, = [d] F Z]T, which are
derived from two of the vectors coupled in the above chain, for example w,_; and wx_,. The force
components within the new vectors can be readily determined through Eq. (1). Column pairs of T



1218 N.G. Stephen, Y. Zhang | International Jowrnal of Mechanical Sciences 46 (2004) 1213-1231

describe the displacement and force components on the left- and right-hand sides of a single
repeating cell for the transmission of the stress resultants of tension, torsion, bending moments
and shearing forces, together with the principal vector rigid body rotations; the generating eigen-
and principal vectors describing rigid body displacements and rotation reside within the second
vector of the pair.

3. The asymmetric NASA framework

The framework has material and geometric properties as follows: Young’s modulus E =
70 x 10° Nm~2, member diameter d = 6.35 mm; the longitudinal bars have length L = 342.8 mm
and cross-sectional area 4 = nd” /4. The lengths of the (equilateral triangular) cross-sectional bars
are also L, but their cross-sectional areas are taken as 4/2, since they are regarded as being shared
by adjacent cells, while the diagonal bars within the faces of the cell have length /2L, together
with cross-sectional area A.

3.1. Eigenvalues

The QR algorithm within the MATLAB command eig returns the reciprocal eigenvalue pairs
[inf, 0] having multiplicity of three, implying that any self-equilibrated load applied to the left- or
right-hand end of the structure does not penetrate into the structure, together with 12 eigenvalues
very close to unity; physically, the latter must be exactly equal to unity and the associated eigen-
and principal vectors describe the three rigid body translations in the x-, y- and z-directions, and
three rigid body rotations about these axes, and six transmitting modes of tension, torsion, and
bending moments and shearing forces in both the xy- and xz-planes.

3.2. Eigenvectors associated with unity eigenvalues

For /4 =1, the set of equations
(A—B)y; =0 (11)

and use of the rref command within MATLAB, gives the four independent eigenvectors—rigid
body displacements in the x-, y-, and z-directions and a rigid body rotation about the x-axis.
These are

Vyigiazx =[100100100100100100]T x 1078,
Viigiay =[010010010010010010]" x 1078,
Vyigia==[00100100100100100 1] x 1078,

[ L8 HE LO HO 2HO LO HO
Vo= 0 5 =5 0 m 5 = 00 =52 07 =570
0 T
_L6 HP 0 ()_:)‘H__(C]1 (12a,b,c,d)
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Fig. 3. Cell subject to tension and twisting moment producing pure extension, and an apparent Poisson’s ratio
contraction; vectors T(:;,1) and T(:,2) describe the displacement and force components on the left- and right-hand side of
the cell, respectively.

where L is both the length of the cell, and the length of the members which make up the cross-
section, and H is the height of the cell; the small angle 0 is arbitrarily chosen to be 5 x 1078 rad.

3.3. Transmission vectors associated with unity eigenvalues, and equivalent continuum properties

The coupled principal vectors are determined according to the procedures described in Section
2, from which the transmission vectors are calculated, as listed in Appendix A.

3.3.1. Extension pair

The first two columns of the transmission matrix," T(:, 1) and T(;,2), are derived from the
principal vector coupled to rigid body displacement in the x-direction in the principal vector
chain. From Fig. 3, it is seen that a combination of tensile force 7 = 2.447 x 10~' N and twisting
moment M, = —5.015 x 107> N'm, when applied to both the left- and right-hand sides of the cell,
produces an extension # = 1 x 10~ m.

3.3.2. Torsional rotation pair

The third and fourth columns of the transmission matrix, T(;, 3) and T(:,4), are derived from
the principal vector coupled to rigid body rotation about the x-axis in the principal vector chain;
from Fig. 4 it is seen that a combination of twisting moment M, = 2.481 x 107> Nm and

'Column vectors of the transmission matrix T are identified using the MATLAB syntax.
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Fig. 4. Cell subjected to twisting moment and compressive force producing pure rotation about the x-axis, and an
apparent Poisson’s ratio expansion; vectors T(:,3) and T(:,4) describe the displacement and force components on the
left- and right-hand side of the cell, respectively.

compressive force 7 = —2.507 x 1072 N, when applied to the left- and right-hand sides of the cell,
produces a pure rotation of 8 = 5 x 107°,

For an equivalent continuum, the above tension-torsion coupling may be written in matrix
form

[ T]1 [EA K,][0u/ox] 13)
M, K, GJ] 030/ox "’

where K, is the tension—torsion coupling coefficient. From the extension pair, one knows T, M, L
and E, and Ou/0x = u/L = 2.917 x 107%; in particular one has 80/8x = 0, and substitution into
(13) gives T = EA(0u/ox), or A= T/(E0ou/dx)=119.8 x 107°m?, and M, = K(0u/ox), or
Ky = M,/(0u/ox) = —1.719 x 10° Nm. Also in Fig. 3, one sees displacements in the y- and z-
directions, suggesting an apparent Poisson’s ratio contraction of the cross-section, calculated as
follows: strain in the x-direction is &, = u/L = 2.917 x 1078, while strain in the y-direction is
&y = —v/H = —(dy, — d3;)/H = —7.620 x 107® and strain in the z-direction is &, = —w/L =
—(di; — d».)/L = —7.620 x 1073, Writing &, = —ve,, & = —ve,, gives the apparent equivalent
Poisson’s ratio v = 0.2612. Coincidentally, if one calculates the actual cross-sectional area of the
three longitudinal members in the cell as Ay = 3 X nd> /4 =95.01 x 107° m?, one sees that the
equivalent cross-sectional area as calculated above is numerically equal to Agena(l + v). Also an
equivalent shear modulus could be calculated as G = E/[2(1 + v)] = 27.75 x 10° Nm™2; on the
other hand, should Poisson’s ratio be zero, one would have simply G = E/2 = 35 x 10°.
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From the torsional rotation pair, vectors T(:,3) and T(:,4), one knows T, M., L and E, and
00/0x = 0/L = 1.459 x 1077 in particular one has ou/0x = 0, and (13) gives M, = GJ(80/0x), or
J = M,/[G(00/0x)] = 4.860 x 107" m*, where G =35x 10° has been employed, and T =
K(00/0x), or K, = T/(80/dx) = —1.719 x 10° Nm. Note that identical coupling coefficients
are obtained from the two separate vector pairs, as one would expect from the reciprocal theorem.
At first sight, this pair also suggests a Poisson’s ratio effect: the combination of twisting moment
and compressive force necessary to produce rotation, but no extension, results in a cross-sectional
expansion, Fig. 4; however since the strain in the x-direction is zero, an equivalent Poisson’s ratio
from this vector pair would have to be infinite.

These apparent (and inconsistent) Poisson’s ratio effects arise because in each case the cell is
subjected to a combined loading; however, moduluses of elasticity for a continuum, according to
Love [6, article 73], should be calculated from the strains (here displacements) produced by a
single stress (here single force or moment). Accordingly, combine the extension and torsional
rotation vector pairs in appropriate proportion to generate tension and torsion pairs. The former
describes the coupled extension and rotation produced by just a tensile force, the latter describes
the coupled extension and rotation produced by just a twisting moment; these revised vectors are
given in Appendix B. To determine the equivalent continuum properties from these pairs requires
Eq. (13) to be expressed in its inverted form

[Ou/ox]  [nn na [ T —N{T ]’

= = 14
59/6)6 ny1 Hx» Mx Mx ( )
where
EA K, 77!
N ] (15)
K, GJ

is now a compliance matrix. Instead of one of the displacements being zero, as in the previous
vector pairs, now the twisting moment and tensile force are zero in turn, from which one may
easily calculate ny; = 15.04 x 1078, n1; = ny; = 1.519 x 107° and 5y = 7.414 x 1073; inverting
the compliance matrix then gives identical equivalent properties to those calculated previously.
The left-hand column of the tension pair shows that all nodal displacements on the left-hand side
of the cell are zero, while the nodal displacements on the right-hand side consists of the extension
u=1x10"8m, together with nodal displacements equivalent to a cross-sectional rotation of
0 =2v3/L x107® = 3/H x 107® indicating the relationship u = H6/3; however, there are no
displacements (on either side of the cell) consistent with a cross-sectional contraction, confirming
that the equivalent Poisson’s ratio is actually zero.

3.3.3. Rigid rotation pairs

The fifth and sixth columns of the transmission matrix T(:,5) and T(;, 6) are determined from
the principal vector describing rigid body rotation about the z-axis, which is coupled to rigid body
displacement in the y-direction, in the principal vector chain. Similarly, the 11th and 12th columns
T(:,11) and T(:, 12) are determined from the principal vector describing rigid body rotation about
the y-axis, which is coupled to rigid body displacement in the z-direction, in the principal vector
chain. For both of these rigid rotation pairs, all nodal forces are zero.
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3.3.4. Bending moment pairs

The seventh and eighth columns T(:,7) and T(:, 8) are termed a bending moment pair, and are
determined from the principal vector describing a bending moment in the xy-plane, which is
coupled to rigid body rotation about the z-axis, in the principal vector chain. The displacement
components in the x-direction indicate not solely a bending curvature in the xy-plane, but rather
rotations in the two principal planes and can be expressed in the form

rdlx-l T(,7) rdlx-l T(.5) rdlx-l TC,1D ‘_d4x—l T(.,8) I—d4x-| T(,6) '—d4x-l T(,12)
‘d2x| =axld2x‘ +bX|d2x +dX|d5x‘
d3x d d3x d6x

,|d5x| =Cxld5x
dex d

3x 6x

(16)
Similarly, the 13th and 14th columns T(:, 13) and T(;, 14) are determined from a bending moment

vector in the xz-plane which is coupled to rigid body rotation about the y-axis, in the principal
vector chain. Again the displacement components in the x-direction can be decomposed as

|-d1x-| T(,13) rdlx-l T(,11) I-dlx-l T(,5) I—d4x-| T(,14) ,—d4x-| T(,12) |_d4x-| T(:,6)
‘dl’c +/ % Id2x a|d5x +hx ‘dsx
dsx dsx dex dex

=e><ld2x =g><id5x
d d6x

(17)

Simple calculation from (16) and (17) gives the values of a = —0.5, b = —0.2885, ¢ = 0.5, d =
—0.2885; e = —0.5, f = 0.2885, g = 0.5 and & = 0.2885. The sign of the coefficients in the above

decompositions allows one to characterise the nature of the coupling through interpretation of the
cross-sectional rotations; for example, the two columns

[di 1" [ ]
’ doy I and | dry
dsx dsx
represent rotations of the left-hand face of the cell about the y- and z-axes, respectively, while
[aa1™0 [ 1™
I dsy and I dsyx
dex dex

are rotations of the right-hand face cell about the y- and z-axes, respectively; the fact that
coefficients @ and ¢ are of equal magnitude but opposite sign indicates that this is a curvature in
the xy-plane; on the other hand, the fact that coefficients » and d are equal indicates equal
rotation of both faces of the cell, which is equivalent to a shear of the cell in the xz-plane. The
nature of the above coupling has been confirmed through FEA of a ten-cell structure fixed at one
end, and loaded at the other by a bending moment in the xy-plane distributed according to the
nodal force components of the bending vector, T(:, 8).

From the reciprocal theorem, just as a bending moment produces curvature, with a coupled
shear deformation, so one would expect a shearing force to produce a shear deformation, with a
coupled curvature; accordingly, the coupled equations for bending and shear in the two principal
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planes are written as

M.=EL/R, +K.}..,
My, = EI/R; + K.y, (18a,b)

QZ = KXZAG’))xz + K.XZ/R >
Qy = nyA G'ny + ny/RZa (19a,b)

where K. and K, are the bending-shear coupling coefficients. The bending moment vector pairs
T(:,7) and T(:,8), and T(:, 13) and T(:, 14) are shown in Figs. 5 and 6, respectively, from which the
two bending curvatures in the xy- and xz-planes are 1/R, = 1443 x 107°/(H/3 x L/2) =
8.510 x 107*m™!, and 1/R, =2.5x 107°/(L/2 x L/2) = 8.510 x 10~ *m™!; their coupled shear
angles are 7y, = 1443 x 107°/(L/2) = 8421 x 10™° in the xz-plane, and Yxy = 8.333 x
10719/(H /3) = 8.421 x 107° in the xy-plane, respectively. Note the absence of Poisson’s ratio
effects within these bending moment vectors.

3.3.5. Shearing force pairs

Finally, the ninth and 10th columns T(:,9), and T(:, 10), and the 15th and 16th columns T(:, 15)
and T(:, 16) of the transmission matrix describe the displacement and force components when the
cell is subjected to both a shearing force and a bending moment in the xy- and xz-planes,
respectively, and each is termed a shearing force pair. These pairs are determined from the two
principal shear vectors in the xy- and xz-planes which are coupled with bending moments in the
principal vector chains, and also coupled with the two bending vectors in the two orthogonal
planes. The two shear pairs are shown in Figs. 7 and 8, but since a complete decomposition of the

) 1.443x10” 1.443x107
2.8868% 10"
R o |
__,l I(_ 3.7337x10 L i
— T e | ’
37337x107 ! ! E !
s s : :
| X : N
-2 ~ >
2><1.886SXI0/ :\ : ;
i 1 ] |
[} [}
— — : !
1 2%1.8868 %107 : |
l«— { i
- -t
14434107 A
T(.,7) T(:8) T(.,7) T(,8)

Fig. 5. Cell subject to pure bending moment in the xy-plane; vectors T(:,7) and T(:,8) describe the displacement and
force components on the left- and right-hand sides of the cell, respectively.
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Fig. 6. Cell subject to pure bending moment in the xz-plane; vectors T(:,13) and T(:,14) describe the displacement and
force components on the left- and right-hand sides of the cell, respectively.
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Fig. 7. Cell subject to shearing force and coupled bending moment in the xy-plane; vectors T(:,9) and T(:,10) describe
the displacement and force components on the left- and right-hand side of the cell, respectively.

nodal displacements into equivalent cross-sectional displacements is rather involved, only the
former is considered in detail, and shown in Figs. 9 and 10.

Within Timoshenko beam theory, the shear angle is defined according to the relationship
Y = ¥ — 0v/0x, in which dv/dx is the centreline slope and v is rotation of the cross-section. Now
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Fig. 8. Cell subject to shearing force and coupled bending moment in the xz-plane; vectors T(:,15) and T(:,16) describe
the displacement and force components on the left- and right-hand side of the cell, respectively.
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Fig. 9. Decomposition of the displacements of Fig. 7 in the xy-plane; (a) shows shear angle and (b) shows bending
curvature.

since the centreline slope shown in Fig. 7 is already zero, one has dv/dx = 0, and from Fig. 9(a),
equal cross-section rotations on both sides of the cell gives

Ve = 3.925 x 1077 /(H /3) = 3.966 x 1075, (20)
The coupled bending curvature is determined from Fig. 10(a) as

1/R;=7217 x 107" /(L/2 x L/2) = 2.457 x 10 m™". 2D
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7.2170x 1071 7.2170x107"° 7.2170x10™'¢ 7.2170%107°

Sl ol e e

x X
> —>

z y z
@ M (b) \

Fig. 10. Decomposition of displacements of Fig. 7 in the xz-plane; (a) shows bending curvature coupled with shear
angle in the xy-plane due to shearing force, and (b) shows shear angle coupled with bending curvature in the xy-plane
due to bending moment.

/R, =7217x 107 /(H /3 x L/2) = 4.255 x 10~% ! (22)
and from Fig. 10(b), the secondary coupled shear angle in the perpendicular plane is
Ve = 7217 x 1070/(L/2) = 4211 x 102 (23)

one sees that these secondary coupled displacements are precisely one-half of those produced by a
pure bending moment in the xy-plane, Fig. 5. This is as one might expect: for a continuum, a
shearing force produces a bending moment which varies linearly along the length of the cell,
whose effect should be one-half that of the pure moment, the latter being constant along the
length of the cell. These secondary effects become evident within a cell of finite length, but are not
included within the coupled constitutive relationships, (19), which are applicable to a continuum
element of infinitesimal length.

Having fully decomposed the nodal displacements into their cross-sectional equivalents, now
evaluate the equivalent continuum properties: from Egs. (18) and (19), the stiffness relationship
for the bending and shear coupling of M and Q. can be expressed in the matrix form

[0.1_ [kedG Kef 7 ]

, 24
M, K., EI.L 1 /Ry 24)
but it is more convenient to write this in its inverted form
‘- Vxz -l — ]‘nll ”12.,[-Qz-| :N‘-QZ-I’ (25)
1/R, ny nmy M, M,
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4.646 x 107°
3.333x 107°
0
4.646 x 107°
—3333 x 107°
0
—9.292 x 10~°
0
0
—1.867 x 1072
—8.084 x 1073
—4.667 x 1073
—1.867 x 1072
—8.084 x 1073
4.667 x 1073
3.734 x 1072
—1.617 x 1072
0

1759 x 107° 5% 107° 5x107°
3.333x 107° 0 0

0 0 1x 1078
4646 x 107°  —5x107° —5x107°
—3.333x 107° 0 0

0 0 1x 1078
—6.406 x 107° 0 0

0 0 0

0 0 1x 1078

0 0 0
—8.084 x 1073 0 0
—4.667 x 1073 0 0

0 0 0
—8.084 x 1073 0 0
4.667 x 1073 0 0

0 0 0
~1.617 x 1072 0 0

0 0 0

Appendix B. Tension and torsion pairs

[Tension] =

[

oo O O O o o o

0
6.467 x 1072
0
0
6.467 x 1072
0
0
6.467 x 1072
0
0

1x10°8 ]
V3 x 1078
—1x1078
1x1078
—/3x 1078
—1x107%
1x1078
0
2x 1078
6.467 x 1072
0
0
6.467 x 1072
0
0
6.467 x 1072
0
0

3

—3333 % 107°
0
0
1.667 x 10™°
0
0
1.667 x 107°
0
0
3.233 x 1072
0
0
—3233x 1072

(el i e

[Torsion] =
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1.667 x 107  8.047x 10™°  6.381 x 1072 ]
0 9.623 x 107*  9.623 x 10710
0 —1.667 x 107°  —1.667 x 107!
—3333x107° —8.047 x 10™° —4.714x 107°
0 9.623 x 107 9.623 x 10710
0 1.667 x 107°  1.667 x 10~°
1.667 x 1077 0 —1.667 x 107°
0 —1.925x 107 —1.925 x 107°
0 0 0
3233 x 1072 —3.233 x 1072 0
0 —4.667 x 1070 —4.667 x 1073
0 —1.347 x 1072 —1.347 x 1072
—3233% 1072 3233 x 1072 0
0 4667 x 107> 4.667 x 1073
0 —1.347x 1072 —1.347 x 1072
0 0
0 0 0
0 —5.389 x 107> —5.389 x 1073
[ 0 1025 x 10~ 1
—2958 x 1071 8274 x 107
~5.124 x 1071%  —5.460 x 107°
0 1.025 x 107°
2958 x 1071 —8.866 x 10~
5124 x 10719 —4.436 x 107°
0 1.025 x 107°
5916 x 1071 5916 x 1071°
0 9.896 x 10~°
0 0
2870 x 1073 2.870 x 1073
—1.657 x 107% *—1.657 x 1073
0 0
—2.870 x 107> —2.870 x 1073
~1.657 x 107> —1.657 x 1073
0 0
0 0-
3313x 1072 3313 x107°
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