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The aim of the paper is to study the cause of a frequency-splitting phenomenon that occurs
in a spinning Timoshenko beam. The associated changes in the structure of the progressive
waves are investigated to shed light on the relationship between the wave motion in a
spinning beam and the whirling of a shaft. The main result is that travelling bending waves
in a beam spinning about its central axis have the topological structure of a revolving helix
traced by the centroidal axiswith right-handed or left-handed chirality. Each beamelement
behaves like a gyroscopic disc in precession being rotated at the wave frequency with
anticlockwise or clockwise helicity. The gyroscopic effect is identified as the cause of the
frequency splitting and is shown to induce a coupling between two interacting travelling
waves lying in mutually orthogonal planes. Two revolving waves travelling in the same
direction in space appear, one at a higher and one at a lower frequency compared with the
pre-split frequency value. With reference to a given spinning speed, taken as clockwise, the
higher one revolves clockwise and the lower one has anticlockwise helicity, each wave being
represented by a characteristic four-component vector wavefunction.

Two factors are identified as important, the shear-deformation factor q and the
gyroscopic-coupling phase factor q. The q-factor is related to the wavenumber and the
geometric shape of the helical wave. The q-factor is related to the wave helicity and has
two values, Cp/2 and Kp/2 corresponding to the anticlockwise and clockwise helicity,
respectively. The frequency-splitting phenomenon is addressed by analogy with other
physical phenomena such as the Jeffcott whirling shaft and the property of the local
energy equality of a travelling wave. The relationship between Euler’s formula and the
present result relating to the helical properties of the waves is also explored.

Keywords: helical wave; propagating wave; four-component vector wavefunction;
gyroscopic effect; Timoshenko beam; Euler’s formula
Rec
Acc
1. Introduction

A normal mode of vibration of a spinning beam will be described as the
superposition of a revolving sa-standing and sb-standing wave (Chan et al. 2002)
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in the beam. Although the present study is focussed on the travelling wave, a
review of the more practical, standing wave structure will be given first, since a
standing wave is a combination of two oppositely travelling identical waves.

Previous studies (Bishop 1959; Bishop & Parkinson 1968; Morton & Johnson
1980; Morton 1985) were restricted to using Euler–Bernoulli beam (EB) theory
and were mainly concerned with synchronous vibration due to unbalanced
masses. More recently, these have been supplemented with studies using
Timoshenko beam (TB) theory on vibration, leading to the present study of
wave motion in spinning shafts.

Using EB theory, Bauer (1980) identified Coriolis inertia effects as the cause of
the doubling of the number of natural frequencies of a spinning beam. Lee et al.
(1988) used Rayleigh beam (RB) theory and then Zu & Han (1992) used TB
theory to show that the gyroscopic effect is important.

However, their theoretical studies are phenomenological, being focused only on
modal descriptions of shaft vibration. Their results did not show the interesting
helical properties of the waves that constitute the normal modes they predicted
using the standard method for finding modal solutions. The study of wave
phenomena in a spinning beam is important because the influence of the
gyroscopic effect on the waves underlies the frequency-splitting phenomenon as
studied by many previous investigators.

Argento & Scott (1995), Kang & Tan (1998) and Tan & Kang (1998) sought
flexural wave solutions for a spinning Timoshenko beam. They were able to
describe the reflection, transmission and dispersion characteristics of the waves
in the spinning beam. However, their results concerning gyroscopic precession
are not very clear. One should distinguish between the precession of the spinning
beam per se and the precession of a wave propagating in it. From the present
study, it is shown that the precession of the wave is free motion that manifests as
a corkscrew-like helix traced by the centroidal axis of the spinning beam, which
revolves about the axis of the beam at rest to transfer the kinetic and potential
energy with the wave, forward or backward along the beam. For clarity,
revolving or precession is used for the rotation about the axis of the beam at rest
to differentiate it from rotation of a cross-sectional beam element about a
transverse axis passing through the centroid in the plane of cross-section. For a
helical bending shape, a neutral plane does not exist and so one should be
cautious in using the usual definition of a neutral axis, see §2. The above studies
also failed to show the helical properties and the gyroscopic-precession motion of
bending waves travelling in the spinning beam. This leaves the behaviour and
structure of the travelling waves in the spinning beam and their relation to the
observed behaviour of the shafts to be explored.

In order to address the latter, a new approach is used that is related to the
wave-mechanics approach employed by Chan et al. (2002). Using this approach,
one may describe the phenomena in terms of their constituent waves, their
dispersion behaviour and their relationship to the normal modes. However, the
wave-mechanics approach to the spinning beam problem is quite detailed and is
worthy of a separate treatment in its own right, which the first author is
undertaking. The approach used here does not rely on this new treatment, and
is based on the concept of superposed standing waves in a Timoshenko beam
(Chan et al. 2002). The solution obtained by using this provides a description of
the physical phenomena in terms of the geometrical structure of the wave
Proc. R. Soc. A (2005)



3915Wave helical structure
shape, the evolution of the topology of the wave in time and space along the
beam axis, the force and moment distributions and energy distributions that
cause the changes. All these descriptions are directly related to the dispersion
and propagation properties of the waves.

The following picture of wave phenomena in a spinning beam emerges.
A uniform beam with circular cross-section spins at U rad sK1 about the
fixed z -axis that coincides with the undeformed centroidal axis of the beam at
rest. A travelling wave will cause the straight centroidal axis of the beam to
deform and trace the shape of a helix revolving at U rad sK1 about the z -axis.
The helix has a constant radius Wo and a pitch. The revolving motion of the
helix is regarded as the integrated motion of the precession of each of the cross-
sectional elements spinning at U about the helically shaped centroidal axis, called
the centroidal helix. If the beam is divided into many individual cross-sectional
elements, each of them will spin about an axis normal to the cross-section. The
angle between the axis normal to the cross-section and the tangent to
the centroidal helix at that location is the shear deformation. The shape of the
centroidal helix is maintained by the internal stress field due to bending and
shear and the inertia associated with the revolving motion of the wave.

The revolving motion of the corkscrew-like centroidal helix described earlier
will be shown to conform to the energy-transfer process of a progressive wave.
This is intimately related to the application of a local property of a travelling
wave that the local kinetic and potential energy are equal. Comparing the
present energy equality result with those of Elmore & Heald (1985) will show
some subtle differences as well as similarities.

With the present model, the whirling of a shaft can be viewed as the
generation of two types of revolving standing waves in superposition, a revolving
sa-standing and sb-standing wave. Each type has a right-handed (RH) and a left-
handed (LH) helical wave component, both subject to a synchronous excitation,
clockwise or anticlockwise. By this model, the studies of Bishop & Parkinson
(1968) and Morton (1985) for EB beams can be extended to a spinning
Timoshenko beam. However, this will not be considered further herein.
2. Theory of helical waves in a Timoshenko beam

(a ) Various rotational motions with respect to the inertial-coordinate system

A fixed right-handed xyz -coordinate system is used with the z -axis coinciding
with the centroidal axis of the Timoshenko beam at rest. All the bending waves
(waves for short) travel along the z -axis only. The beam spins about the z -axis
when there is no wave travelling. However, the centroidal axis is deformed into
a helix (centroidal helix) if a wave travels along the z -axis. The helix represents
the shape of the travelling wave, revolving about the z -axis. A number of
rotational motions of the beam are defined here for purpose of clarity.
The rotational motion of a beam element about the axis normal to its cross-
section at the centroid is referred to as its spin, and its speed U is called its
spinning speed. It is clear that the local direction of spin varies along the
centroidal helix. The rotation of a wave is referred to as the rotation of the
polarization of the wave. It presents as a revolving centroidal helix as shown in
figures 1 and 2. The revolving motion of the helix can be described as the
Proc. R. Soc. A (2005)



Figure 1. (a) Distributed gyroscopic elements of the spinning beam induced by a progressive
bending wave. (b) Gyroscopic precession of a spinning beam element (enlarged size).
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gyroscopic precession of each of the spinning beam elements as illustrated in
figure 1b. The rotation (in radians) of a beam cross-section f about a transverse
axis is referred to as bending rotation. Its amplitude is Fo and direction as shown
in the same figure. In the figure, O0z 0 is parallel to the Oz axis.
(b ) Definitions of helicity and chirality of bending waves

The helical properties of the wave will be deduced by solving the equation of
motion of a spinning Timoshenko beam. The cross-section of the beam is
assumed uniform along the axis but initially the shape is taken as asymmetric.
Although the result of the present study can be applied to beam cross-section
with rotational symmetry about its centroidal axis, for purposes of brevity, we
will use the circular cross-section. When the cross-section is circular, an
important factor q of eiq is identified as two-valued and equal to either positive or
negative p/2, being associated with the revolving directions of the wave
concerned, written as the four-component vector wavefunction
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Figure 2. Splitting of a plane-polarized traveling sinusoidal FIS wave (solid line) into a rev-A
RH-helix FIS wave (dash line) and a rev-C LH-helix FIS wave (dash-dot line) arising from the
frequency-splitting induced by the gyroscopic effect. The rev-A wave revolves at u1 and rev-C
wave revolves at u2, where u2Ou1. The plane-polarized wave is not revolving before splitting. The
curves in this figure are traced by the centroidal axis.
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where the ‘C’ and ‘K’ signs are for the backward-in-space (BIS) waves and
forward-in-space (FIS), respectively. Upper case symbols Wx, Wy, Fx and Fy

represent the corresponding amplitudes, u and k are the angular frequency and
wavenumber of the bending wave motion along the beam axis, respectively, u
being positive definite.

For a travelling wave with frequency u, the wavenumber k equals kx or ky
the subscript being used to indicate the direction of the transverse displacement
of the wave in the x - or y -axis, respectively. However, kx and ky are equal when
the beam is circular. In equation (2.1), eiq is taken as a factor to define an
interacting relation between the two waves in the mutually orthogonal planes. It
will be shown that such interaction manifests as a coupling arising from the
gyroscopic effect.

Equation (2.1) represents either an anticlockwise wave or a clockwise wave,
depending on the sign of q. Given either value of q, the bending wave assumes
the shape of a perfect helix, traced by the centroidal axis of the beam,
revolving at u and the orbit of each of the centroidal points is circular. One
may refer to eiqZGi as the helicity of a revolving wave. Thus, an anticlockwise
wave has helicity eip/2ZCi and a clockwise wave has helicity eKip/2ZKi. Given
the helicity, the sign before the wavenumber k in ei(utG kzCq) determines the
handedness of the centroidal helix, left-handed or right-handed corkscrew-like
chirality.
Proc. R. Soc. A (2005)



K. T. Chan and others3918
(c ) Equation of motion and four-component vector wave solution

(i) Beam properties, coordinate system and equations

While the main results will pertain to a circular cross-section beam, to start
from an asymmetric cross-section first helps to bring out the q-factor that can be
identified as the value for characterizing a beam. This transpires to be a simple
factor in this case, but is otherwise time dependent.

The nomenclatures of the beam properties are given first. The beam is assumed to
be infinitely long. For an arbitrary cross-section, with respect to the fixed coordinate
system in which the z -axis is along the beam axis, the product and second moments
of areas about the x - and y -axes, Ixy, Ix and Iy, are not invariant with respect to time.
Likewise neither are the shear coefficients kx and ky with respect to the centroidal
translations in x - and y -axes, respectively. The cross-sectional area, the density, the
shear modulus of rigidity, and Young’s modulus, A, r, G and E, are taken as
constant for the uniform and homogeneous beam. The spinning speed U is taken as
positive according to the conventional right-hand screw rule.

Short-form notations for partial differential operators are used, for example,
v2t Zðv2=vt2Þ; v2zZðv2=vz2Þ, vtZ(v/vt), vzZ(v/vz), etc. The operator D for the
bending wave propagating in the spinning Timoshenko beam is given as

DZ

rAv2tKkxGAv2z kxGAvz 0 0

KkxGAvz rIyv
2
tKEIyv

2
z 0 UrðIx CIyÞvt

CkxGA KrIxyv
2
t

0 0 rAv2tKkyGAv2z kyGAvz

0 KUrðIx CIyÞvt KkyGAvz rIxv
2
tKEIxv

2
z

KrIxyv
2
t CkyGA

2
6666666664

3
7777777775
: ð2:2Þ

The equation of motion with respect to D operating on the s of equation (2.1) is
written as

DsZ 0; ð2:3Þ
where 0Z 0 0 0 0f gT for free motion of the waves in the beam. Equation
(2.3) with operator D written as in equation (2.2) is for a general case of a
uniform beam with asymmetric cross-section. It will become apparent that, when
the cross-section of the uniform beam is circular, operator D is reduced to a
skew-symmetric matrix so that the wavefunctions in equation (2.3) represents a
travelling wave with a perfect helix shape traced by the centroidal axis revolving
either clockwise or anticlockwise.

First, define the amplitude ratios

qx Z
Fy

Wx

and qy Z
Fx

Wy

: ð2:4Þ

By substitution, equation (2.1) becomes
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Substituting equation (2.5) into (2.3), differentiating the wavefunction with
respect to z and t, and separating the real and imaginary parts, one can write four
characteristic equations as

rðIx CIyÞqyUu cos qCrIxyqyu
2 sin qZ 0; ð2:6Þ

rðIx CIyÞqxUuWx C ½kyGAkyKqyðEIxk2y CkyGAKrIxu
2Þ�Wy sin qZ 0; ð2:7Þ

½rðIx CIyÞqyUu sin qKrIxyqyu
2 cos q�Wy

C ½kxGAkxKqxðEIyk2x CkxGAKrIyu
2Þ�Wx Z 0;

ð2:8Þ

rIxyqxu
2WxK½kyGAkyKqyðEIxk2y CkyGAKrIxu

2Þ�Wy cos qZ 0: ð2:9Þ

For the spinning beam with arbitrary cross-section, it is apparent that Ix, Iy and
Ixy change with Ut (or just t when U is constant).

(ii) The q-factor for the helicity of waves

For a circular beam, the orientation of the cross-section relative to the inertia
coordinate system is no longer distinguishable. Thus, IxZIyZI and IxyZ0. The
value zero for Ixy leads to the simplification of (2.6) to

2IrqUu cos qZ 0: ð2:10Þ
This implies qZG(p/2) as the only two possible roots for a non-zero U. Equation
(2.9) gives the same result. It has already been mentioned but will be shown later
that the two-valued q, characterizing the helicity of the waves, arises from the
gyroscopic effect, and is thus referred to as the gyroscopic-phase q-factor.

Table 1 gives the summary of the helicity of the waves. In the table, the sign of
((Gu)U/q) is indicative of whether a bending wave in the beam has clockwise
(rev-C) or anticlockwise (rev-A) helicity. The frequency u is taken as positive.
The speed U is positive also taking clockwise spinning of beam as the reference.

It will be shown later that neither the sign of the exponent of ei(utGkz) or
eKi(utGkz), nor the sign of the q-factor alone can be used to indicate the helicity of
the progressive wave. There is a pattern of signs of ((Gu)U/q), as summarized in
table 1, that indicates the helicity of the waves in the beam. It can be seen that,
the rev-C waves are associated with ((Gu)U/q)!0 and the rev-A waves are
associated with ((Gu)U/q)O0.

(iii) Helicity and chirality of the travelling waves

Geometrically, due to a wave passing through a beam section, the centre of the
cross-section has a translated position

w Zwxex Cwyey; ð2:11Þ
where ex and ey are unit vectors in the fixed x - and y -axes. For a symmetrical
beam, from equations (2.7) and (2.8), it can be shown that WxZWyZWo. Thus,
expression (2.5) for the four-component wave function is simplified to
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Table 1. Clockwise (rev-C) and anticlockwise (rev-A) waves—summary of the helicity

wavefunction spin

UO0

qZp/2 qZKp/2

ei(utGkz)(Cu) rev-A sign ((Cu)U/q)Z(C) rev-C sign ((Cu)U/q)Z(K)
eKi(utGkz) (Ku) rev-C sign ((Ku)U/q)Z(K) rev-A sign ((Ku)U/q)Z(C)
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where qZkK(ru2/kGk) as defined by Huang (1961). Given k and u, q is fixed,
and once the amplitude of the centroidal displacement of the cross-section from
the equilibrium position is known, the amplitude of the angular orientation of the
cross-section is fixed. The centroidal displacement is written as

wZWoe:4; ð2:13Þ
where WoZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
xCw2

y

q
is the length of the centroidal displacement vector

relative to a point of the cross-section intersecting the fixed z -axis. The
displacement direction is denoted by the angle f that can be regarded as the
angle of polarization of the wave. Thus,

4Z arctan
wy

wx

: ð2:14Þ
The bending angle is

fZfxex Cfyey Z qWoe:4f: ð2:15Þ

For the FIS wave, substituting expressions in (2.1) or (2.12) into (2.14) and
applying Euler’s formula yield

4Z arctan
Wye

iðutKkyzÞeiq

Wxe
iðutKkxzÞ

Z arctan
½cosðutKkyzCqÞC i sinðutKkyzCqÞ�

½cosðutKkxzÞC i sinðutKkxzÞ�
: ð2:16Þ

The ratio of the sine imaginary parts or that of the cosine real parts can be used
to obtain the following results. However, choosing to use the real parts for a
circular beam, equation (2.16) becomes

4Z arctan
cosðutKkzÞcos qKsinðutKkzÞsinq

cosðutKkzÞ

� �
: ð2:17Þ

For qZ
p

2
; 4Z arctan K

sinðutKkzÞ
cosðutKkzÞ

� �
: ð2:18Þ

For qZK
p

2
; 4Z arctan

sinðutKkzÞ
cosðutKkzÞ : ð2:19Þ

Thus, when
Uu

q
O0; 4ZKutCkz; ð2:20Þ
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and when
Uu

q
!0; 4ZutKkz: ð2:21Þ

Equation (2.20) represents that the displacement vector w has its polarization
revolving in the anticlockwise direction, while (2.21) shows that the polarization
revolving in the clockwise direction. At any instant t, the anticlockwise wave of
(2.20) has the tip of the vector w tracing a right-handed helix (RH-helix) in the
z -axis, 4ZKutCkz. Similarly, the clockwise wave of (2.21) has the tip of w
tracing a LH-helix, 4ZutKkz.

For the BIS wave, swei(utCkz) one may replace equation (2.17) by

4Z arctan
cosðutCkzÞcos qKsinðutCkzÞsin q

cosðutCkzÞ

� �
: ð2:22Þ

Thus, when

Uu

q
O0; 4ZKutKkz; ð2:23Þ

and when
Uu

q
!0; 4ZutCkz: ð2:24Þ

The anticlockwise wave of (2.23) is a LH-helix while the clockwise wave of (2.24)
is a RH-helix. It is remembered that both topological structures correspond to
the FIS wave.
(iv) The gyroscopic precession of the spinning beam elements as the waves travel

As shown previously, WxZWyZWo. Normalizing we take WoZ1. Each point
of the helix revolves at the wave angular frequency u, tracing a circular orbit of
unit length. At each point of the centroidal axis, the cross-section has a bending
angular rotation fZqe:4f given by (2.15), being the angle of inclination of the
spin axis of each cross-sectional element of the beam with respect to an axis
parallel to the z -axis, as shown in figure 1a or b. Thus, the revolving motion of
the travelling wave manifests as a precession of every beam element at the wave
frequency u. The direction of precession depends on the sign of (uU/q),
anticlockwise when it is positive or clockwise when it is negative as shown in
table 1.
(d ) Frequency splitting due to gyroscopic effect

It is noted from equation (2.3) that the system operator D represented by
(2.2) is skew-symmetric. The 4!4 matrix is partitioned into four 2!2 sub-
matrix blocks. Extracting the two off-diagonal blocks for a circular beam we
have

0 0

0 2UrIvt

" #
and

0 0

0 K2UrIvt

" #
; ð2:25Þ
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showing the difference in the minus sign. After D operates on the four-
component wavefunction of (2.12), we have a new matrix for D written as

KrAu2 þ kGAk2 GikGAk 0 0

HikGAk KrIu2 þ EIk2 0 K2iUurI

þkGA

0 0 KrAu2 þ kGAk2 GikGAk

0 2iUurI HikGAk KrIu2 þ EIk2

þkGA

2
66666666664

3
77777777775

ð2:26Þ

Equation (2.3) may then be divided into two. The upper blocks give

KrAu2CkGAk2 GikGAk

HikGAk KrIu2CEIk2 CkGAK2iUurIeGiðp=2Þ

" #
1

Giq

( )
Z

0

0

( )
;

ð2:27Þ

and the lower blocks yield

KrAu2 CkGAk2 GikGAk

HikGAk KrIu2 CEIk2CkGAC2iUurIeHiðp=2Þ

" #
1

Giq

( )
Z

0

0

( )
:

ð2:28Þ

The two equations are exactly similar, and thus the frequency equation is
simply written as

KrAu2 CkGAk2 GikGAk

H ikGAk KrIu2CEIk2 CkGAG2UurI

�����
�����Z 0: ð2:29Þ

The sign of the diagonal terms (GikGAk) is related to the sign of the FIS or
BIS wave expression. However, this does not matter for calculating the
dispersion characteristics, thus

KrAu2 CkGAk2 ikGAk

KikGAk KrIu2CEIk2 CkGAG2UurI

�����
�����Z 0: ð2:30Þ

When the spinning speed is zero, UZ0, this equation corresponds to the
dispersion relation (2.6) derived by Chan et al. (2002) who predicted
dispersion of two types of travelling waves admissible for the non-spinning
Timoshenko beam, the sa-wave and the sb-wave. The two types of wave
solutions can be considered individually. In this context, however, we do not
need to do so. Their propagative characteristics will be affected by the
gyroscopic effect in the same way depending on the term G2UurI. The
Proc. R. Soc. A (2005)



Table 2. The changes of frequencies due to gyroscopic effect

speed (rev sK1)

frequency, u

kZ2.7 rad mK1

(kHz)
kZ6.1 rad mK1

(kHz)
kZ9.2 rad mK1

(kHz)
kZ15 rad mK1

(kHz)

0 10 11.3 12.6 15.8
2000 u1Y 8.2 9.5 11 14.2

u2[ 12.2 13.2 14.5 18.7

3923Wave helical structure
determinant equation of (2.30) yields a dispersion relation written as

k4Kk2u2 1

c2o
C

1

c 022

� �
K

u2

c2or
2
g

C
u4

c2oc
02
2

H
2 Uuj j
c2o

k2K
u2

c 022

� �
Z 0; ð2:31Þ

where coZ
ffiffiffi
E
r

q
, c 02Z

ffiffiffiffiffi
kG
r

q
and rgZ

ffiffiffi
I
A

q
. The positive sign is related to qZp/2 or

(Uu/q)O0. Thus for the anticlockwise waves, the frequency is lower than the
original frequency without the beam spinning. The negative sign of the term
2UurI is related to qZKp/2 or (Uu/q)!0. Thus, for the clockwise waves, the
frequency is higher than the frequency when the beam is not spinning. Table 2
shows the changes of the frequencies following splitting due to the gyroscopic
effect for the beam spinning at 2000 rev sK1 compared with the frequencies for a
non-spinning beam, based on equal wavenumber.

(i) Splitting of a plane-polarized wave

To explain the frequency-splitting wave phenomenon, first consider a non-
spinning beam with rotational symmetry, in which any plane containing the z -axis
has the freedom to admit a plane-polarized wave. For example, if one excites vibra-
tion in one plane at a frequency u, say in the xz -plane, the bending wave propagates
along z -axis in that plane and will not induce wave motion in the orthogonal plane.
A non-spinning beam with symmetry admits plane-polarized waves only.

The process of frequency splitting is described as follows. Suppose there is a
wave in the xz -plane expressed as

wx

fy

( )
Z

1

Giq

( )
eiðutGkzÞ:

The gyroscopic effect will induce wave motion in the yz -plane, which in turn
couples back to the xz -plane. Once generated, the interaction is mutual and
would lead to an identical wave in the yz -plane, given a phase shift, expressed as

wy

fx

( )
Z eiq

1

Giq

( )
eiðutGkzÞ;

q being either p/2 or Kp/2. The two-valued gyroscopic q-factor correspond to a
rev-A (anticlockwise) or rev-C (clockwise) FIS wave as
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eiðutKkzÞ ð2:32Þ
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or

wx

fy

( )
Z

1

Kiq

( )
eiðutKkzÞ and

wy

fx

( )
Z

Ki

Kq

� �
eiðutKkzÞ: ð2:33Þ

Thus, the gyroscopic coupling leads to the splitting of a plane wave into two
waves with opposite helicity and chirality (figure 2).
(ii) Four-component vector representation of the travelling wave solution

For the FIS wave, there are two forms of structural representation, (2.32) and
(2.33). They may be combined and expressed as
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fy

wy

fx

8>>>><
>>>>:

9>>>>=
>>>>;

qZp=2
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1

Kiq

i

q

8>>>><
>>>>:

9>>>>=
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wy
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>>>>:
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>>>>;
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Z

1

Kiq

Ki

Kq

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu2tKk2zÞ: ð2:34Þ

Similarly, for the BIS wave, the expressions are
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>>>>;

qZp=2
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1

iq

i

Kq

8>>>><
>>>>:

9>>>>=
>>>>;
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>>>>:
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>>>>;

qZKp=2

Z

1

iq

Ki

q

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu2tCk2zÞ: ð2:35Þ

The four vector wavefunctions are four-component vectors, representing the
wave entities, implying that the four components in each of these four-
component vectors are inseparable and that the dimension of operator D with
respect to the four-component vector functions is irreducible. The advantage of
this is that a four-component vector wavefunction describes completely all the
physical properties of the bending wave it represents, as summarized in table 3.
One further point of significance is that the solutions (2.34) and (2.35) fall into
two separated regimes, one belonging to the set of clockwise waves and the other
to the set of anticlockwise waves, depending on the sign of (Uu/q) as shown in
the table. The problem of interpreting negative-frequency can be avoided by
using the two-valued coupling q-factor for the representation of the helicity. In
this table, the ‘gyro shifts’ column indicates frequency changes of the waves
being induced by the gyroscopic effect.

If the four-component vector is to reduce to a lower dimension as U/0, it
must become a two-component vector because the four-component wave arising
from the gyroscopic coupling is associated with frequency splitting, u/u1Y and
to u2[ as shown in table 2 and figure 2, arrow down indicating frequency
decreasing to approach u1 and arrow up for frequency increasing to approach to
u2. It is interesting to note that, while a change of the two-component
wavefunction to a pair of four-component wavefunctions involves ‘frequency
splitting’, conversely the reduction of two relevant four-component vectors into
one single two-component vector naturally involves ‘merging of a pair of modes’
as u1[/u (increasing to approach u) and u2Y/u (decreasing to approach u).
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Table 3. Properties of bending waves represented by four-component vector wavefunctions

wave type
(equation ref.)

four-component
wavefunction

(Uu/q)
UuO0

polarization, 4(t, z)
(equation ref.)

gyro shifts

chirality k1 helicity u1

FIS (2.34) 1

Kiq

i

q

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu1tKk1zÞ

(C) 4Zu1tCk1z (2.20) RH-helix k1 rev-A u1Y

1

Kiq

Ki

Kq

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu2tKk2zÞ

(K) 4Zu2tKk2z (2.21) LH-helix k2 rev-C u2[

BIS (2.35) 1

iq

i

Kq

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu1tCk1zÞ

(C) 4Zu1tKk1z (2.23) LH-helix k1 rev-A u1Y

1

iq

Ki

q

8>>>><
>>>>:

9>>>>=
>>>>;
eiðu2tCk2zÞ

(K) 4Zu2tCk2z (2.24) RH-helix k2 rev-C u2[
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The gyroscopic-coupling effect plays a role in the coupling of the waves in the
planes normal to each other.The coupling can be enhanced by the shear deformation.
These two factors, q and q, are both included in the representation of the
wavefunction in the form of a four-component vector. Since the two effects give rise
to the helicity and chirality of the waves, the exponential expressions ei(utKkz) and
ei(utCkz) alone are not sufficient to represent the properties, as can be seen below.
(iii) Euler’s formula and its relation to finding the helical properties

By applying Euler’s formula, Aei(utKkz) can be expressed as Acos(utKkz)C
iAsin(utKkz). Normally one usually takes the real part only as the solution,
possibly with an arbitrary phase. However, for a four-component system, the real
and imaginary parts of the complex Euler expression are equally important. For
instance, from the first equation of (2.34) the translation vector is written as

wx

wy

� �
qZp=2

ZA
1

i

( )
cosðu1tKk1zÞC iA

1

i

( )
sinðu1tKk1zÞ; ð2:36Þ

r
wx

wy

� �
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cosðu1tKk1zÞ
Ksinðu1tKk1zÞ

( )
C iA

sinðu1tKk1zÞ
cosðu1tKk1zÞ

( )
: ð2:37Þ
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Multiplying a vector by iZei(p/2) is in effect an operation to rotate the vector
by p/2 in the complex domain. The measurable real part of equation (2.37)
has already reflected this operation by transforming the wy component of the
second term of the right hand side of (2.36) to the wy component of the first
term of (2.37). Plotting the real part of (2.37) in space and time reveals that
the centroidal axis of the beam assumes a helix with anticlockwise helicity at
frequency u1. In fact, what are observed are the projections of the complex
wx and wy onto the xy-plane. It is understood that the product of the rotation
of the cross-section and the spin of the beam, is the factor that gives rise to
this gyroscopic-coupling induced eiq transformation. Therefore, Euler’s
formula is not used on its own but rather together with the four-component vectors
todescribe thehelical properties of thewaves.Given the factors q and q, the vectors of
equations (2.34) can be written in real and imaginary parts as
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fx
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>>>>:
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>>>>;
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q cosðu1tKk1zÞC iq sinðu1tKk1zÞ
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and
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eiðu2tKk2zÞ Z

cosðu2tKk2zÞC i sinðu2tKk2zÞ
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sinðu2tKk2zÞKi cosðu2tKk2zÞ

Kq cosðu2tKk2zÞKiq sinðu2tKk2zÞ
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>>>>;
:

ð2:39Þ
The measurable real parts of these expressions are used to plot the vectors of the
centroidal displacement and cross-sectional rotation at different time frames, as
shown infigure 3a. Equation (2.38) represents a rev-ARH-helixFISwavewhilefigure
3b represents a rev-C LH-helix FIS wave, consistent with the results about the
chirality given in table 3. It canbe seen thatwhile the translationvectors tracea right-
handed or left-handed helix, the rotation vectors follow the opposite senses, having
opposite helicity and chirality. From these diagrams, it can be seen that, as the wave
travels in the spinning beam, it is the helically deformed shape of the centroidal axis
that travels, appearing like a corkscrew traveling through the beam.
(e ) Helical waves in spinning beam and the whirling of shafts

The whirling of a shaft is a common phenomenon and has been studied in
association with modal balancing and vibrations of flexible rotors (Ginsberg
1995; Bishop & Parkinson 1968; Morton 1985). It is usually referred to as an
excited mode of shaft vibration due to unbalanced forces. If anticlockwise forcing
is present and synchronizes with the anticlockwise revolving mode, backward
whirl occurs.

In the present context, a revolving mode, either anticlockwise or clockwise, is
regarded as the forced revolving mode at one of the natural frequencies of the
Proc. R. Soc. A (2005)



3927Wave helical structure
spinning beam, comprising four excited traveling wave entities each being a four-
component wavefunction expressed as one of the equations (2.34) and (2.35).
These four traveling waves are a FIS sa, BIS sa, FIS sb and BIS sb waves, each
revolving at the same frequency and helicity but the FIS and BIS waves are in
opposite chirality. The combination of a FIS sa and a BIS sa is a revolving sa
standing wave, and the combination of a FIS sb and a BIS sb wave is a revolving sb
standing wave. It can be seen that the whirling shape is described as the
superposition of the revolving sa and sb standing waves of the same helicity.

For the four wave entities, the anticlockwise whirling frequency is UZu1 and
the amplitudes are represented as

S1aF ZW1a 1 Kiq1a i q1af gT and

S1bF ZW1b 1 Kiq1b i q1bf gT for RH-helix;
ð2:40Þ

and

S1aB ZW1a 1 iq1a i Kq1af gT and

S1bB ZW1b 1 iq1b i Kq1bf gT for LH-helix:
ð2:41Þ

Similarly, the clockwise whirling frequency is UZu2 and the amplitudes are
represented as

S2aF ZW2a 1 Kiq2a Ki Kq2af gT and

S2bF ZW2b 1 Kiq2b Ki Kq2bf gT for LH-helix;
ð2:42Þ

and

S2aB ZW2a 1 iq2a Ki q2af gT and

S2bB ZW2b 1 iq2b Ki q2bf gT for RH-helix:
ð2:43Þ

Given the relative phases dna and dnb, nZ1 for rev-A or nZ2 for rev-C wave, the
standing waves are expressed as

sna ZSnaFe
iðunatKknazÞCSnaBe

iðunatCknazÞ:dna and

snb ZSnbFe
iðunbtKknbzÞCSnbBe

iðunbtCknbzÞ:dnb:
ð2:44Þ

The rev-A RH-helix FIS wave (2.40) superpose with the rev-A LH-helix BIS
wave (2.41) to form a rev-A superposed standing sa and sb wave, similarly for the
rev-C FIS (2.42) and BIS (2.43) waves. The superposed standing waves are the
normal modes that revolve either anticlockwise or clockwise written, respec-
tively, as

s1 Z 2 W1a

cosðk1azKd1aÞ
Kq1a sinðk1azKd1aÞ
icosðk1azKd1aÞ

Kiq1a sinðk1azKd1aÞ

8>>>><
>>>>:

9>>>>=
>>>>;
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Kq1b sinðk1bzKd1bÞ
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Kiq1b sinðk1bzKd1bÞ

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775eiu1t

ð2:45Þ
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Figure 3. Displacement vectors of the centroids of the beam and bending rotation vectors of the
cross-section at different time frames for the FIS waves. (a) For equation (2.37) rev-A RH-helix
structure. (b) For equation (2.38) rev-C LH-helix structure.
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or

s2 Z 2 W2a

cosðk2azKd2aÞ
Kq2a sinðk2azKd2aÞ
Kicosðk2azKd2aÞ
iq2asinðk2azKd2aÞ

8>>>><
>>>>:

9>>>>=
>>>>;

CW2b

cosðk2bzKd2bÞ
Kq2b sinðk2bzKd2bÞ
Kicosðk2bzKd2bÞ
iq2b sinðk2bzKd2bÞ

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775eiu2t:

In these equations, W1a, W2a, W1b, W2b, d1a, d2a, d1b and d2b are arbitrary
constants representing the amplitudes and relative phases, to be determined by
the boundary conditions that the relevant normal mode has to satisfy. The rev-A
or rev-C normal mode is referred to as backward or forward shaft whirling.

In (2.38) and (2.39) for progressive waves, it can be seen that time and space
variables cannot be separated, while in (2.45) and (2.46) for standing waves, the
Proc. R. Soc. A (2005)
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variables are separable with the spatial parts as a four-component vector
wavefunction. This describes a superposed sinusoidal wave lying in a plane,
revolving at a frequency either anticlockwise at u1 as in the time function eiu1t

or clockwise u2 in eiu2t.

(f ) Interpretation of vibration in relation to the helical wave features

The solution given by Chan et al. (2002) shows that there are two
wavenumbers (ka and kb) and two frequencies (ua and ub) of different types,
the sa-wave and the sb-wave types. The waves are different physical entities with
different phase speeds and group behaviours. The wavenumbers, ka and kb, are
the roots of the following fourth order algebraic equation,

k4Kk2u2 1

c2o
C

1

c 022

� �
K

u2

c2or
2
g

C
u4

c2oc
02
2

Z 0: ð2:47Þ

Given the relation (ua,b/ka,b)ZcPa,Pb, the wave speeds can be expressed as
functions of either the frequency or the wavenumber to describe the dispersion
behaviour of the respective waves. In this case, the two sa and sb standing waves
in the finite beam are the two individual standing waves vibrating at a
synchronous frequency in superposition to satisfy the boundary conditions. Each
standing wave (sa or sb) consists of a FIS and a BIS progressive waves, polarized
in the same plane with no revolving motion. Thus the helicity and chirality
properties do not seem to be relevant to the vibration study.

However, should a slight perturbation occur to produce a non-zero spinning
speed, for each of the progressive waves, the gyroscopic splitting process described
in figure 2 for the FIS wave occurs, the same for the BIS wave though not shown in
the figure. Thus, a pair of rev-A waves at the lower frequency u1 appears, from
which one finds that the FIS wave has a RH-helicity and the BIS one has a LH-
helicity. Similarly, a pair of rev-C waves at the higher frequency u2 arises, in which
the FIS wave has a LH-helicity and the BIS one has a RH-helicity. The rev-A and
rev-C travelling waves would have the same frequencies u1 and u2 but opposite
helicity when the perturbation of spinning is virtually zero. They superpose one on
the other to form the two revolving normal modes, which in turn superpose to form
a non-revolving normal mode that satisfies the boundary conditions. Thus, the
helical features are hidden in the case of beam vibration.

(g ) The local energy equality property and the dispersion characteristics

Jeffcott (1919) showed that when the shaft is whirling, its spinning speed
equals its natural frequency

UZuZ

ffiffiffiffiffiffiffiffi
Ks

mR

s
; ð2:48Þ

where mR is a mass concentrated at the middle of the span and Ks is the stiffness
provided by the massless shaft. The planar shape of the whirling shaft is regarded
as a revolving normal mode in the context of this paper. The mass mR travels on
a circular orbit with a constant kinetic energy equal to the shaft potential energy,

T Z
1

2
mRðaoÞ2u2 and V Z

1

2
KSðaoÞ2: ð2:49Þ
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Thus, the Jeffcott single-mass system always has the energy equality property,
TZV.

As far as the helical wave in the spinning beam considered above is concerned,
each of the cross-sectional elements can be considered as a Jeffcott mass
displaced by a constant radius, the centroids of the entire series of beam elements
tracing the helix as previously mentioned. The difference here is that each
orbiting beam element has a rotational motion as it circles the orbit and a
potential energy because of elastic shear and bending deformations of the
element itself. The result is that local kinetic and potential energies at every
position along the helix are equal. It is necessary to show under what condition
each of the elements of the beam possesses equal kinetic and potential energies
when a wave travels along the beam, and to compare the predicted dispersion
relationship with one that is established elsewhere.
(i) The energy expressions

With the shape of the Timoshenko beam as a centroidal helix, it is assumed that
the internal bending moments and shear stresses are balanced by the centrifugal
force per unit length (mWou

2) due to the revolving motion. Let the helix have
pitch lZ(2p/k), angular frequency u, and radius Wo. The tangential velocity of
each of the masses is Wou. For simplicity, it is assumed that there is a slight
spinning only, i.e. U/0, and thus u1/u and u2/u. The local KE (kinetic
energy) density is

KE Z
1

2
mW 2

ou
2C

1

2
rI ðuqWoÞ2: ð2:50Þ

The local PE (potential energy) density is

PE Z
1

2
EI vzfð Þ! vzfð Þ*½ �C 1

2
kGA vzwKfð Þ! vzwKfð Þ*½ �

Z
1

2
EI ðkqÞ2W 2

o C
1

2
kGAðkKqÞ2W 2

o ; ð2:51Þ

where � denotes the complex conjugate. From the above, it can be seen that KE
and PE are constant, implying that the beam element behaves like a Jeffcott
mass at the revolving frequency u.
(ii) The role of centrifugal force on a revolving helix

In this context, the physical significance of q is now related to the ‘centrifugal
force’ that keeps the helix in shape. This can be seen from the definition of q as

q

k
Z

tan Fo

kWo

Z 1K
mu2Wo

k2WokAG
; ð2:52Þ

for small Fo. In the case of an Euler-Bernoulli beam, the relation tanFoZkWo is
simply a geometric expression for a helix. If there is shear deformation, the
second part of (2.52) represents the force ratio between the centrifugal force and
the shear force per unit length of the helical structure.
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(iii) The condition for the local equality of KE and PE

Equating equations (2.50) and (2.51) gives the condition for the local energy
equality property of the deformed helix kept in balance by the centrifugal force

1

2
mu2C

1

2
rI ðuqÞ2 Z 1

2
EI ðkqÞ2C 1

2
kGAðkKqÞ2: ð2:53Þ

Eliminating q, (2.53) becomes

k2K
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k4Ku2k2
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kGA

	 

C

m2u4

kGAEA
K

mu2

kGAI
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Z 0: ð2:54Þ

Expressing the equation in terms of wave properties radius of gyration rg, sound
speed co and shear wave speed c 02, (2.54) is rewritten as

k2K
u2

c 022
Z 00c 02 Z

u

k
; ð2:55Þ

or

k4K u2k2
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1
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c2or
2
g

� �
Z 0: ð2:56Þ

Equation (2.55) suggests that there is a shear wave in action. Equation (2.56) is
similar to the dispersion relation for a non-spinning Timoshenko beam. This
shows that the model of a helical structure revolving at a speed u kept in balance
by the centrifugal force is equivalent to a helical wave passing through a beam
with a dispersion characteristic described by equation (2.56).
(h ) Comparing with the results of Main, Elmore and Heald

The implications of comparing equation (2.56) with the results of Main (1984),
and Elmore & Heald (1985), are two-fold. One is that the revolving gyroscopic
helical structure as depicted in the previous sections, with local energy
distribution satisfying equality (2.56), is consistent with the general feature of
a travelling wave. That is, like other types of waves, it has the local energy
equality property and has an associated definite dispersion relationship (2.56).
The other and more interesting implication is that the equality (2.53) is subtly
different from the result for plane-polarized travelling waves on a string (Main
1984; Elmore & Heald 1985) or on a slender Euler–Bernoulli beam (Elmore &
Heald 1985). The subtlety lies in the difference in the structure of the travelling
waves. In the present paper, we interpret a travelling wave as one that has
chirality and helicity, even when the spinning speed is closing to zero. Table 4
shows the energy equality features of different types of waves. From this table,
the only way to reach a complete similarity of wave behaviour between them is to
eliminate the difference mentioned above. The obvious alternative is to consider
each type of travelling waves, shown in the table, as the superposition of a pair of
oppositely revolving waves with chirality and helicity. The conclusion, therefore,
is that all waves introduced in the table have chirality and helicity properties.
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Table 4. Features of the energy density equality relation for different types of waves

traveling wave type
and media

energy density equality
relation KEZPE

KE and PE in
relation to t

equations, equal
energy relations
and reference

transverse, on string,
non-dispersive,
sinusoidal

1
2 rc

2k2W 2
o sin2ðkzKutÞZ

1
2 Tk

2W 2
o sin2ðkzKutÞ

KE and PE
change with t
ave. equal

ru2ZTk 2 (Elmore
& Heald 1985;
Main 1984)

longitudinal on thin
rod, non-dispersive,
sinusoidal

1
2 rAu

2W 2
o sin

2ðkzKutÞZ
1
2 AEk

2W 2
o sin

2ðkzKutÞ
KE and PE

change with t
ave. equal

Ek2Zru2 (Elmore &
Heald 1985)

bending on thin rod,
dispersive, sinusoidal

1
2 rAu

2W 2
o sin2ðkzKutÞZ

1
2 EIk

4W 2
o sin2ðkzKutÞ

KE and PE
change with t
ave. equal

Elk4ZrAu2 (Elmore
& Heald 1985)

revolving wave on
Timoshenko beam,
dispersive, helical

equation (2.53) KE and PE
constant

equation (2.54)
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3. Conclusion

The literature on vibration and wave phenomena associated with a spinning
beam has been reviewed, showing the interest in gyroscopic effect over the last
two decades. Thus, our study has concentrated on finding the cause of the
frequency-splitting phenomenon that takes place in a spinning Timoshenko
beam. In effect, the present study has helped shed light on the relationship
between the wave motion in a spinning beam and the whirling of a shaft. The
following conclusions can be drawn.

(i) The progressive bending waves in a spinning beam with circular cross-
section are circularly polarized. They can be physically described as two
distinct sets of revolving helices, each of which is traced by the centroidal
axis of the spinningbeam.One set consists of clockwise-revolving helices and
the other set consists of anticlockwise-revolving helices. A two-valued phase
eiq is used to represent the helicity of the wave, which arises when the
gyroscopic effect causes the progressive waves in orthogonal planes to
undergo mutual interaction and replaces a plane-polarized wave in beam
with no spinning by two helical waves with opposite helicity. Each of the
helices has a chirality property, either right-handedness or left-handedness.
For each of these helical waves, the beam elements behave as a gyroscopic
disc with clockwise or anticlockwise precession at the wave frequency.

(ii) The frequency-splitting phenomenon is accompanied by two circularly
polarized progressive waves, of opposite helicity, with higher and lower
wavenumbers respectively, in accordance with their actual dispersion
circumstances and is consistent with the gyroscopic influence. If the beam
has a finite length, in addition to the gyroscopic effect, the dispersion
circumstances are uniquely determined by the boundary conditions.

(iii) In a spinning Timoshenko beam of finite length, all standing waves are
revolving as plane-polarized waves with a helicity property. A normal mode
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is therefore a superposition of a revolving sa-standing and a revolving sb-
standing wave, both with the same helicity. Thus, the frequency-splitting
process generates one clockwise revolving normal mode at a higher
frequency and an anticlockwise revolving normalmode at a lower frequency.
These two unequal normal mode frequencies merge to an equal one and the
two revolving normal modes, retaining their own intrinsic but opposite
helicity, superpose to form a plane-polarized normal mode vibrating up and
down. From this perspective, one may consider that a normal mode of
vibration in a stationary beam consists of two revolving normal modes of
vibration of twohiddenbut opposite helicities. If a normalmode is excited by
an unbalanced force in a spinning shaft system, the shaft is said to be in
synchronous whirling.

(iv) In order to show the progressive wave properties of the helical structure
traced by the centroidal axis of the beam, a reverse approach can be used:
first specify the dimensions of the structural helix; second calculate its
internal elastic energies per unit length; third calculate its kinetic energy
given the revolving speed. Then, the local energy equality result for
progressive wave is applied to obtain the dispersive relation of the bending
wave in the beam. From the consistency of the prediction with the results of
Chan et al. (2002),we conclude that thehelical structure depictedbehaves as
a traveling wave.
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