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Superresolution Mapping Using a Hopfield
Neural Network With Fused Images

Minh Q. Nguyen, Peter M. Atkinson, and Hugh G. Lewis

Abstract—Superresolution mapping is a set of techniques to in-
crease the spatial resolution of a land cover map obtained by soft-
classification methods. In addition to the information from the land
cover proportion images, supplementary information at the sub-
pixel level can be used to produce more detailed and accurate land
cover maps. The proposed method in this research aims to use
fused imagery as an additional source of information for superres-
olution mapping using the Hopfield neural network (HNN). For-
ward and inverse models were incorporated in the HNN to sup-
port a new reflectance constraint added to the energy function.
The value of the function was calculated based on a linear mixture
model. In addition, a new model was used to calculate the local end-
member spectra for the reflectance constraint. A set of simulated
images was used to test the new technique. The results suggest that
fine spatial resolution fused imagery can be used as supplementary
data for superresolution mapping from a coarser spatial resolution
land cover proportion imagery.

Index Terms—Fused images, Hopfield neural network (HNN)
optimization, soft classification, superresolution mapping.

1. INTRODUCTION

HERE has been an increasing requirement for high spatial
and spectral resolution remotely sensed imagery in a
wide range of fields such as agriculture, urban planning, habitat
management, and especially land cover mapping. To satisfy this
requirement, several sensors launched recently provide images
with a very high spatial resolution, such as IKONOS with
4-m multispectral (MS) and 1-m panchromatic (Pan) imagery
and QuickBird with 2.6-m MS and 0.6-m Pan imagery [1].
However, the spatial detail in such imagery is still limited by
the pixel, which represents the smallest element in a remotely
sensed image. Conventionally, hard-classification approaches
provide thematic maps at the pixel level, in which each pixel
is assigned to just one class in the thematic map [2]. In most
cases, the nature of the real landscape and the data acquisition
process cause many “mixed pixels” in remotely sensed images
[3]. If these mixed pixels are assigned to just one class as in
hard classification, some information is lost.
Soft-classification approaches predict the proportional cover
of each land cover class within each pixel. Several soft-classifi-
cation approaches exist such as spectral mixture modeling [4],
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fuzzy c-means classifiers [5], artificial neural networks [6], [7],
k-nearest neighbor classifiers [8], and support vector machines
[9]. Soft classification produces a set of proportion images, and
each of these images contains subpixel information on a given
class. These images are more informative and appropriate depic-
tions of land cover than those produced by the conventional hard
classification. However, the location of the land cover classes in
the mixed pixels is still unknown. In other words, the spatial
resolution of the thematic map produced by soft classification
is not increased relative to that of hard classification.

Superresolution mapping is a set of techniques for predicting
the location of land cover classes within a pixel based on the
proportion images produced by soft classification. Hence, su-
perresolution mapping increases the spatial resolution of the re-
sulting land cover maps. Since the concept of superresolution
mapping was introduced by Atkinson [10], there have been sev-
eral techniques proposed for superresolution mapping: spatial
dependence maximization [10], subpixel per-field classification
[11], linear optimization techniques [12], Hopfield neural net-
work (HNN) optimization [13]-[17], two-point histrogram op-
timization [ 18], genetic algorithms [19], and feedforward neural
networks [20]. These techniques are based on the concept of
spatial dependence, which refers to the tendency of proximate
subpixels to be more alike than those located far apart. In all
these approaches, the detail and accuracy of the superresolution
map were greater than the corresponding hard-classified images.
However, these superresolution mapping methods have a limit
to the detail and accuracy of the resulting thematic map since
they were based only on the soft-classified proportion data at the
pixel level and the spatial dependence assumption. It is, there-
fore, suggested that additional information could be useful.

An example of the inaccuracy of the above-mentioned super-
resolution mapping methods can be seen in Fig. 1. From the land
cover proportion of a single class in Fig. 1(a), three possible re-
sulting thematic maps at subpixel resolution can be obtained as
in Fig. 1(b)—(d). All these maps satisfy the assumption of spa-
tial dependence but the location of the subpixels in the central
pixel is different. If some information can be provided at the
subpixel level, then more accurate subpixel mapping results can
be achieved.

The spatial resolution of thematic maps can be increased
using raw remote sensing images without soft-classified data.
Schneider and Steinwender [21] combined an image segmenta-
tion technique and spatial subpixel analysis based on the spatial
pattern of pixels in a certain neighborhood to produce higher
spatial resolution images. Further, Pinilla Ruiz and Ariza Lopez
[22] used point spread function-derived deconvolution filters to
increase the spatial resolution of multispectral images.
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() (d)

Fig. 1. (a) Land cover proportion image and (b), (c), (d) three possible result-
ing superresolution mapping images based on maximizing spatial dependence.

Image fusion is another approach to increase the spatial reso-
lution of raw remotely sensed images by combining high spatial
but low spectral resolution images with high spectral but low
spatial resolution images to produce a high spectral and spatial
resolution image. Amongst the approaches for fusing different
data sources, the most common involves combining Pan and MS
images to obtain a MS image at the spatial resolution of the Pan
image. There have been several image fusion techniques such as
intensity—hue—saturation (IHS) method [23], filter-based fusion
[24], wavelets method [25], and Gram—Schmidt spectral sharp-
ening [26]. For land cover classification, the fused MS image
should preserve the spectral properties of the MS image at the
spatial resolution of the Pan image. However, quality assess-
ment for the fusion approaches proposed by Munechika et al.
[27] and Wald et al. [28] showed that there is always spectral
distortion in the fused image compared to the spectral proper-
ties of the original MS data.

There are two approaches for using a fused MS image for land
cover classification. The fusion-then-classification approach
uses the fused MS image directly for land cover classification.
An example of the fusion-then-classification approach is given
by Shackelford and Davis who used a 1-m fused MS image
for urban mapping [29]. The classification-then-sharpening
approach uses the fused MS image to sharpen a land cover
proportion image obtained from the original MS image. The
classification-then-sharpening approach was used by Foody to
sharpen a fuzzy classification output [30] and by Gross and
Schott to sharpen a proportion image obtained by spectral mix-
ture analysis [31]. According to the results of both approaches,
the accuracy of the thematic map using the fused MS image
increased slightly in comparison with that of the original MS
image. Evaluation of the two approaches by Robinson et al.
[32] based on a linear mixing model indicated that the classi-
fication-then-sharpening approach was preferable in terms of
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Fig. 2. HNN superresolution mapping using the fused multispectral mages.

accuracy. The fusion-then-classification approach produced a
thematic map with lower accuracy due to the spectral distortion
in the fused MS image.

II. HOPFIELD NEURAL NETWORK

This research aims to use a fused image as additional informa-
tion for superresolution mapping. Theoretically, the fused MS
image can provide useful information at an intermediate spatial
resolution for predicting land cover at a finer spatial resolution.
However, the spectral distortion of the fused images may cause
some errors. To reduce the effect of spectral distortion, the clas-
sification-then-sharpening approach was incorporated into the
HNN for superresolution mapping.

Fig. 2 is a graphical depiction of the proposed method to use a
fused image for superresolution mapping by the HNN. From the
MS images at the original spatial resolution the land cover area
proportion images are produced by a soft-classification proce-
dure. The area proportion images are then used to constrain the
HNN to produce the superresolution land cover map in the first
iteration of the optimization process. From the superresolution
map at the first iteration, an estimated MS image is then pro-
duced using a forward model. The estimated MS image is then
compared with the fused image and a reflectance error image is
determined. For all neurons covered by the same pixel in the
fused image, a value based on the reflectance error image is
produced to adjust the estimated MS image. Thus, the HNN is
constrained by the reflectance values of the fused image. The
adjustment value, or reflectance constraint, along with the goal
and constraint values in the HNN structure proposed by Tatem
et al. [13], can be used in the optimization process for super-
resolution mapping by minimizing the energy function. After
the optimization process, the estimated MS image produced by
subpixels in the superresolution map should resemble the fused
image.

The method presented is based on the structure of the HNN
proposed by Tatem et al. [14], [15]. The structure of the HNN
for superresolution mapping of two land cover classes can be
seen in Fig. 3. A pixel at the original spatial resolution is di-
vided into two interconnected matrices of neurons in the HNN.
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Fig. 3. Reflectance constraint for subpixels covered by pixel (m,n) at the
fused level. A pixel at the original level contains four pixels at the fusion level.
m, n are the coordinates of the fused pixel. R(m, n) is the reflectance value of
the fused pixel (m7 n),and S.; and S.. are the endmember spectra of classes
1 and 2. P.; and P.. are average output values of the neurons of classes 1 and
2 that are covered by the fused pixel (m, n). f is the fusion factor.

Each neuron (h, 4, j) represents a subpixel at position (4, j) in
the land cover class h and each matrix of neurons represents a
land cover class. The HNN is a recurrent neural network and it
reaches a stable state when the energy function is minimized.
For superresolution mapping, the HNN is initialized using the
soft-classified land cover proportions and runs until it converges
to a monotonic stable state [13]. At the stable state, the output
values of the neurons are binary values. If the output value of
the neuron (h,4,j) is 1, the subpixel (4, 7) is assigned to the
land cover class k. Otherwise, if the output value is 0, the sub-
pixel (7, j) does not belong to the class h. The energy function
can be expressed as

E == Z Z Z(lelhlj + kZGZ}”;]’ + kgPhij + k4Mhij)

h 7 7

ey
where k1, ko, k3, and k4 are weighting constants. Values of the
weighting constants define the effects of the conresponding goal
functions, proportion constraint and multiclass constraint to the
energy function. For each neuron (%, 4, j), G1;; and G2}, are
the values of the spatial clustering or goal functions. The values
of G1p;; and G2p;; can be determined by
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where ) is the gain or the steepness of the tanh function (usually
assigned a value 100 [14]). 1/8 = 1/N, where N is the number
of pixels in the neighborhood used in the goal function, 0.5 is
the threshold, vy;; is the ouput value of the neuron (h, 7, j). The

first goal function (2) is used to increase the output value vy,;; of
the neuron if the average output value of the eight surrounding
neurons is greater than 0.5. In contrast, the second goal function
(3) decreases wvp; if the average output value of the eight sur-
rounding neurons is less than 0.5.

The value P,;; in (1) is the proportion constraint. This value
retains the land cover proportion for each original pixel and is
defined as

rz+z—1yz+z—1

dPij; 1
= — 1 + tanh(vpge — 0.5)A) — apae
)
where 1/222 352 F27H 52024271 (1 4 tanh (vpqe — 0.5) A) is

the estimated proportion and @y, is the input proportion of the
land cover h of the pixel (z,y) which is obtained by soft classi-
fication. The pixel (x,y) is the corresponding pixel at the orig-
inal spatial resolution to which the subpixel or neuron (h, 1, j)
belongs. z is the zoom factor, which determines the increase
in spatial resolution from the original image to the superreso-
lution mapping image. The proportion constraint function con-
tributes a positive value if the estimated proportion of the class
h is greater than the input proportion. As a result, the network
reduces the output values of neurons within the pixel (z,y) in
the class layer h. Conversely, if the estimated proportion is less
than the input proportion, the proportion constraint produces a
negative value to increase the output values of the neurons in the
class h.

The multiclass value Mj,;; is used to reduce the output of the
neurons if the sum of outputs of ¢ classes at the position (i, 7) is
greater than 1. If the sum of outputs of c classes is less than 1,
the function increases the output of the neurons at the position
(4, 7). The value of the multiclass constraint is calculated as

dMLi' :
= (D o | -1 ®)
k=0

dvpj

To use the fused image for superresolution mapping by the
HNN, the energy function in (1) is modified by adding a re-
flectance constraint. In this experiment, a function based on the
reflectance of the fused image is added to the goal functions
and proportion constraint that comprise the energy function.
The new energy function for each band of the fused image can
be expressed in an equation as follows:

E=— Z Z Z(lelhzg + k2G2hz’j + kSPhij

h 7 7

+ kaMyij + ksRpyij)  (6)

where Iy;; is the reflectance constraint value for each neuron
(h, i, 4).

The structure of the modified HNN can be seen in Fig. 3.
Each neuron in the HNN represents a subpixel point in the orig-
inal spatial resolution image. The fusion factor f determines the
increase in spatial resolution of the new superresolution image
in comparison with the fused image. Apart from the proportion
constraint for each original pixel, f x f subpixels covered by
pixel (m, n) of the fused image are constrained by a reflectance
constraint. The reflectance constraint is based on the principle
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that the average predicted reflectance from all subpixels located
within a pixel of the fused image should be equal to the observed
reflectance (or target reflectance) of that pixel.

For each band of the fused image, there is an additional con-
straint for the energy function. The energy function is mini-
mized if the derivatives of variables in (6) converge to zero for
each neuron (h, i, 7)

dEy;j —k dG1p;; ke dG2p;
dvpij dvpij dvpij
dPy; dMy;; dRy;;
S L2 Ry il L R Ml 1 NG )
dvpj dvpj dvp;j

The derivative values of G1, G2, P, and M with respect to vp;;
are computed using (2)—(5), respectively.

To derive the value dRy;j/dvy;j, the estimated reflectance
RY ..., of the neurons representing the fused pixel (m,n) can
be defined by a forward model using a linear mixture model [4]

as
Rl gmn = Ve1Spsc1 + VeaSpsc2 + -+ + VeeSpsce  (8)

where the estimated proportion value Vi, =

Py VS vce,) and Spe s the
endmember spectra of the land cover class Ce for a spectral
band Bs.

Similarly, the observed reflectance for pixel (m,n) can be
expressed using the same forward model as

Bemn = Pc15Bsc1 + Pc2SBsc2 + -+ + PoeSBsce (9)

where R, is the observed reflectance of pixel (m,n) in a
fused image band, c is the total number of land cover classes,
Pc1, Peo, ..., Po. are the proportions of a given land cover
class covered by a pixel of the fused images (Y P = 1), and
SBsc1,SBsc2, - - -, 9Bsce are endmember spectra of the land
cover classes C1,C2,...,Ccin a MS fused band Bs.

From (8) and (9), the difference between the observed and
estimated reflectance of the neurons representing the fused pixel

(m,n) is defined by

R°—R'= Z PceSBsce— Z VeeSBsce-

e=1

(10)

e=1

The value of the reflectance constraint requires that the re-
flectance difference in (10) should be zero for every spectral
band. Accordingly, the estimated proportion value V. is ex-
pected to converge to the land cover proportion Pc. within each
pixel of the fused image. Therefore, the value of the reflectance
constraint for the fused pixel (m,n) can be produced based on
an inverse model using the linear mixture model equation

R . =SSP, (11)
where R?,,, = [Rp1° -+ Rps° ... Rp°]L,, is the vector of
reflectance values of the fused spectral bands B1, ..., Bs, ...,
Bb and

Spict SBice
S = SBSCI SBSCC (12)
SBbc1 SBice
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is the matrix of endmember spectra values for b fused spectral

bands and P is the vector of land cover proportion values.
Using the least squares linear mixture model, land cover class

proportions of the fused pixel (mn,n) can be predicted by

P,..=(STS) !STR?, = MR?,, withM=(STS) ST,
(13)

From the (13), the values for reflectance constraints for all
fused spectral bands are calculated from the difference between
observed and estimated reflectance of b fused multispectral
bands as

dR/d’Ucu]' PCl 1 VCl
dR/dvce:j Pe. | Vee
-R%lmn - RtBlmn

—M(RS, ~R\,) =M (14)

o t
L RBbmn - RBbmn

If the number of fused image spectral bands is less than the
number of land cover classes, the value of the reflectance con-
straint cannot be known.

III. EXAMPLE 1: SIMULATED IKONOS IMAGE
A. Data

In this experiment, a set of data based on IKONOS imagery
was used. The set of data is a simulated 32-m MS image and an
8-m fused spectral image created by degrading a real IKONOS
image. The ratio between the spatial resolution of the simulated
MS and fused images is similar to the ratio between the real 4-m
MS and 1-m panchromatic (PAN) IKONOS images. Thus, the
algorithm should be applicable to the real imagery (i.e., 4-m MS
and 1-m fused image) if it performs successfully on the simu-
lated imagery. There are two reasons for using simulated im-
agery. Firstly, it was possible to evaluate the quality of the fused
imagery. Secondly, the simulation ensured that there were no
errors in image registration between the reference image and
the land cover image obtained by superresolution mapping. For
the simulated IKONOS image, the experiment was implemented
in four steps as follows: (A) Raw data analysis, (B) Data sim-
ulation, (C) Preprocessing, and (D) Superresolution mapping
(Fig. 4).

1) Raw Data Analysis:

Raw Data: An IKONOS MS image was acquired over
Eastleigh and Chandler Ford, Southampton, U.K. The IKONOS
image consisted of four 4-m MS bands in the following wave-
bands: red (632-698 nm), near-infrared (NIR: 757-853 nm),
green (506-595 nm), and blue (445-516 nm) and a 1-m PAN
band (450-900 nm). Based on image fusion, the MS and PAN
bands can be used to produce four fused MS image bands at
1-m spatial resolution.

Reference Data and Statistical Information: The experi-
ment was implemented in an area of 64 X 64 pixels (at 4-m spa-
tial resolution) that consisted of three land cover classes: cereal,
grass, and trees [Fig. 5(a)—(d)]. These three land cover classes
were produced using maximum-likelihood classification of the
real IKONOS image. Statistical information such as the means
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Fig. 4. Four steps in experiment: (A) Raw data analysis, (B) Data simulation,
(C) Preprocessing, and (D) Superresolution mapping.
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Fig. 5. (a) Land cover map at 4-m spatial resolution used for simulating data,
(b) 4-m cereal class map, (c) 4-m grass class map, and (d) 4-m trees class map.

and standard deviations of the three land cover classes in the area
was obtained (Table I and Fig. 6). The three land cover classes
were used as a reference for the subpixel map obtained by the
proposed algorithm.

2) Data Simulation:

Multispectral Imagery (8 m): From the land cover map
[Fig. 5(b)—(d)] at 4-m spatial resolution, a set of multispectral
images at 4-m spatial resolution was simulated based on the
random normal distribution and the mean and variance of each
land cover class shown in Table I. The simulated MS image,
therefore, is similar spectrally to a multispectral IKONOS image
at 4-m spatial resolution. A MS image at 8-m spatial resolution
was generated by degrading the 4-m simulated MS image by a

TABLE 1
STATISTICAL INFORMATION FOR THE CEREAL, GRASS,
AND TREES CLASSES IN THE IKONOS IMAGE

Cereal class

Band Min Max Mean Stal?dgrd
deviation

1 236 461 386.986 27.520

2 336 574 491.683 27.282

3 275 432 384.641 18.565

4 257 346 322.755 9.993

Grass class

Band Min Max Mean Staf:ldi?l’d
deviation

| 220 325 259.636 12.303

2 377 623 492.909 29.851

3 283 354 314.681 7.864

4 271 309 289.369 4.618

Trees class

Band Min Max Mean Star}dgrd
deviation

1 141 238 183.983 25.127

2 194 713 421.699 105.667

3 218 311 259.706 20.061

4 244 286 264.162 8.887

factor of two to produce [Fig. 7(a)—(d)]. These images were used
as reference to evaluate the quality of the fused image produced
below.

Panchromatic Imagery (8 m): The 8-m simulated MS
image was then used to create a simulated PAN image [Fig. 7(e)]
based on a simple spectral convolution of the blue, green, red,
and NIR bands of the 8-m simulated MS image (the wavelength
of the PAN band of the IKONOS image covers these four
bands) as

_ BLUE + GREEN + RED + NIR

P
an 1

15)

Multispectral Imagery (32 m): The 32-m MS image
[Fig. 7(f)—(i)] was produced by degrading the 4-m MS image
by a factor of eight. The 32-m MS image was then used for soft
classification and image fusion to produce a 32-m land cover
proportion image and an 8-m fused image.

3) Preprocessing:

Fused Imagery (8 m): Amongst the four fused spectral
bands, three were used in the experiment (blue, green, and red).
The NIR band of the fused image was not used because of the
scattered distribution and the spectral (Fig. 6) overlap of all three
land cover classes over this band. From the simulated 8-m PAN
and 32-m MS images, the 8-m fused image [Fig. 7(k)—(m)] was
predicted using the Gram—Schmidt Spectral Sharpening method
[26]. The fused image was evaluated based on the root mean
square (RMS) error for each band [27]. The RMS errors of the
red, green, and blue bands were 15.74 digital number (DN), 8.27
DN and 5.44 DN, respectively. Comparing with the RMS errors
of the fused image obtained in Munechika ez al. [27], the fused
image produced was similar to that of real data.

Simulated Land Cover Proportion Imagery (8 m): To
provide a realistic test, a set of proportion images was produced
using soft classification of the simulated 32-m MS image. The
simulated MS image was used because in the simulated case the
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Fig. 6. Histrogram of three classes in four bands of IKONOS MS image.
(Dotted line) Band 1. (Dashed line) Band 2. (Dotted and dashed line) Band 3.
(Solid line) Band 4.

three land cover classes at the subpixel (4 m) level are known,
facilitating direct evaluation of the technique. A k-nearest
neighbor classifier (k-NN) [8] was used for soft classification
with & = 5. The land cover proportion image was produced
with overall area error proportion of 0.5552% and overall RMS
error of 0.083 775 pixels [13]. Statistics for the resulting land
cover map from soft classification show that the land cover
proportion images contained an amount of error similar to that
of a soft-classified real MS image. In this sense, the simulated
land cover proportion image was similar to that which might
be obtained from real data.

741

(d)

(® (h)

(9] (U] (m)

Fig. 7. Four bands (a) red, (b) NIR, (c) green, and (d) blue 8 m of simulated
MS IKONOS image. (¢) Eight-meter simulated PAN image. Four bands (f) red,
(g) NIR, (h) green, and (i) blue of 32-m simulated image. Three bands (k) red,
(1) green, and (m) blue of 8-m simulation of the fused MS image.

4) Global Endmember Spectra: The endmember spectra
values in (7) can be acquired from laboratory measurements
or can be estimated from training data [4]. Since the simulated
MS image was created from statistics on the cereal, grass, and
trees classes, the endmember spectra of these classes should be
the means of the spectral distributions in the blue, green, and
red bands.

5) Local Endmember Spectra: Three land cover classes ex-
hibited a large variance over all four spectral bands (Table I and
Fig. 6). Thus, the single set of endmember spectra values used in
(2) was not appropriate for every pixel in the image. Investiga-
tion of the real IKONOS image indicated that the digital num-
bers of adjacent pixels of the same class were similar. Hence,
it was suggested that using locally defined endmember spectra
would be more appropriate for determining the local reflectance
constraint value than using a single value for the whole image.

Local endmember spectra were produced from the land
cover proportion image and the original MS image (e.g., 32-m
land cover proportion image and 32-m MS image). Fig. 8
describes the local endmember spectra estimation process. The
endmember spectra of the pixel (m,n) of a given 8-m fused
spectral band can be defined based on the class proportions and
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Fig. 8. Local endmember spectra calculation. (1, n) are coordinates of the
fused image pixel. and (z, y) are coordinates of the pixel in the original image
that corresponds to the fused pixel (m, n). From land cover proportion and
digital number of pixel («, y) and its eight surrounding pixels, the local spectra
of the pixel (m, n) can be calculated.

the reflectance value of the corresponding pixel (x,y) and its
eight surrounding pixels of the same spectral band of the 32-m
MS image. For each spectral band and each pixel (z,y), an
equation exists as follows:

Ry = Spic1 Py + Spico Py + -+ -+ Sce PR (16)

where R7 is the digital number of pixel (z,y) in spec-
tral band B;, P.Y, Py, ..., P.Y are class proportions and
Spic1,SBic2, - - ., SBice are the local endmember spectra of
the pixel (z,y) in spectral band B;.

With eight surrounding pixels, there are eight equations
which can be rewritten in matrix form as

R = PSp; a7

where RF [Rgfi—l)(y—l) R](E;Ei+1)(y+1)]T 52y

[Sgic1 - - Spice, and

PE=DE=D Pe=Dw=)

_ Ty Ty
P = PCl PCc

z+1 f y+1
Pé . )(y+1) -
Using the least squares method, the local endmember spectra
Sp; can be resolved as
Spi = (PTP)"'"PTRp;. (18)
Amongst the pixels that are used to determine the local end-
member spectra, the pixel (z,y) should be the most important
since it covers the fused pixel (m,n). To emphasize the con-
tribution of the corresponding pixel (z,y) to the endmember
spectra, a weight mechanism was used such that (19) becomes

Spi = (PTWP) 'WPTRp; (19)

where W was the diagonal matrix

wE—DE-1) 0 0 0
0 e 0 0 0
W= 0 0 w™ 0 0 1)
0 0 0 e 0
0 0 0 0 qEthy+1)
and wE=DO=D v EEDEH) are weight values

for each corresponding pixel. The assumption was tested using
the weight value w™ of 1 up to 20 and the other weight values
of 1. The optimal weight value w”¥ was determined based on
the Kappa index of agreement (KIA) « of results of the super-
resolution mapping using the fused image.

B. Results

Two sources of data were used in superresolution mapping
using fused imagery. The first data source was the land cover
proportion image obtained by soft classification. The second
data source was the fused image. In the experiment using the
simulated land cover proportion image, both data sources con-
tained an amount of error similar to that of real data.

From the predicted soft-classified land cover proportion
image [Fig. 9(a)-(c)], the 4-m subpixel land cover maps
were obtained using the traditional HNN [Fig. 9(g)-(@i)], the
HNN using the fused image with global endmember spectra
[Fig. 9G)—()] and the HNN using the fused image with local
endmember spectra [Fig. 9(m)—(o)]. The greatest accuracy
land cover map was obtained with the weighting coefficients
of ki = 70,ky = 70,ks = 70,k4 = 70, and k5 = 70 after
6000 iterations and the optimal weight value of 14 to determine
the local spectra. The 32-m hard-classified land cover image
[Fig. 9(d)—(f)] was produced from the 32-m multispectral image
[Fig. 9(g)-(j)] using a neural network. Accuracy statistics for
each class based on KIA, overall accuracy, and per-class omis-
sion and commission errors are presented in Table II to evaluate
the predicted subpixel map.

The map produced by the new HNN superresolution tech-
nique with real proportion image data was more accurate than
the hard classification and traditional HNN in retaining small
and linear objects. Despite the effect caused by the error in
the class proportion image, the linear features in the trees class
were recreated by both the new HNN with global and local end-
member spectra. However, the errors from soft classification
caused some artefacts in the trees class when the new HNN with
global endmembers was used. These artefacts can be seen when
comparing Figs. 7(d) and 9(1). The artefacts occurred mostly
for pixels where the soft classification predicted some erroneous
land cover proportions [the erroneous proportions can be seen
clearly in Fig. 9(b)]. The artefacts did not occur in the resulting
land cover map produced by the HNN with local endmembers.
This can be explained as follows: the use of global endmembers
led to an inability to reduce the effects of the erroneous propor-
tions locally in some cases.

The statistics in Table II showed considerable increase in
all accuracy values for the new HNN technique in comparison
with the hard-classification and traditional HNN. The overall
accuracy increased from 86.52% for the hard classification and
88.53% for the traditional HNN to 87.92% for the new HNN
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(m)

Fig. 9. (a) Four-meter Cereal, (b) Grass, and (c) Trees land cover proportion
image. (d) Four-meter Cereal, (¢) Grass, and (f) Trees hard-classified land
cover image. (g) Four-meter Cereal, (h) Grass, (i) Trees HNN superresolution
mapping image. (j) Four-meter Cereal, (k) Grass, and () Trees HNN
superresolution mapping using the fused image with the global endmember
spectra resulting image. (m) Four-meter Cereal, (n) Grass, and (o) Trees HNN
superresolution mapping using the fused image with the local endmember
spectra resulting image.

with global endmembers and 91.19% for the new HNN with
local endmembers. The visual and statistical improvement of
the resulting subpixel maps when using a real proportion image
showed that the new algorithm can increase the accuracy of the
thematic mapping with the real image data if the image regis-
tration error is not taken in to account.

Similar to the visual comparison, the statistics highlighted
a problem with the new HNN with global endmembers. This
problem resulted in an increase in the commission error for the
trees class from 20.69% for the traditional HNN to 30.02% for
the new HNN with global endmembers. Similarly, the omission
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TABLE 1II
ACCURACY STATISTICS OF SIMULATED IKONOS RESULTS

Statistics for the hard classified image

Cereal Grass Trees ErrorO (%)  ErrorC (%)
Unclassified 0 0 0
Cereal 1005 126 21 3.74 12.76 %
Grass 39 2305 280 8.42 12.16 %
Trees 0 86 234 56.26 26.88 %
KIA —k = 0.7430 Overall accuracy = 86.52 %

Statistics for the HNN super-resolution mapping without using the fused
image

Cereal Grass Trees ErrorO (%)  ErrorC (%)
Unclassified 0 4 3 1.000
Cereal 971 89 2 4.60 8.52%
Grass 63 2350 231 8.14 11.12 %
Trees 4 74 299 36.82 20.69 %
KIA -k = 0.7814  Overall accuracy = 88.53 %

Statistics for the HNN super-resolution mapping using the fused image
(Global spectra)

Cereal Grass Trees ErrorO (%)  ErrorC (%)
Unclassified 11 4 2 1.0000
Cereal 931 39 0 10.82 4.02
Grass 91 2346 209 6.79 11.34
Trees 11 128 324 39.44 30.02
Total 1044 2517 535
KIA —k= 0.7897  Overall accuracy = 87.92 %

Statistics for the HNN super-resolution mapping using the fused image
(Local spectra value of 14)

Cereal Grass Trees ErrorO (%)  ErrorC (%)
Unclassified 6 0 0 1.000
Cereal 994 39 0 4.79 3.68
Grass 38 2412 206 4.17 9.19
Trees 6 67 329 38.50 18.16
KIA -k = 0.8320  Overall accuracy = 91.19 %

error obtained for the trees class by the traditional HNN super-
resolution mapping increased from 36.82% to 39.44% for the
new HNN with global endmembers. Due to the problem with
the erroneous proportion, the overall accuracy of the new HNN
with global endmembers decreased just slightly in comparison
with the map obtained with the HNN superresolution mapping,
with the overall accuracy decreasing from 88.52% to 87.92%.
With local endmembers, the HNN using the fused image can
resolve the problem that occurred when using a single set of
global endmembers. The overall accuracy of the resulting map
produced by the new HNN with the local endmembers increased
greatly by approximately 3% to 91.19%.

IV. EXAMPLE 2: DEGRADED QUICKBIRD IMAGE
A. Data

Although simulated imagery provides greater control than
real imagery for evaluating new algorithms, a common criticism
is that simulated imagery may not provide a realistic test, pri-
marily because image registration error is not included in the
data. Therefore, to provide a more realistic test, and to address
such concerns, a second set of proportion images was produced
using a degraded QuickBird MS and PAN image. A degraded
(rather than real) image was used because in the degraded case
the three land cover classes at the subpixel level are known, fa-
cilitating direct evaluation of the impact of image registration
error on the technique.
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Reference Z
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(B) Pan image (2.1 m)| Spectral images (8.4 m)
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Fig. 10. Four steps in experiment. (A) Raw data analysis. (B) Data simulation.
(C) Preprocessing. (D) Superresolution mapping (Fig. 4).

(©)

Fig. 11. (a) The 0.7-m PAN image (360 x 300 pixel), (b) blue, (c) green,
(d) red, and (e) NIR bands of 2.8-m MS image (90 x 75).

1) Training and Reference Data:
Raw Data: A QuickBird MS image was acquired over
an area of ChristChurch, UK on June 1, 2002. A subarea of
PAN (360 x 300 pixel) [Fig. 11(a)] and MS (90 x 75 pixel)

(b)

(d)

O]

Fig. 12. Three land cover classes image for reference: (a) 0.7-m grass, (b)
0.7-m white surface, and (c) 0.7-m dark surface. Three land cover classes image
for training: (d) 8.4-m grass, (e) 8.4-m white surface, and (f) 8.4-m dark surface.

[Fig. 11(b)—(e)] images was extracted from an area in the
airport. Three land cover classes in the area were: grass, white
surface and dark surface of the runway. The MS image was
coregistered to the PAN image with a root mean square error
of 0.25 pixels.

Training and Reference Data: Three land cover classes
at 0.7-m spatial resolution were obtained by manual digitising
from the panchromatic image [Fig. 12(a)—(c)]. These land cover
image were used as the reference data for the results of super-
resolution mapping. Thus, there was no image registration error
of the PAN image against the reference data.

Superresolution methods use land cover proportions ob-
tained by soft classification as input. To implement the soft
classification, training data are required. In this paper, the soft
classification was implemented at 8.4-m spatial resolution. The
training data, therefore, could be produced by degrading the
land cover image at 0.7-m spatial resolution by 12 times as in
Fig. 12(d)—(f).

2) Data Degradation:

Multispectral Imagery (8.4 m): The QuickBird MS image
at 2.8-m spatial resolution was degraded by three times to pro-
duce a MS image at 8.4-m spatial resolution [Fig. 13(a)—(d)].
This MS image was then used to produce the land cover propor-
tions at 8.4-m spatial resolution using soft classification with
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(a) (b)

(©) (d)

(e)

@ (h)

Fig. 13. Four bands (a) blue, (b) green, (c) red, and (d) NIR 8.4-m of
simulated MS image. (e) The 2.1-m degraded PAN image. (f) The 0.5-pixel
image registration error PAN image at 2.1-m spatial resolution. (g) The 1-pixel
image registration error PAN image at 2.1-m spatial resolution and 1.5-pixel
image registration error PAN image at 2.1-m spatial resolution.

training data in Fig. 12. The land cover proportions were then
used to produce a 0.7-m land cover image using superresolution
mapping and the results were compared with the reference data
in Fig. 12.

Panchromatic Imagery (2.1 m): The 2.1-m PAN image
was produced by degrading the 0.7-m PAN image by three times
[Fig. 13(e)]. The PAN image in Fig. 13(e) contained no image
registration error. To evaluate the effect of the image registra-
tion error on the accuracy of the resulting land cover map, the
PAN image was geocoded with root mean square errors (RMS)
of 0.5 pixels [Fig. 13(f)], 1 pixel [Fig. 13(g)], and 1.5 pixels
[Fig. 13(h)]. The proposed algorithm was then tested using the
fused images obtained from these geocoded PAN images and
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the results were compared with the fused images without image
registration error.

3) Preprocessing:

Fused Imagery (2.1 m): Amongst the four fused spectral
bands, three were used in the experiment (blue, green, and red).
From the 2.1-m degraded PAN image [Fig. 13(e)] and 8.4-m
MS image [Fig. 13(a)—(d)], the 2.1-m fused image was obtained
using the Gram—-Schmidt Spectral Sharpening method. To in-
clude the image registration error in the fused image, the PAN
images with image registration RMS error in the range from
0.5 pixels to 1.5 pixels [Fig. 13(f)—(h)] were fused with the MS
image to evaluate the effect of the image registration error on
the algorithms.

Land Cover Proportion Imagery (8.4 m): Proportion im-
ages at 8.4-m spatial resolution were produced from the 8.4-m
MS image in Fig. 12 using the training data in Fig. 10. Obvi-
ously, this set of proportion images contains a certain amount of
error including the MS image registration error. The predicted
land cover proportions were then used for hard-classification,
traditional superresolution mapping and the new method for su-
perresolution mapping using the fused image. The error of the
proportion predicting process has an impact on the results of
all these methods. That means that the PAN image registration
error is the only source of image registration error affecting the
accuracy of superresolution mapping.

A k-nearest neighbor classifier (k-NN) [8] was used for soft
classification with k¥ = 5. The land cover proportion image
was produced with overall area error proportion of 0.0242% and
overall RMS error of 0.018 159 pixels [13]. The proportions of
three land cover classes can be seen in Fig. 14(a)—(c).

B. Results

In the experiment using degraded QuickBird imagery, the
results produced by the three approaches were compared, as
in the simulated data case. The 8.4-m hard-classified land
cover map was obtained from the land cover proportion image
[Fig. 14(a)—(c)] by assigning each 8.4-m pixel to the class of the
largest proportion [Fig. 14(d)—(f)]. The HNN superresolution
mapping by Tatem er al. [14] was based on the clustering goal
functions, proportion constraint and multiclass constraint. Ap-
plying this HNN superresolution mapping approach, a 0.7-m
spatial resolution land cover map of three land cover classes was
produced using the 8.4-m predicted land cover proportion image
as input to the HNN superresolution mapping technique, with
a zoom factor of 12. After 6000 iterations with the weighting
constants of ky = 70,ks = 70,k3 = 100, and ky = 70, three
land cover images were superresolved as in Fig. 14(g)—(i). Ac-
curacy statistics for each class based on KIA, overall accuracy,
and per-class omission and commission errors were presented to
evaluate the predicted subpixel spatial resolution map (Table ITI).

The new HNN superresolution mapping technique was con-
strained by the 8.4-m land cover class proportion image and the
2.1-m fused images. To estimate the local endmember spectra of
three land cover classes, the 8.4-m land cover proportion image
was used in combination with the 8.4-m MS images which were
degraded from the 2.1-m fused images. Based on the results
of the simulated IKONOS data case, the weight value of 14
was used to determine the local endmember spectra. A zoom
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(b) (©

() (i

(k)

(m) (n)

Fig. 14. (a) Grass, (b) White surface, and (c) Dark surface 8.4-m land cover proportion image. (d) Grass, (e) White surface, and (f) Dark surface 8.4-m
hard-classified land cover image. (g) Grass, (h) White surface, and (i) Dark surface 0.7-m HNN superresolution mapping image. (j) Grass, (k) White surface, and
(i) Dark surface 0.7-m HNN superresolution mapping using the fused image without image registration error. (m) Grass, (n) White surface, and (o) Dark surface
0.7-m HNN superresolution mapping using the fused image with RMS image registration error of 1 pixel.
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TABLE III
ACCURACY STATISTICS OF DEGRADED QUICKBIRD RESULTS

Statistics for traditional HNN super-resolution mapping image

Grass W surface D surface ErrorO (%) ErrorC (%)
Unclassified 0 0 0
Grass 72945 749 1474 1.47 2.96
W surface 44 598 222 85.31 30.79
D surface 1043 2725 28200 5.67 11.79
KIA —x= 0.8685 Overall accuracy = 94.21
Statistics for traditional HNN super-resolution mapping image
Grass W surface D surface ErrorO (%) ErrorC (%)
Unclassified 4 11 14
Grass 73746 424 280 0.39 0.95
W surface 152 1414 786 65.28 39.88
D surface 130 2223 28816 3.61 7.55
KIA -x= 0.9166  Overall accuracy = 96.27

Statistics for traditional HNN super-resolution mapping image using fused
image without image registration error for the PAN

Grass W surface D surface ErrorO (%) ErrorC (%)
Unclassified 2 12 16
Grass 73755 1006 331 0.37 1.78
W surface 2002 1861 212 54.30 18.20
D surface 73 1193 29337 1.87 4.14
KIA —k= 0.9365  Overall accuracy = 97.18

Statistics for traditional HNN super-resolution mapping image using fused
image from PAN imager registration error of 1 pixel

Grass W surfaceD surface ErrorO (%) ErrorC (%)
Unclassified 3 13 32
Grass 73525 972 477 0.68 1.93
W surface 275 1716 391 57.86 27.96
D surface 229 1371 28996  3.01 5.23
KIA-x= 09217  Overall accuracy = 96.52

factor of 12 was used to produce a 0.7-m spatial resolution map.
With 6000 iterations and weighting constants of k1 = 70, ke =
70, ks = 100, k4 = 70, and k5 = 100, the HNN network using
the fused MS image without PAN image registration error and
the local endmember spectra produced the land cover images
in Fig. 14(j)—(1). Using the same weighting constants with the
fused image obtained from the PAN image with image registra-
tion RMS error of one pixel (the accuracy can be obtained nor-
mally in the geometric correction process) the HNN produced
the land cover maps as in Fig. 14(m)—(0). Accuracy statistics of
the predicted land cover map are given in Table III.

In comparison with the hard classification and the traditional
HNN superresolution mapping, the resulting land cover map
produced by the HNN using the fused image is visually more
accurate. Similar to the simulated IKONOS dataset, the greatest
improvement can be seen in the white surface class, where al-
most all subpixels belong to small objects. Without information
from the fused image, the white surface subpixels of the linear
objects in Fig. 12(b) were clustered into larger objects to satisfy
the HNN goal functions as in Fig. 14(h). Although the fused
image contains error due to the image registration error of the
PAN image, the small and linear white surface objects can still
be mapped and their shapes look similar to those in the reference
image. This fact suggests that the new technique can be used for
applications such as target identification.

The accuracy statistics showed a considerable increase in ac-
curacy with the new technique. Overall accuracy of the land
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Fig. 15. Effect of the image registration on KIA value of resulted subpixel map

using the HNN superresolution mapping using the fused image.

cover map increased by around 3% from 94.21% for the hard
classification to 97.18% for the superresolution mapping using
the fused image without image registration error. With the fused
image produced by the PAN image with image registration error
of 1 pixel, the accuracy of the resulting 0.7-m land cover map
increased around 2% and 0.5% in comparison with the results of
hard classification and the HNN superresolution mapping tech-
nique, respectively. The KIA value increased from 0.8685 for
the hard-classified map and 0.9166 for the traditional HNN sub-
pixel map to 0.9365 for the superresolution mapping using fused
image without PAN image registration error and 0.9166 for the
superresolution mapping using fused image with PAN image
registration error of 1 pixel. Comparing with the resulting sub-
pixel map produced by the HNN when the fused image was not
used, the accuracy of the thematic map produced by the new
technique (without PAN image registration error) increased ap-
proximately 1% in terms of overall accuracy.

Similar to the experiment involving simulated IKONOS
imagery, amongst the three land cover classes, the accuracy of
the white surface class increased most with the omission error
reduced from 85.31% for the hard-classified image and 65.28%
for the traditional HNN superresolution mapping to approx-
imately 54% and 57.85% for the new HNN superresolution
mapping technique with and without PAN image registration
error, respectively. The commission error reduced from 30.79%
and 39.88% to 18.20% and 27.96%, respectively after using the
fused image. The increase in accuracy of the other two classes
was not as great as that of the white surface class since most
subpixels in these classes were grouped into larger objects.

To determine the effect of the image registration error on the
results of the new technique, a series of PAN images with image
registration error ranging from 0.5 pixels to 1.5 pixels were used
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to produce the fused images. Accuracy evaluation of the re-
sulting land cover maps using these fused images based on the
KIA value was implemented and presented in the plot in Fig. 15.
Obviously, the plot shows that the KIA value reduced as the
RMS image registration error increased. When the RMS image
registration error increased to 1.5 pixels, the resulting subpixel
map predicted by the new technique was less accurate than the
results of the HNN without using the fused image. However,
with the fused image produced from a PAN image with RMS
error of one pixel (the accuracy of image registration that can
be usually obtained in geometric correction of remotely sensed
images) the accuracy of the subpixel map produced by the HNN
superresolution mapping using the fused image was greater than
that produced by the HNN superresolution mapping technique
without using the fused image. It is recommended that the new
technique should be used only if the PAN image is registered
with an RMS error equal or smaller than one pixel.

V. CONCLUSION

This paper introduces the use of fused images for superreso-
lution mapping. Data from the fused images were incorporated
into the HNN optimization using forward and inverse models
in the form of the reflectance constraint. The value of the con-
straint was calculated based on a linear mixture model, which
used both global and local endmember spectra. The effective-
ness of the technique was examined using both: 1) simulated
IKONOS dataset and 2) a degraded QuickBird image (with
and without image registration error). In both cases, the pro-
portions images were supplemented by a simulated fused image
and original MS image. The accuracy evaluation was imple-
mented based on the KIA, overall accuracy, and omission and
commission errors.

The results demonstrated that fused images can be used as
a source of supplementary information for the HNN to pre-
dict land cover accurately at subpixel spatial resolution from
simulated and real land cover proportion images. The analysis
demonstrated a considerable increase in accuracy with the new
technique, particularly for land cover features at the subpixel
scale. For larger features, the technique increased the accuracy
slightly. In addition, visual inspection of the resulting image
showed pleasing improvements. The analysis also suggests that
the new technique can be applied only if the RMS image reg-
istrion error of the PAN image is equal to or smaller than 1 pixel.

The result of the experiments suggest the potential for com-
bining image fusion and superresolution mapping processes for
real data. Thus, future research will develop a HNN to incorpo-
rate directly real panchromatic imagery as supplementary data
to increase the accuracy and detail of the predicted subpixel land
cover map.
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