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Abstract.

In this paper an empirical drag prediction model plus design of experiment, Tesponse surface and
data-fusion methods are brought together with CFD to provide a wing optimisation system. This
system allows high quality designs to be found using a full three-dimensional CFD code without

the expense of direct searches.
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Introduction

In this paper we make use of the Southampton multi-level wing design environment{1] to study
the merits of data fusion when applied to three-dimensional CFD solves over a transonic wing
system. Here the aim 1s to build a multi-fidelity Response Surface Model (RSM) [2] using both
empirical [3] and CFD data to model variations in drag at fixed lift as gross changes are made to
the overall wing parameters. All the results reported here have been produced using the
OPTIONS design exploration system [4]. '

The work reported here fuses together data coming from empirical and CFD based drag routines
using Design of Experiment (DoE) techniques[S5, 6] and Kriging[7] to build RSM's[8]. Variants
oh these methods have been used in aerospace design for some time. However, so far they have
mostly been used to accelerate direct optimisation approaches using expensive codes[9]. It is
only relatively recently that it has been proposed that they might be helpful in multi-level analy-
sis (sometimes termed multi-fidelity or zoom analysis)[10-14]. The main aim in multi-level anal-
ysis is to use the DoE and Krig to produce a RSM that models corrections to the low cost,
empirical analysis so that the correction model, together with the drag model of the original con-
cept tool may be used in lieu of the full CFD code. This provides results that are both well cali-
brated and capable of being used outside of the scope of the original concept tool in a seamless
fashion.




An example and some basic searches

Before commencing a discussion of multi-level approaches it is useful to first briefly illustrate
the use of the wing design environment for direct searches, using either the empirical or CFD
solvers. Here the response being studied is the drag of a transonic ¢ivil transport wing. A simple
test problem has been constructed with the aim of optimising the wing for operation at Mach 0.
785 and a Reynolds number of 7.3 million. The objective is minimization of-wing D/q as calcu-
lated by the CFD solver with target lift, wing weight, volume, pitch-up margin and root triangle
layout chosen to be representative of a 220 seat wide body airliner. Limits are placed on the
design variables that are typical of work in this area.

,\\{E’//S

Figure 90-1. initial wing geometry and overall CFD meshing (plan view shows upper surface supersonic
Mach contours).

The drag is computed either using the Tadpole concept design tool developed by the former Air-
bus division of BAE SYSTEMSJ3] or by using the commercial MGAERO CFD code which is a
viscous coupled Euler solver[15]. The input geometries to the CFD solver are created using a set
of orthogonal functions derived from NACA transonic foils [16,17]. Typically the Tadpole anal-
ysis takes a few seconds while the Euler analysis may require up to two hours on a 1GHz Pen-
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tiurm 1T processor. Results from these two systems are detailed in Table 1 while Figure 1
illustrates the equivalent geometry. Notice that in this case the wing is defined by 11 parameters
and also that constraints are placed on the wing volume, under-carriage bay length, pitch-up
margin and weight. At all times the angle of attack is set to generate the required lift and the
wing weight changes in a realistic fashion as its dimensions alter. Here, the two methods yield
drag estimates that differ by some 8% despite the careful validation of the Tadpole code and
considerable effort in attempting to get the drag recovery from the Euler code to work in a
directly compatible fashion[18, 19, 20]. This is partially due to the public domain wing airfoil
sections used to generate the CFD geometry, which differ from the commercial sections for
which Tadpole is calibrated

Lowertimit 7 vale T Uppertimit 0 Quantiey unity)
100 ' 250 _ Wing area (m?)
6 . 12 Aspect ratio
6.2 . 0.45 Kink position

25 . 45 Sweep angle
(degrees)

04 0.7 ’ Inboard taper ratio
0.2 0.6 Qutboard taper ratio
0.1 Root t/c

Kink t/c

Tip t/c

Tip washout
(degrees)

Kink washout frac-
tion

Wing weight (N)
Wing volume (m3)
Pitch up margin

Undercarriage bay
length (m)

D/q (in?) — from
Tadpole

D/q (m2) — from
MGAERO

Table 90-1. initial design parameters, constraint values and objective function values.

Having set up this simplified design problem it may then be very rapidly optimised if the empiri-
cal code is used to estimate the drag. Here a 25 generation Genetic Algorithm (GA) search with
a population size of 200 members has been used[21] followed by a gradient descent search to
fine-tune the final optimum[22, 23], see Table 2. Notice that the optimisation has driven the
wing volume constraint down to its limit and also that the sweep angle has been increased con-
siderably, although the total wing area is little changed. The drag has been reduced by over 9%
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(as predicted by the Tadpole code). Such a search process represents the current everyday activ-
ity of a concept design team. Having carried out this study the Southampton system then allows
the drag to be checked by invoking the CFD solver — this result is also recorded in the table and
it is seen that again the predictions still differ, now by 12%. The CFD predicted drag has, how-
ever, been decreased by nearly 13%. '

Lowerlimit " Value - Upperlimit °  Quantity (units). -
100 168.5 250 Wing area (m2) ,
6 9.32 12 Aspect ratio
0.2 0.244 Kink position

25 31.8 45 Sweep angle
(degrees)

0.4 0.516 0.7 Inboard taper ratio
0.2 0.227 0.6 Outboard taper ratio
0.1 0.104 Root t/c

0.115 Kink t/c

0.063 Tip t/c

4.7 . Tip washout
(degrees)

0.68 . Kink washout frac-
tion

133895 135000 Wing weight (N)
40.0 Wing volume (m3)
5.04 5.4 Pitch up margin

3.51 Undercarriage bay
length (m)

D/q (m2) — from
Tadpole

D/q (m2) — from
MGAERO

Table 90-2. final design parameters, constraint values and objective function values for the best design
produced by the direct Tadpole search.

Given the difference in drag between the two predictions it is interesting to check whether a
direct search applied to the CFD code would have produced a similar design geometry. Table 3
gives the results of such a study, although now the GA optimisation has been reduced to 15 gen-
erations and a population size of only 100 and the final hill-climbing search has been omitted, all
to save time. Even so this search represents some 150 days of computing effort, here carried out
on a cluster of PC's running in parallel over two weeks (the Tadpole search took ten minutes!).
The extreme cost of such searches makes them infeasible for everyday use — but they do pro-
vide benchmarks against which to compare other results. Notice that in this case the drag is
reduced by some 14% (as predicted by the Euler CFD code) and that the two codes still do not
agree on the resulting drag, now differing by 19%. Comparing Tables 2 and 3 it is apparent that
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the two methods converge to somewhat different optima for this design study — the Tadpole

predicted drag in Table 3 being nearly 5% higher than that in Table 2 while at the same time the
CFD predicted drag is slightly more than 1% Jower. Moreover, the CFD based wing has a signif-

icantly larger area.

Response Surface Modelling

The two searches described in the previous section simply involved applying optimisation meth-
ods directly to the analysis codes, in this case using Genetic Algorithms for wide ranging
searches and then gradient descent methods for local improvement (if they can be afforded —

recall that gradient descent methods cannot normally make use of parallel computing environ-

ments). Even with parallel computing, searches on the full Euler code are still very expensive to
se Surface Mod-

carry out. Consequently, maiy workers in this field advocate the use of Respon
els (RSM's) where surrogate meta-models are produced by curve fitting techniques to samples of

the expensive data[7, 8].

‘Lower limit Upperlimit  Quantity (units)
100 250 Wing area (m?)
6 9.3 12 Aspect ratio
0.2 0.406 0.45 Kink position
25 252 45 Sweep angle
(degrees)
04 0.683 0.7 Inboard taper ratio
0.2 0.259 0.6 " Outboard taper ratio
0.1 0.143 0.18 Root t/c
0.06 0.096 0.14 Kink t/c
0.06 0.069 0.14 Tip t/c
4.0 45 5.0 Tip washout
(degrees)
0.65 0.67 0.84 Kink washout frac-
tion
130166 135000 Wing weight (N)
40.0 416 Wing volume (in3)
3.67 5.4 Pitch up margin
2.5 2.56 Undercarriage bay
1 length (m)
2.998 D/q (m2) — from
Tadpole
2.524 D/q (m?) — from
.MGAERO
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Table 90-3. final desion caramelers, constraint values and objective function values for the best desion
produced by the direct MGAERO search.

The basic RSM process involves selecting a limited number of points at which the expensive
code will be run, normally using formal Design of Experiment (DoE) methods[5, 6]. Then, when
these designs have been analysed, usually in parallel, a response surface (curve fit) is con-
structed through or near the data. Design optimisation is then carried out on this surface to locate
new and interesting combinations of the design variables, which may then, in turn, be fed back
into the full code. This data can then be used to update the model and the whole process repeated
until the user either runs out of effort, some form of convergence is achieved or sufficiently
improved designs are reached. This process is illustrated in Figure 2. It is no surprise that there
are a number of variations and refinements that may be applied to the basic RSM approach —
the literature offers many possible alternatives. Here, by way of example, a LPt DoE sequence

[24] is used to generate the initial set of points and a Kriging model applied to build the RSM
[71.

Claster
Paralle]
Analysis

Figure 90-2. RSM based optimisation strategy

Application of Doe and Kriging

To demonstrate basic RSM production, 250 points of an LPt array have been applied to the
example problem of Table 1, which has 11 variables, using the inexpensive Tadpole code and a
Krig built [7] using a Genetic Algorithm and gradient descent two-stage search of the concen-
trated likelihood function to tune the hyper-parameters. To demonstrate the accuracy of this
model 390 further random design points were also computed with Tadpole and then the results at
these further points were predicted using the Krig. Figure 3 shows the correlation plot for this
test data and it may be seen that while some differences occur, the overall correlation coefficient
is 0.991. This good predictive capability is also indicated by a standardised cross-validated
(SCV) residual test.on the original data, where the mean SCV residual turns out to be 0.541 with
just two of the 390 residuals being greater than three (values of less than one represent a good
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model, while those over three indicate poor correlations, i.e., outliers). Moreover, negligible reg-
ularization (regression) is needed to model the data.

w
w

Diq from Krig

o
IS
I’
w

2 25 3 33
Dfq from Tadpole

Figure 90-3. correlation between 390 random Tadpole D/q calculations and those predicted by the Krig
trained on a separate set of 250 LP7 calculations.

These results show that it is possible to build Krigs successfully with this many dimensions
using 250 data-points. This is hardly necessary for Tadpole given its run-time, however, which is
barely more than that for using the Krig itself. The real use of the approach arises when attempt-
ing to model expensive data coming from the CFD code itself. This process is not so successful
since the CFD data is intrinsically much less smooth and contains significant noise. Figure 4
show an equivalent set of results for a Krig built on CFD data, which yields a correlation coeffi-
cient of only 0.4903 — it is clear from the figure that there is much more scatter in these results,
fortunately, mostly for the higher drag data. With this model the mean SCV is 0.929 and now 10
residuals are greater than three, again indicating that this data is harder to model with many more
outliers. Significant regularization is also required.

: * y=0.731x+0.9192
B2 = 04903

Diq from Kiig -

Diq fram MGAERO
Figure 90-4. correlation between 390 random MGAERQO D/q calculations and those predicted by the Krig

trained on a separate set of 250 LPT calculations.

Of course, the real test for the Krig of the MGAERO data is whether or not it can be success-
fully used to optimise the wing design as predicted by the CFD code. So next a two stage GA
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and gradient descent search has been carried out on the Krig RSM and the resulting design eval-
uated with the CFD code Then following the update strategy of figure 2, this design point is
added to the set used to produce the Krig, and the hyper-parameters re-tuned before it is again
used to try and find an improved design. This process can be repeated as many times as the
designer wants or until some form of convergence is achieved. Here 10 such iterations are car-
ried out to yield the result of Table 4. This final design, although better than the initial design
before updates, fails to give D/g values as good as those achieved either by the direct search on
the empirical Tadpole code or on the Euler based MGAERO CFD code. Its performance is 0.7%
worse than the best design achieved by Tadpole optimisation (and using Tadpole predictions for
comparison) and 0.6% worse than that from the direct CFD optimisation. This result indicates
that although the RSM approach commonly yields improved results, these may well not be as
good as direct searches on the underlying codes. This can occur even when suitable steps are
taken to update the surface as part of the process and represents a fundamental limitation of
meta-modelling. The approach is, however, much faster than the direct CFD search since it
requires nearly six times fewer CFD evaluations.

Lowerlimit  Value . Upperlimit . Quantity (units)
100 - 158.7 250 ‘Wing area (m?2)

6 9.781 12 Aspect ratio

0.2 0.367 0.45 Kink position

25 30.18 45 ' Sweep angle
(degrees)

0.467 0.7 ' Inboard taper ratio
0.300 0.6 Outboard taper ratio
0.133 Root t/c

0.106 Kink t/c

0.0627 ' Tip t/c

4.838 . Tip washout
' (degrees)

0.679 . Kink washout frac-
tion

134982 135000 Wing weight (N)
40.0 Wing volume (m3)
4.99 5.4 Pitch up margin

3.05 Undercarriage bay
length (m)

D/q (m2) — from

Krig

D/q {m2) — from

Tadpole

D/q (m2) — from
_MGAERO |
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Toble 90-4. final design parameters, constraint values and objective function values for the best design
produced by the search on the refined MGAERO Krig produced with 10 updates.

Multi-level Analysis

Multi-level (multi-fidelity or zoom) analysis assumes that the designer has at least two different
ways of computing results of interest for the design under consideration. The most obvious way
o use such codes is to search large areas of the design space with the cheap code, followed by a
Jocal search using the expensive code in the areas showing most promise. However, despite the
improvement this can give over a direct search there remain two fundamental problems with this
approach: 1) unless the methods agree very well, there is a danger that the results coming from
one may mislead the other — such differences are apparent in all the results given here, and ii)
the final direct search of the CFD code is still too computationally expensive for routine use.
Clearly what would be preferable is a more sophisticated approach to integrating these sources
of design information, i.e., some kind of data fusion system.

Optimization T
s Optitsization

agle  or  nulti-

chjective

Figure 90-5. fusion based modeling strategy.

This may be achieved if instead of using the RSM to model the expensive CFD code directly, it
is used to capture the differences between this and the cheaper empirical alternative. The RSM
then serves as an online correction service to the empirical code so that when designs are stud-
ied where it is less accurate, the corrections derived from full three-dimensional CFD are auto-
matically included. To begin this process we first take the data coming from the DoE run on
MGAERO and compute an equivalent set of drag results for each point, using Tadpole. The dif-
ferences between the two are then used to form the Krig. Then, when searches are carried out
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and new predictions are needed, these are calculated by calling bo#h Tadpole and the Krig and
summing their contributions, see figure 5. ;

w
“ o s

Oy frarn Tadpole-Krig

)
in

Dy fromn MOAERD

Figure 90-6. correlation between 390 random MGAERO D/g calculations and those predicted by the Tadpole
- Krig fusion trained on a separate set of 250 LPT calculations.

This fusion model may also be tested by its ability to predict unseen data. Figure 6 shows such a
plot where the same 390 results used earlier are compared with the drag values coming from

direct calls to MGAERO and it may be seen that while significant differences do still occur, the

overall correlation coefficient is now 0.7319 as compared to 0.4903 for the Krig based solely on

the MGAERO data. This improved predictive capability arises despite the mean SCV residual of

the Krig being 1.224 with 22 of the 390 residuals being greater than three. This is because the

Krig is now not used alone, but as a corrector to an already well set up empirical method, i.e., a

combination of black-box and physics based estimators is being used and so deficiencies in the

Krig are compensated for by Tadpole and vice versa. The correlation coefficient measures the

effectiveness of this combined process. Having produced this fusion model it can then be used to
try and optimise the design being studied. Table 5 shows the results if 10 updates are added fol-

lowing the strategy already outlined.

With this approach the improvement in MGAERO drag before updates is almost as good as that
from the direct search on the code while after updates it is 0.3% better. Moreover, after the
updates the Tadpole drag is over 1% better than for the direct search on the Tadpole code ar the
same time. The final design is illustrated in Figure 7. This optimisation process again uses
around one sixth of the computing effort of the direct search on the CFD code.

S e S . L - Quantif Imtlal Value
‘Lower limit /alue’ © - Upper limit -~ (units) -~ from Tablel
100 . 250 Wing area (m2) 168
6 . 12 Aspect ratio 9.07
0.2 . 0.45 Kink position 0.313

25 2 45 Sweep angle 271
(degrees)

0.4 4 0.7 Inboard taper 0.598
ratio
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. T Quandity. - Tnitial Value
Lower limit = oL - Upper limit © (units) 7 from Table 1
0.2 0.6 QOutboard taper  0.506

ratio
0.1 0.18 Root t/c
0.06 0.14 Kink t/c
0.06 0.14 Tip t/lc

4.0 5.0 Tip washout
(degrees)

0.65 0.84 Kink washout
fraction

128888 135000 Wing weight 127984
™)

40.1 Wing volume 41.73
(m3)
Pitch up mar-
gin
Undercarriage
bay length (m)

D/q (m2) —
from Krig

D/q (m?) —
from Tadpole

D/q (m2) —
from
MQ,AERO o
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Table 90-5. final design parameters, constraint values and objective function values for the best design
produced by the search on the refined MGAERO / T: adpole difference Krig produced with 10 updates
(together with those for the initial design).

Fligure 90-7. geometry of final design produced by the search on the refined MGAERO / Tadpole difference
Krig with 10 updates (plan view shows upper surface supersonic Mach contours).

Conclusions

In this paper three distinct methods for carrying out aerodynamic design optimisation are
described: direct optimisation of the user's analysis codes, search of a response surface derived
from the user's codes and search of a response surface derived from two related but different
fidelity user codes. The latter multi-level or _fusion based" approach seeks to combine the speed
of fast empirical codes with the precision of full three-dimensional CFD solvers. In the study
reported here the fusion based approach is shown to outperform direct search of the CFD code at
considerably reduced cost while also being more accurate than a simple response surface method
using only data from the CFD code.
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