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Abstract

In this paper, a stochastic component mode synthesis method is
developed for the dynamic analysis of large-scale structures
with parameter uncertainties. The main idea is to represent
each component displacement using a subspace spanned by a
set of stochastic basis vectors in the same fashion as in
stochastic reduced basis methods [1, 2]. These vectors
represent however stochastic modes in contrast to the
deterministic modes used in conventional substructuring
methods [3]. The Craig-Bampton reduction procedure is used
for illustration. A truncated set of stochastic fixed-free modes
and a complete set of stochastic constraint modes are used to
generate reduced matrices for each component. These are then
coupled together through necessary compatibility constraints to
form the global system matrices. The advantage of using
stochastic component modes is that the Bubnov-Galerkin
scheme can be applied for the computation of undetermined
coefficients in the reduced approximation. Explicit expressions
can be obtained for the responses in terms of the random
parameters. Therefore the statistical moments of responses can
be efficiently computed. The method is applied to a test case
problem. Results obtained are compared with the traditional
Craig-Bampton method, the first-order Taylor series and
Monte Carlo Simulation benchmark results. We will refer to
the proposed method as ROBUST or Reduced Order By Using
Stochastic Techniques.

1. Introduction

Structural systems are often analyzed assuming that the
modeled parameters are deterministic. However, parameter
uncertainties exist in these systems and can make the
prediction of the responses, based on nominal design invalid.
Also, analyzing a system with uncertain parameters means that
all possible physical realizations of these parameters must be
numerically simulated. This allows for accurate statistical
information and hence a better design. Stochastic methods of
analysis are then required i.e., parameter uncertainties should
be considered as random variables.
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In order to address this concern, new methods of analysis are to
be developed. The review paper by Manohar and Ibrahim [4]
of the state of the art in stochastic structural dynamics reveals
that the perturbation methods appear to be the most popular
technique for approximating the statistics of the
eigenparameters and forced responses of uncertain systems.

The popularity of these methods can be primarily attributed to
ease of implementation and computational efficiency.
Analytical expressions for the mean and standard deviation of
responses can be derived as functions of random inputs.
However, the perturbation methods give reasonable quality
results for the statistical moments only when the coefficients of
variation of the random parameters are small. Further, the
quality of the approximations often tends to deteriorate
significantly when the frequency of excitation increases.

Reliability methods have also been developed for determining
the statistical structural response characteristics. Most of these
methods focus on the estimation of the probability of failure
associated with a performance function and a most probable
point search. A comprehensive review paper by Rackwitz [5]
summarizes the theory and different methods of structural
reliability, particularly the first and second order reliability
methods. Numerical analyses in structural dynamics are
usually conducted by using the finite element method. It is
generally assumed that each term of the random coefficient
matrices (mass and stiffness) can be expressed as a random
polynomial in terms of a finite number of random variables.
This assumption is not limiting. The rapid advances made in
the area of stochastic finite element analysis make it possible to
readily arrive at such representations of parameter uncertainty
using techniques as the Karhunen-Loeve expansion scheme,
see for example, Ghanem and Spanos [6]. The reader is also
referred to a recent state-of-the-art report on computational
stochastic mechanics by Schueller [7] for more details
concerning parametric models of random uncertainties in finite
element models.

However, in order to fully exploit such representations [5, 6,
7], efficient numerical schemes are required for statistical
analysis. For large-scale analysis of structural systems, more
adequate techniques must be derived. The research conducted
here is motivated by the need of accurate and efficient reduced-
order modelling that allows reliable statistical assessments of
the effects of parameter uncertainties. Such methods are
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increasingly needed for example in the

turbomachinery bladed disks [8, 9].

design of

One class of reduced-order modelling techniques is the well-
known Component Mode Synthesis (CMS), sometimes refered
to as substructuring. CMS is widely used to study large-scale
coupled component structural systems. These methods consist
essentially of a separate determination of the modes of each
component followed by synthesis of the entire system modes.
Reduced-order models of substructures are then obtained using
truncated sets of component modes and the original structure
can be synthesized through necessary compatibility constraints.
Different boundary conditions can be used to determine the
component modes; the most commonly used being fixed and
free interface modes. Since the finite element method is
frequently used as the basis for modeling structural
components, these methods are very convenient when the
number of generalized coordinates and the computational cost
are to be reduced for dynamic analysis of complex systems.
But, a trade-off must be made between efficiency and
accuracy.

The first paper to discuss CMS appears to be published by
Hurty [10] in 1965. He presented the foundations of an
approach based on fixed-interface modes and constraint modes.
In 1968, Craig and Bampton [11] modified Hurty’s method and
the concept of CMS became readily usable in industry (here
refered to as the CB method). They treated all interface
degrees-of-freedom together in contrast to Hurty’s method
whereas the interface degrees-of-freedom are separated into
rigid-body modes and static redundant constraint modes.

The paper by Benfield and Hruda [12] also presented a method
to determine the vibration modes of a complex structural
system by retaining only component vibration modes. In this
method, component interface modes are not used. In [13]
Rubin presented a free-interface method with residual
flexibility and inertia where the physical interface degree-of-
freedom are retained to solve for an arbitrary force.

In contrast to Rubin’s method, Craig and Chang proposed in
[14] a free-interface method with residual flexibility. Here, all
the interface degree-of-freedom are free and a complete set of
residual attachment modes are used to supplement the normal
modes. A recent paper by Craig [1] reviewed the different
procedures used for the formulation of component modes for
substructures and the coupling of substructure models to form
reduced-order models of the original system. These models
have been, in general, successful in the prediction of response
of complex coupled structural systems: bladed disks represent
an excellent illustrative application [15, 16].
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In this paper, we will focus on the Craig-Bampton (CB)
method due to its stability [17] although it had been found that
it presents a slow modal convergence compared to the free-
interface CMS methods. The CB method is a straight-forward
technique and suitable for the reduction of the size of matrices
of large scale finite-element structural components. It
essentially requires in addition to the truncated set of fixed-free
modes (@ formed by s selected modes for each component) a
complete set of static elastic constraint modes (¥). The
additional and unavoidable set of constraint modes allows the
reduced model to span the space of possible motions of the
entire coupled system. Note that the fundamental step for
reducing the original degrees-of-freedom consists only of the
truncation of each component modes at some level assuming
that the higher modes will not have an effect on the combined
system modes.

This paper combines the CB reduction procedure with
probabilistic methods for analysis of large-scale coupled
structural systems with parameter uncertainties. A reduced
order model of each component is first obtained by using a
truncated set of stochastic component modes in the spirit of
Stochastic Reduced Basis Methods [1, 2]. The component
modes are obtained by solving algebraic random eigenvalue
problems with randomly parametrized coefficient matrices.
They are assumed to be a linear combination of a finite number
of random variables.

Subsequently, the Bubnov-Galerkin scheme is employed to
arrive at a reduced-order deterministic eigenproblem to
compute the undetermined coefficients in the approximation.
This enables the statistics of the original random eigenvalue
problem and the frequency response to be efficiently
computed. Some numerical studies are presented on a spring-
mass test case to assess the accuracy of the proposed method.
They are compared with benchmark results computed using the
Monte Carlo Simulation, the traditional CB method and a first
order Taylor series (TS1) applied on the original system.

2. Craig-Bampton Method

To apply this method, the original system is first divided into p
components. For the j-th component, the mass and stiffness
matrices and the physical displacement vector are written in a
partitioned form as follows

. [M M.b} , {K K.b] : Jx."
M] — i i , Kj — it i , XJ - l'
M, M, K, K, X,

where i and b denote the internal and boundary degree-of-
freedom respectively. The physical displacement vector of the

L, M
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J-th component is transformed using the so-called “‘CB
transformation matrix”’, which is expressed in terms of two
sets of component modes

AU

Ver :LO Ibb_!7

where @ is the interior partition of the fixed-interface modal
matrix. In other words the mode shapes that form the matrix

@ are obtained by solving the eigenvalue problem defined by

0

the matrices M, and K, and selecting the s vectors of
interest, i.e.,

K9, =4M,9, (&)
and

C=[¢,,0,,....,9,]. @)
The corresponding eigenvalues A,, [=1,...,5 are also

collected into a diagonal matrix A’. W is the constraint-
mode matrix, obtained by solving the first block of equations
from the following static problem

10 |

K, K, ||¥|_
L{bi KJ[I,J'LRJ’

where R is the reaction force matrix due to the imposed unit
displacements and

)

¥=--K, K,. ©)

Note that the constraint modes in W are obtained by
successive unit deflections of each interface degree-of-freedom

while all others are held fixed. The matrices Qand I,, in

equation (2) or (5) are null and identity matrices respectively.
Using equation (2), the physical displacement vector of the j-th
component can be now transformed to a reduced vector of
generalized and physical coordinates, i.e.,

X! - [q’ J(I)q"Jr‘I’ij
x’ :J ;l:U(I:B </ =V * (M
*: ) o) (X J

3

where ( " is the reduced set of generalized coordinates for the

J-th component. Combining equations (1) and (2), the CB
reduced mass and stiffness matrices of the j-th component are
given by

[
. T 1 . I
M, =Uly MU, I‘I’ M‘I’ © (M¥+M,) |
. T
| oomW(MYM, M, WM, |
. ®)
an
| A l
A o T I
I(éB =UéB KJUJCB =| @ Kiiq) 0 | ®
L 0 Kbb —Kz‘bTI<ii—le’bJ

Next a transformation matrix . TM j is defined between the

reduced vector of generalized coordinates of each j-th
component and the reduced vector of generalized coordinates
of the entire system. If we consider for example a two-
component system, the following expressions can be written

M
q q’ I 00 0]|¢
o = TMAIX; IL=li0 01 OjH x}) % and
3] (3]
] o)
q’ ] [0 1 0 0]|q
X2 :TMA,X %2{0 00 IHX -
[x3) t

Finally the interface compatibility condition is used to couple
the component matrices together. For a two-component system
and if the interface compatibility is expressed as

XL = Xz =X, , then the reduced vector of the system can be
transformed as follows
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q I 00 ¢

Q| [0 1T 0ff,

X! “lo o0 1 qQ = TMcpqcs (10)
X

x2] [0 0 T U

Then the final synthesized CB mass and stiffness matrices of
the coupled two-component system are given as

} I 0 M, }
Mg=| 0 I MéBib | (n
M, ML, M, M, |
and
A" 0 0 |
KCB=: 0 A 0 { (12)

|0

Using equations (11) and (12), the complete reduced model of
the two-component system can be set up as follows

0 Ko, +Kop, |

M pQep +Coples + Keplep = fop. (13)

where Cp is the reduced modal damping matrix, whose
elements are given by 2&60013i ; & is the damping coefficient
and Ocp, is the i-th natural frequency obtained by solving the

reduced eigenvalue problem defined by M, and K. Ty
is  the by

T .
{(I)‘Tf‘ @'t \1"T1;§.+1P2Tf,.§+fb} , where £/, is the

i i

reduced modal forced vector given

force vector on the internal boundary degrees-of-freedom of
the j-th component and f;, is the force vector on the boundary
degrees-of-freedom for the two-component system. @’ and

Y/ are the fixed-interface modal matrix (see Eqns. (3) and

(4)) and constraint-mode matrix (see Eqn. (6) ) of the j-th
component respectively.

By examining equations (11) and (12), it can be seen that
partitioned matrices can be obtained in a quite straight-forward
manner and they appear in special and compact forms.
However, there is one disadvantage when using the CB

4

method. In the formulation, all the interface modes are retained
in the component’s reduced vector. These ‘additional modes’
can effectively lead to an unsatisfactorily large number of
degree-of-freedom in the reduced model. This is a major
limitation of the CB method i.e., the use of all interface modes
in the reduced model. Some researchers attempted to
circumvent this difficulty.

When analyzing structures such as mistuned bladed disk
systems, the blades and disk are usually treated as distinct
substructures. Castanier ef al. presented a component-mode
approach [18], in which the motion of the blade is described as
the finite element mode shapes of a blade fixed at the disk-
blade interface and the summation of disk mode motions at the
disk-blade interface. In other words, the blade motion is a sum
of disk induced motion and the motion of a cantilevered blade.
Therefore, no constraint modes are needed.

Bladh et al. [16] proposed a secondary modal analysis on a
CB-based reduced model of bladed disks (where disk and
blades are substructures). In other words, only modes of the
intermediate model that fall within the frequency band of
interest are retained. Another difficulty when using the CB
method is the truncation of fixed-interface modes. Admire and
Tinker [19], proposed to use the Residual Flexibility (RF)
method for each component. RF is used to partially account for
the higher modes by determining their flexibility.

3. Uncertainty and CMS

One very important feature of CMS methods is that the modes
used for generating the reduced-order models are deterministic
in nature. Parameter uncertainty or randomness(or mistuning in
the case of bladed disks) is therefore introduced in a
convenient manner once the coupled system reduced matrices
are obtained. This involves, in practice, only examining the
reduced model partitioned matrices. In other words, uncertainty
is introduced in the modal domain rather than the physical
domain, see equations (11) and (12).

A driving factor behind this is perhaps that most of the
elements of the component partitioned matrices (only stiffness
matrix in practice) are readily available from modal test
(experimental modes). Also it is frequently assumed that
uncertainty affects only the component internal degree-of-

freedom but not the interface modes. In other words only A B

J =1l,u.., pare perturbed i.e. a certain distribution pattern is
assumed or selected from a large population of components.

The RF used in [19] for example leads to an approximately
unity mass and all the elements of the system matrix are
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available from modal test. Once a reduced model is obtained, a
complete incorporation of the probabilistic data is possible.
Brown and Ferri [20] for instance, combined the RF method
with reliability methods to efficiently obtain the statistical
characteristics of the desired response variable. Note that in
this approach, the component eigenvalues, eigenvectors and
residual flexibility are used as input random variables.

A recent paper by Mace and Shorter [21] described a local
modal/perturbational method for estimating the statistics of the
forced response of a system with uncertain properties. In their
approach, first they found the global modes of vibration in
terms of the local modes using a fixed-interface component
mode synthesis. Assuming that the modal properties of the
subsystems are assumed to be random, they applied a
perturbation technique that relates small changes in the
subsystem modal properties to changes in the global properties.
Therefore, solving the global eigenvalue problem is avoided.
Finally MCS is performed on the perturbation results.

Yang and Griffin [22] proposed to develop reduced-order
models for bladed disks, in which the modes of the mistuned
system are represented in terms of a subset of nominal system
modes. A statistical analysis will therefore involve the
simulation of large number of mistuned systems. However, it
was concluded in [22] that the nominal modes used for
reduction do not have to be tuned ones. In fact, the modes of a
completely mistuned system could be used as nominal and
their approach could be applied to determine the effects of
additional random mistuning. Also, since reduced-order
models allow for an efficient modeling of the effects of real
physical variations, it is an important issue of translating the
physical variations into these models.

From the above discussion, it can be concluded that solving the
dynamics of large-scale structural systems with uncertain
parameters will involve a combination of substructuring and
efficient probabilistic numerical schemes. Clearly, computing
exact solutions is a non-trivial task. To overcome this,
stochastic component modes are used here to arrive at accurate
reduced order models. Given the statistics of the randomness,
the statistics of the system response are computed in a more
efficient manner than in the traditional CB method while
preserving the same size of the reduced model. This approach
is presented in the next section.

4. Stochastic CB Method

On the lines of the classical CB method, we begin by finding
the first set of modes by reconsidering equation (3) i.e.,

K,-,-(pz =11Mii(P,, where K.

i 1s now a random matrix.

5

» OK
ot 2. —00,. K  denotes the stiffness of

- it,0
k=1 A

Kﬁ = Ki

1,

the unperturbed component system and 9,(,k=1,...,n

denotes the &-th random variable in the j-th component. For
simplicity, we assume that parameter uncertainties affect only
the stiffness matrices. For each eigenvector, we can write the
following

n 0 5
q)l = q)l,o +5q)1 = q)l,o + Z (pl 9/5 ’ (14)
k=1 89k

where n is the total number of random variables in the j-th

0
component and 9@, is the sensitivity of the j-th eigenvector.
k

Therefore the matrix of normal fixed-free modes @ is now
written as

6359,( .
20,

M=

D=0, +5D=D, + (15)

k

i

I

Also the matrix of constraint modes that was given by solving

-1
equation (6) i.e. ¥ =-K, K, is now given by

0, OV
W=V, +5¥ =Y, +Y 30, (16)

k=1 e

1 OK. oY
Note that K, =K, +>—2%60, and — is the
' k=1 aOk a k

sensitivity of the random matrix of constraint modes. —— is

k
obtained by taking the first derivative of both sides of equation
(6), then we obtain

o

.y K, JK, )
UN— —_+____
00,

. I i\
"0, 00,

17

ol'

The transformation matrix between the physical displacements
of the j-th component and the modal coordinates is now

i 1D +5® Y +5Y ]
U -

= 18
S{_O ( (18)
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4.1 Equations of motion

Using equation (18), the physical displacement vector of the j-
th component can be now transformed to a reduced vector of
generalized and physical coordinates as in equation (7). Similar
to the classical CB method, the complete reduced model can be
set up as in equation (13). The generalized coordinates of the j-
th component are first transformed into the reduced model’s
vector of generalized coordinates using the transformation

matrices TM ;. Then, the compatibility condition is applied to

synthesize the entire coupled model using TM_ ;. The
following equations are obtained
Mg +Cyqq + Kyqq =15, (19)

where Mg, Cg, K and F and qgare the random reduced

mass, damping, stiffness matrices, force vector and
displacement vector respectively. Note that in equation (19), all
the possible physical variations are translated in the reduced
model, leading to a better capture of their effects. When the

reduced eigenvalue problem defined by Ky and My is

considered, the statistics of eigenvalues can be computed by
using simulation schemes i.e. by sampling the reduced
representation (equation 19) and repeatedly solving for each
realization of the random parameters.

For the frequency response problem, a two-component system
is considered for the sake of clarity. All the equations derived
here can be readily extended to multi-component systems. Note
that a compact expression can be written for the global
transformation matrix (between the physical coordinates of the
original coupled and the modal coordinates of the reduced
system). For convenience, the original system mass and
stiffness matrices are partitioned as follows

}M‘,_ M%b 0 }
M M +M> M|,
I bi bb bb bi l
| 0 M’ M2 |
ib ii
}K; I{%b 0 }
K K +K*> K|, (20)
bi bb bb bi |

(39

K’ K

|
]_ 0 ib iiJ

and the global transformation matrix has the form

6

o 0 W'
TMS=} 0 0 1 } @l
Lo @2 \IﬂJ

where @ and W’ are the matrices of m mode shapes and
constraint modes for the j-th component, given by equations
(15) and (16), respectively. TM is a matrix of stochastic
basis vectors in contrast to the CB method, where deterministic
modes are used. TMs is used to approximate the random
displacement vector of the original system. In other words, the
vectors in TIM span a subspace in which an approximation is
being made. This approximation is expressed as

q(0)=TM &, (22)

where & is the set of undetermined coefficients in the reduced

T,
basis representation and O ={91,...,9N} is the set of N

random variables. For the computation of the undetermined
coefficients, two variants of the Bubnov-Galerkin (BG) scheme
[1, 2]. For the sake of simplicity, we will present here only the
zero-order BG scheme although the exact BG scheme and
MCS schemes can be applied (equation (22)) for an efficient
computation of the response statistics. The stochastic reduced
basis representation is sampled with random function models
for the undetermined coefficients.

4.2 Zero-order BG scheme

Assuming that the dynamic stiffness matrix of the original
system is A(O) and f is the external excitation force vector,

a stochastic residual error vector is defined as

r(0)=A(0) TM & . (23)

é is determined by enforcing that r(()) is orthogonal to

TM in an average sense. By considering the inner product

of two random vectors in the Hilbert space of random
variables, the following condition results

<TM§ r(0) >, 4)

where *  denotes the complex conjugate transpose and <>

denotes the complex conjugate transpose. By combining
equations (23) and (24), it is obtained
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(TMA(0)TM,&-TM;f)=0. (25)
Equation (25) can be written in a compact form as

AS-BGog = fs-BG0 ’ (26)
Agpg, =(TV[A(0) TM,) and 5 =(TM;1) denote
the 3% 3 reduced dynamic stiffness matrix and the 3x1 force

vector, respectively. For the reduced two-component model,
the partitioned mass and stiffness matrices are shown below

| Mg, (L) 0 0 1
M= 0 My(l) M) |
[0 Mg (L2) M (22)4My (22)]

27)

and
| K, (L) 0 0 |
K%;I 0 K, (1)) K, (12) L
[0 K (1Y) K (22)+K5 (22)]
(28)

where M;_BGO = <UéTMjU§> , Ksi-BG(, = <U§TKjU§> .

Note that M’ and K’ are the mass and stiffness matrices of
the j-th component. The explicit expressions of the elements of

matrices Mg and K pg, are given in the Appendix.

Once the set of coefficients are computed by solving the
reduced-order problem (26), the mean and covariance of the
system response can be evaluated at each frequency point.

5. Example and Results

For simplicity, the stochastic component mode synthesis
approach is applied to a spring-mass problem. It was used in
[20] and consists of two substructures or components. Each of
them has four degree-of-freedom, see Figure 1. Note that this
example is simple but allows gaining an understanding on the
performan&\e of the method. For the full model represented in
Figure 1, the mass matrix is a diagonal matrix and the stiffness
matrix is given by

| k +k, ~k, |
: -k,  k +k ~k, 0 }
I -k, k, +k, —k, l|
| ~k,  k +k, ~k, .
} ~k,  k +k, ~k }
| 0 ~k,  k tk K, |
| -k k|

Full Model
m4 mb m6 m7
A A A A
V Vv V V
k4 k5 k6 k7

Component 1

A A A A

v V |74 Vv

NN RN
N

SN

3

3

N
s\

3

[#%]

Figure 1: spring-mass system

Component 2

A A A
|4 4 |14

American Institute of Aeronautics and Astronautics



For the components 1 and 2, the mass and stiffness matrices
are given by

| m, | |k+k —k 0 |
} m, i I Ik, 4k }
| m, | —k,  k+k, —k, |
L m,/ ZJ L 0 —k,  k, _|
and

| m,[2 ||k =k 0 |
- |k otk ok, |
l m I kg kgthk, k|
L m,J L 0 -k, K J

respectively.

For the sake of probabilistic generality, all the springs have
random stiffnesses. Each spring in the system was assigned a
normal distribution with a mean of 200 and standard deviation

of 0=5% ie. £k =ic—(1+0i), where k is the mean value
and 0, is a random number. Note that results obtained here

i.e. the proposed approach referred to as ROBUST for the
statistics of eigenvalues and frequency responses are obtained
by using simulation schemes. Results are compared with the
traditional Craig-Bampton (CB) method, the first-order Taylor
series (TS1) and Monte Carlo Simulation (benchmark results),
the last two both being applied on the full model.

Also, note that in this work, for the eigensensitivity analysis,
we use the Fox’s method [23, 24] although there exist many
other methods [25-28]. Fox’s method is chosen because of its
efficiency for large-scale problems. The desired eigenvector
derivative is assumed to be a superposition of the mode shapes
computed from the eigenvalue problem of the tuned system.

When using CB or ROBUST, two of the four mode shapes
and one constraint mode for each component are kept for
analysis, leading to reduced models of five degree-of-freedom.
One thousand samples are generated for each random
stiffness. Figure 2 displays the mean of natural frequencies.
The solid line represents the exact MCS results, the plusses
represent TS1, the circles represent CB and the stars represent
ROBUST. Both CB and ROBUST accurately predict the
means of the first four natural frequencies compared to TS1.

8
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Figure 2: Mean of natural frequency.

‘The same story is seen in Figure 3 for the standard deviation of
natural frequencies. Once again ROBUST performs very well
and accurately predicts the first four natural frequencies.
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Std of natural frequency
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Mode number

Figure 3: Standard deviation of natural frequency.
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For the frequency response problem, a single force was applied
at the tip diplacement of the full model on Figure 1. The range
of excitation frequencies span 2 to 12 rad/s i.e., a region
covering the two first modes. At each frequency point the
statistics of the amplitude of tip displacement were generated
using MCS, TS1, CB and ROBUST.

— ExackMCS |
—
- CB ;

- ROBUST | ..

=

0
T

Mean Amplitude of tip displacement, m

o ; g i ; ‘ M )
2 3 4 5 6 7 8 5 10 1 12
Frequeney of excitation, rads’s

Figure 4: Mean amplitude of tip displacement.

+  ROBUST

Std of amplitude of tip displacement

Frequency of excilation, rads’s

Figure 5: Standard deviation of tip displacement.

9

Figure 4 displays the mean amplitude of the tip displacement.
The straight line is MCS, the dashed line is TSI, the crosses
represent CB and the dots represent ROBUST. The pattern is
well captured by the proposed method and the two peak
responses at the resonance frequencies are also well
represented. Note that at these frequencies, CB and ROBUST
do not exactly reach the maximum responses, TS1 always over
predicts them.

The standard deviation of amplitude of tip displacement is
shown on Figure 5. The same legend as in Figure 4 is used.
ROBUST and CB predict reasonably well the trend shown by
the exact MCS results. Two peaks are displayed on this Figure.
They represent the responses, when the system is excited
around the two first modes. The first peak is very well captured
by both CB and ROBUST. The second peak is however not
exactly captured but results obtained are still better than TS1.

6. Concluding Remarks

In this paper, a stochastic component mode approach was
presented for efficient dynamic analysis of structural systems
with parameter uncertainties. The system is divided into
components for which stochastic modes are computed
separately. Reduced random matrices are then obtained for
each component, which can be coupled together in the same
fashion as in traditional substructuring techniques. The main
idea of using stochastic modes can be in fact applied to any
component-mode-base reduced order technique when the
studied system has uncertain parameters. An advantage is that
randomness can be introduced in all component partitioned
matrices and vectors, leading to a complete stochastic analysis
of the effects of uncertain parameters. Using the zero-order BG
scheme, compact expressions can be obtained for the statistical
moments of response. The formulation was applied to a simple
model of a spring-mass structure to estimate the mean and
standard deviation of eigenvalues and frequency responses.
Results obtained are accurate for both problems. It remains to
apply the proposed method to more challenging problems
(large finite element models) to explore both accuracy and
efficiency. Periodic systems could be a good example, where
small perturbations in the structural properties can lead to
significant changes in the dynamic responses.
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Appendix

Here we present the Explicit expressions of the elements of

matrices the reduced matrices MS-BG(, and I(S-BG(,
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