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ABSTRACT

This paper presents two efficient reduced-order modelling techniques for predicting the
forced response statistics of bladed disc assemblies. First, the formulation presented in [1] is
extended to the forced response problem. Component modes for a blade-disc sector are used as
basis vectors, leading to a reduced model of the same size as the number of sectors and allowing
for pass-band based calculations. For each realization of the random system parameters, a
reduced system of equations is solved to compute the displacement vector for each frequency
band of interest. Statistics of responses at each frequency point can be therefore estimated by
performing Monte Carlo Simulations of cost comparable to single degree-of-freedom mass-
spring systems. Second, a stochastic reduced basis approach is applied to the mistuning analysis
problem. Here, the system response in the frequency domain is represented using a linear
combination of complex stochastic basis vectors which span the preconditioned stochastic
Krylov Subspace [2, 3]. Orthogonal stochastic projection schemes are employed for computing
the undetermined coefficients in the stochastic reduced basis representation. These schemes lead
to explicit expressions for the response to be obtained, thereby allowing the efficient
computation of the response statistics. ‘

INTRODUCTION

The dynamic analysis of a perfectly periodic structure such as a bladed disc requires
modeling of only a single substructure or sector i.e. one blade with the corresponding portion of
the disc. Using the theory of cyclic symmetry, the dynamics of the entire structure can be
derived. The computational time and effort are consequently considerably reduced. The
assumption that blades are identical is often considered as the basis for dynamic analysis.

In practice, the existence of small blade-to-blade differences in the structural properties is
inevitable due to material or manufacturing tolerances or in-service degradation. This
phenomenon, random in nature and commonly referred to as mistuning is a practical industrial
problem since blades can exhibit excessive stress levels leading to unexpected failure. This
situation can correspond to the severe concentration of vibration around one or a few blades
while the others practically do not participate in the vibration of the entire system. This can also
lead to significant increases in the forced responses amplitudes compared to when the system is
perfectly tuned (i.e. when the blades’ properties are identical). Mistuning effects must be



included in the analysis if accurate predictions of blades’ amplitudes, stresses or fatigue life are
to be estimated [4, 5, 6].

Unfortunately, when the Finite Element Method is used to model these structures and
thousands of nominally identical bladed disc assemblies are to be simulated using the Monte
- Carlo Simulation (MCS) method, the computational task becomes very difficult. Unless the
number of degrees-of-freedom is kept relatively low within a blade/disc sector, the
computational task is unusually demanding. One way to solve this problem is to build efficient
and accurate computational models for the prediction of blade-response statistics, therefore
allowing for reliable statistical assessments during turbomachinery design process [7, 8].

Two ways of dealing with mistuning problem are presented in this paper. In the first one,
it is assumed that the deformed shape of the entire structure can be described using different
scaling for each tuned sector mode shape [1]. This leads to a reduced model of the same size as
the number of coupled blades and allows to generate results for a specific pass-band of interest at
a substantially low cost. In the second one, stochastic reduced basis methods [2] are investigated
to develop an efficient numerical scheme for statistical analysis [9, 10] of periodic structures
such as bladed discs. The terms of the preconditioned Krylov subspace are used as basis vectors
and the undetermined coefficients in the reduced basis approximation are computed using two
variants of the stochastic Bubnov-Galerkin scheme [11]. This approach leads to an explicit
expression for the response as a function of the random system parameters and enables to
characterize statistically the system response in a computationally efficient fashion.

The system considered is a simplified model of a bladed disc assembly where each blade
is modelled as an elastic beam. Stiffness coupling between blades is provided in the plane of the
disc assumed to be rigid. Mistuning originates from the stiffness at the roots of the blades via
rotational springs at the hub ends of the beams i.e. at the blade root. The boundary conditions at
the root are zero transverse displacement of the beam and a fairly stiff rotational spring to
simulate the ‘fir-tree’ structure and the flexibility of the mounting of a turbo-machinery-blade
fixity. The finite element model of the cyclic beam studied accounts for bending modes only.
Numerical simulations are carried out for weak, moderate and strong interblade coupling cases
and the standard deviation of mistuning is fixed at 5%. Calculations are targeted to the family of
modes corresponding to the first passband i.e., excitation frequencies are chosen around this
cluster of modes. Numerical results obtained using both component mode and stochastic reduced
basis methods are compared with MCS performed on the original system. It is shown that the
present methods give highly accurate results at a computational cost lower than MCS.

EQUATIONS OF MOTION

The system equations of motion in the frequency domain are given by
A(0)q(0)=f1, ()
where A(8)=-w'M+ jwC+K(0) is the random dynamic stiffness matrix of size N i.e. the system
total number of degrees of freedom (dof). If g is the number of dof per sector and p is the number
of sectors in the assembly, then N = px¢q. Generally, p<<g. 0= {Hi} »i=1,..., p is the vector

of p random system parameters, and q(O) is the random displacement response. @ is the

external excitation frequency and j=+/-1. M, K and C denote the system mass, stiffness




and damping matrices, respectively. M and K are written in a compact form using the Kronecker
product notation as

M=1 ®M,, (2)
where I is identity matrix of size p and M, is mass matrix of a sector i.e. a single beam with a
rotational spring at its first end, of size . K(0) is written as a sum of three components

K0)=K,, +K,. +K,, 3)
where K, =1 ®Kj is a block diagonal matrix, representing the stiffness matrix of the
perfectly tuned but uncoupled system; K, is stiffness matrix of a sector, of size g;
Koy =Cx ®K, is a block-circulant matrix representing the contribution of the coupling linear

(2 -1 0 - -1
-1 2 -1 0 O
springs to the system’s potential energy; C, =| 0 -1 "-. -, i | is the connectivity matrix
: |
-1 0 - -1 2

of the cyclic system and K, is a null stiffness matrix except one element whose location
depends on the location of the linear spring connecting two adjacent beams. It is chosen here the
g-1-th element; K . =diag(k,)®I, is the mistuning matrix, where k, =k,6,; k,, is the

mist. rot i

nominal root stiffness and @, is the non-dimensional mistuning parameter for the i-th blade

defined by a number given by a random generator. I, is a null stiffness matrix except the first
element. f is the external excitation force vector chosen to be the engine order excitation force. f
defines the forcing on all blade degrees-of-freedom of the system. It is expressed as

t={e) of,, @
where ¢, =27zn(i-1)/p, i=L,...,p is the phase angle of force for the i-th blade component, n

is the engine order and f;, is the force vector on a single blade, of the same size of the number of
degrees-of-freedom of one blade i.e. ¢.

Pass-band based Reduced Order Model (PBROM)

Using PBROM, it is assumed that the deformed shape of the entire structure can be
described using different scaling for each tuned sector mode shape [1], i.e.,

. AT AT AT T
(I={a1\|l() ,az\y() ,...,ap\p() } , 5

. C 3T .
where \;l(') is the i-th mode shape of a single tuned sector and a = {al,az,...,ap} is the set of

new generalized coordinates. Eqn. (5) can be rewritten using a transformation matrix T as
follows
i=Ta=(,®y")a, (6)



Inserting (6) into (1), replacing the mass and stiffness matrices by their compact
expressions, multiplying both sides of (1) by the transpose of T and using the properties of
Kronecker product, we arrive at the following reduced matrices

M= (Ip ® \I,(i)T)(Ip &M, )(Ip ® w(i)) =1, (‘V(i)TMB‘V(i) ) , )
Koo =(1,® “’(OT)(IP @K, )(1,09") =1, (v K ). (8)
Rown =(1, 09 )(co 0K, (1,040 )=C (v K,00). O

i

)T . i . )T i
s = (1, @ (@ingk, ) 1,)(1, @ 9?) = diag(t, ) (W Tw) . (10)
Note that in the Equations (7)-(10), the expressions (\ll(i)TMBql(i)), (w(i)TKBql(i)),

(\y(i)TK \y(i)) and (q;(i)TI (i)) are known coefficients
spr. I\Il .
The modal reduced viscous damping matrix C is assumed to be diagonal and its
elements are given by
¢, =2w, (11)
where @, is the i-th natural frequency obtained by solving the reduced eigenvalue problem

defined by M and K, +K,,, . { represents the viscous damping coeffcient. The reduced
force vector is

— AT 3T 3T AT

f=(Ip®\|l() )({em} ®fB)={e”"} (\y() fB) (12)
Note that the reduced modal matrices and vector are of the same size of the number of blades,
Le., p. This means that for one realization of the system random parameters, the following
reduced set of p differential equations will be computed to find the new displacement vector and
study the effects of random mistuning, i.e.,

(—m2M+ij+K)a=f. 13)
Statistics of the responses at each frequency point can be therefore estimated by averaging over a
large ensemble of realizations of the mistuned system. The advantage is that these statistics are
computed at a cost of mass-spring models of the same size as the number of blades. It can be also

noted that the reduced matrices and vector in (13) have the same structure as those of a mono-
coupled single-degree-of-freedom component model of a bladed disc [6].

STOCHASTIC REDUCED BASIS METHODS (SRBMs)

The fundamental idea of SRBMs is to approximate the solution of Equation (1) using a
subspace spanned by a set of stochastic basis vectors. A theoretical justification was presented in
[2, 3] for employing the terms of the preconditioned stochastic Krylov subspace as basis vectors.
It was shown that the solution of a linear random algebraic system of equations can be
approximated to an arbitrary degree of accuracy using this set of basis vectors [9, 10]. If K, is

the stiffness matrix of the perfectly tuned system, i.e., K, =K_, +K,_,then K(0)=K

coup. unc, ?

can

mist.

be expanded as



K(0)=K0+AK=KO+EIJ:K[¢9[, (14)
i=1

where AK is the deviation of the stiffness matrix due to mistuning and K, is a deterministic

matrix related to the baseline tuned structure. Note that this representation is chosen here for the
sake of convenience. This results in the following expression of the dynamic stiffness
A(B)=A,+AA, (15)
where A, =-0’M+ joC+K, and AA =AK. For the representation of the random stiffness
matrix in Eqn. (14), and further by employing the matrix A as a preconditioner, it can be shown
that the terms of the preconditioned stochastic Krylov subspace coincides with the perturbation
series. This implies that the same results can be obtained by using the terms of the perturbation

series as stochastic basis vectors. Here, three basis vectors are used to represent the solution of
Eqn. (1) as

Q(0)= £&w, (0) = ¥ sea (0)5, (16)
where W g, (0)=[w, (0) w,(0) w,(0)]e C* and &=1{£,,&,&,}" € C* denote the matrix of

complex stochastic basic vectors and the vector of undetermined coefficients, respectively. The
first basis vector y, is obtained by solving for the frequency response of the tuned system, i.c.,

Yo =A (17)
The other two basis vectors are given by
vi()= £ 244, s
iz100,
p oy azq
0)= 6.0.. 19
ll’2() Z}Ea@aej i ( )
The response sensitivities appearing in Eqns. (18, 19) are computed as
0y K 20
ael - 0 80 W() ( )

2
Pq__,[0K, 1K K, 3K J on

= - — Uy +——A, —
0600, 0 |86 ° 36, 56,7 a6
Eqns. (18)-(21) imply that the computational cost can be very high (if the sensitivity
analysis of large-scale systems across a broad range of excitation frequencies must be
conducted), specially for large-scale systems. At each frequency point, an independent set of
stochastic basis vectors needs to be computed. Also, this means that A, needs to be repeatedly

inverted at each frequency of interest. Fortunately for cyclic structures, A, is a block-circulant
matrix that can be block-diagonalized using the transformation (E* ® I) A, (E®I), E is the so-
called Fourier matrix of size p; * and I denote the complex conjugate transpose of a matrix and
an identity matrix of size equal to that of a block in A, (i.e., the number of degrees-of-freedom

of a blade-disc sector g), respectively.

Note that the computation of the sensitivities of the displacement q in the modal domain
can be even more efficient if a smaller set of nominal modes (eigenvectors of the tuned system)
to approximately compute the sensitivities of ¢ in the modal basis. Furthermore, the basis



vectors used in PBROM can be employed instead. This means that the modes for one specific
passband can be used to arrive at a reduced dynamic stiffness matrix of the tuned system.
Therefore, in the sensitivity computation, for a large number of frequency points, this reduced
matrix of size of the number of blades is inverted at a low cost.

To compute the undetermined coefficient vector § in the stochastic reduced basis

representation, two stochastic variants of the Bubnov-Galerkin (BG) scheme are used [11]. First
a stochastic residual error vector is defined as

r(e)zA(G)‘PSRBM (0)&—1’. (22)
In the first variant ¢ is determined by enforcing that the stochastic residual r (0) is orthogonal to
W s, (0) in an average sense. By considering the inner product of two random vectors in the
Hilbert space of random variables, it is obtained
(Wi (0) (@) =0, f 3
where <> denotes the ensemble average. Equation (23) leads to the following 3x3 reduced
deterministic system of equations for the coefficients &,,& and &,
(T e (0) A (0)F sy (0)E— W'y (0)F) = (¥onus (8)A(0)W sy, (0)) &~ (‘¥ sen (0)1)=0. 24
Eqn. (23) is interpreted as a zero-order condition and this formulation is henceforth referred to as
SRBM-BG . The deterministic system of equations to be solved for the vector of undetermined

coefficients § can be written in a compact form as

ASRBM—BGna =f SRBM - BG, (25)
where  Agepy_pe =<‘I";RBM (8) A(0) W sgsy (0)> and fop, 46 = <‘I‘§RBM (0)f > denote the reduced
dynamic stiffness matrix and the reduced force vector, respectively. Explicit expressions for their
elements are given in [9, 10]. Once the coefficients &), and &, are computed by solving the
reduced-order problem in Equation (25), the mean ( ,uﬁ) and covariance matrix (Z q) of the

system response at each excitation frequency can be computed as
(/J[‘) = <(i> = <§0'//o + 4:11//1 + 52‘//2> (26)

(4)=(a(0)d )=(TO)&EY(©))=3 £55 (n (0)y;(0)). @D

Compact expressions for the mean and covariance matrix for the case when the elements of 0 are
uncorrelated zero-mean Gaussian random variables are given in [9, 10].

In the second stochastic variant of the BG scheme, it is demanded that the stochastic
residual error is orthogonal to the approximating space of basis vectors with probability one. In

contrast to the SRBM-BG , this alternative formulation referred to as SRBM-BG is exact

because r(0) is orthogonal to W, in an exact sense. This leads to the following reduced-
order system of random equations to be solved for the undetermined coefficients

ASRBM—BGg =f SRBM -BG > (28)
where  Aguy s =P (0)A(0) Py, (0) and Fom pe = Vina (0)f are the reduced-order
random matrix and the force vector.



A sron-565 = F sep-sc » (29)
where Agpy 5o =T (0) A(0)¥(0) and Fyp,, »; =¥ (0)F are the reduced-order random matrix

and the force vector, respectively. Explicit computation of the undetermined coefficients will
involve the symbolic inversion of A g, s - Since this can lead to a complicated expression for

(](0) and the resulting approximation is a highly nonlinear function of the system parameters,

analytical characterization of the response statistics is no longer readily possible. Therefore,
MCS schemes can be applied to efficiently compute the response statistics by sampling the
stochastic reduced basis representation with random function models for the undetermined
coefficients.

SIMULATION RESULTS

A 10-beam discretized model is used to compare the performance of the proposed
methods. Note that in this paper only results obtained by SRBM-BG and PBROM are presented.
In particular, at each excitation frequency, the first two moments of the frequency response
maximum amplitude among the blades are computed in the post-processing stage. These
moments are compared to benchmark MCS results on the full equations. The parameters of the
beam used here for simulations are given below:

Material: Aluminum Young’s modulus, E: 7x10" Pa
Density, p: 2700 kg m™ Length, L: 0.21 m '
Height, h: 0.020 m Breadth, b: 0.012 m

1

Second moment of area, I = bh’ /12 : 8x10™ m*, Mass per unit length, m = pbh: 0.648 kg m~

At each excitation frequency, results for the system response are generated using the two
proposed methods. As mistuning originates only from the stiffness of the blade root (of the
rotational spring at the first end of beam), a large population of random numbers for each blade

root is generated and the standard deviation of the random parameters 0 = {6} si=1..,p Is

fixed at 5%. The viscous damping coefficients is 1%. Three cases of interblade coupling are
considered: weak, moderate and strong. To illustrate the strength of interblade coupling, one
deterministic analysis of a single mistuned system is made. This means that only one mistuning
pattern is randomly selected and simulated. The natural frequencies and mode shapes of both
tuned and mistuned systems are then plotted for each case of coupling strength. The natural
frequencies obtained by PBROM are also plotted to make sure that modes are accurately
approximated using the reduced order model. This also allows the possibility of mode
localization [1] occurrence to be predicted. Note that simulations are targeted to a cluster of
frequencies corresponding to the first passband i.e. the first family of modes.

Figures 1 and 2 correspond to very weak coupling, when the modal density is very high
and all mistuned modes are strongly localized. The mean of maximum frequency responses is
plotted as function of the frequency of the first engine order excitation, see Figure 3. Note that
the excitation frequencies span the range 2343 to 2344 rad/s. Although this is a small range, it
covers all the possible resonance frequencies of the simulated mistuned systems. Both SRBM-
BG and PBROM capture well (compared to respect to MCS results) the behaviour of the mean of
maximum amplitude except the region between 2343.6 and 2343.75 Hz, where PBROM is
performing better than SRBM-BG. Note that PBROM uses the modes of the uncoupled tuned



system as basis vectors for the approximation of the system response. Since the mistuned mode
shapes of the weakly coupled system (strong localization in Figure 2) look like the modes of the
uncoupled (tuned) system, it is expected that PBROM will perform well in high modal density
regions. Figure 4 displays the variance of maximum amplitude of the weakly coupled blade
system. In the mid region, this quantity is accurately predicted by both approximations. But, in
the low and high regions, the prediction made by using SRBM-BG is more accurate than

'PBROM
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Figure 1: Natural frequencies of the tuned and mistuned systems. Weak coupling.
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number; y- axis:normalized amplitude. Weak coupling.
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When the interblade coupling is moderately weak (i.e. now increased), the width of the
natural frequencies of the tuned sytem increases, see Figure 5. The mistuned system shows that
the natural frequencies are now split, but the corresponding mode shapes are still strongly
localized, see Figure 6. Note that the mistuning pattern used for simulation is the same as earlier.
The mean of maximum amplitude across the range 2343 to 2344 Hz is presented on Figure 7.
Once again it is seen that when strong localisation occurs, in the mid region (encompassing
highly clustered resonance frequencies), PBROM performs better than SRBM-BG. However, the
results displayed on Figure 8 for the variance of the maximum amplidude show that in the low
and high regions, while SRBM-BG results match the MCS results well, PBROM can slightly
under or over predict the effects of mistuning.

Finally, the interblade coupling is increased such that mistuning does not have a strong
effect on the modes of free vibration. This is referred to as strong coupling case, where no
localization occurs, see Figures 9 and 10. The modes of the mistuned system are then extended
throughout the structure i.e. each blade participates in the vibration.
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number; y-axis: normalized amplitude. Moderate coupling.

For the forced vibration, the chosen excitation frequencies span the range 2343 to 2344.2 rad/s.
Both SRBM-BG and PBROM predict well the behaviour of the mean of maximum amplitude,
which is displayed on Figure 11. In the middle region however, at certain frequencies, SRBM-
BG does not reach the exact benchmark results responses. The variance of the maximum
amplitude is plotted on Figure 12. Here again, the trend is accurately predicted by the proposed
approximations alhough in the low and high region of excitation frequencies, PBROM can
slightly deviate from the actual responses.



: Tuned
¢ Mistuned-Exact
T PBROM

: BREBM~-BG

-
o

o

Mean of Magimum Amplitude, m
H

- H i i i H i i i i
2343 2343.1 2343.2 2343.3 2343.4 2343.5 2343.6 2343.7 2343.8 2343.9 2344
Excitation Frequency, rad/s

Figure 7: Mean of maximum amplitude. Moderate Coupling. & =1%.

Mistuned-Exact
o%l

Variance of Maxinum Amplitude, m

i s i
2343 2343.1 2343.2 2343.3 2343.4 2343.5 2343.6 Z2343.7 2343.8
Excitation Frequency, rad/s

H
2343.39 2344

Figure 8: Variance of maximum amplitude. Moderate Coupling. & =1%.

2343.95 . . . ;
23439 | - R

! Tuned

: Mistuned-Exact

: Mistuned-ROM
2343.85 |- ST X

o

2843.8 Jr tee et b
BBABTB e e e B

e
v

Natural Frequency, rad's

2343.6 |-

i i i H

2343.55 i L
1 B &
Mode Number

Figure 9: Natural frequencies of the tuned and mistuned systems. Strong coupling.



Figure 10: Mode shapes of the tuned (o) and mistuned (x) systems. x-axis: blade

number; y-axis: normalized amplitude. Strong coupling.
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CONCLUSIONS

In this paper, the PBROM method was extended to the forced vibration problem for
computing the frequency response of mistuned bladed disc assemblies. The fundamental idea is
to approximate the displacement vector by using component modes of a tuned sector as basis
vectors. The statistics of response amplitudes are then estimated by applying Monte Carlo
Simulations. In particular the first two moments of the maximum amplitude among the blades at
each frequency point are computed. Numerical studies on a multi-degree-of-freedom coupled
beam model problem are presented to test the level of accuracy for different coupling cases.
Results were compared with SRBM-BG and benchmark results generated using Monte Carlo
Simulation applied on the original system. Both PBROM and SRBM-BG give reasonably
accurate results for a standard deviation of mistuning of 5%.

Two main conclusions can be drawn from this study. The first one is that in high modal
density regions (where frequencies are highly clustered and mode localization does occur)
PBROM is more likely to work better than SRBM-BG. The reason is the transformation matrix
used for approximating the modes of the uncoupled tuned system (see the block-diagonal form of
this transformation matrix in Eqn. (5)). Hence, any localized mode shape of the entire system
will look like one of the basis vectors. However when the modes are strongly coupled (or are
outside the high modal density regions), the mistuned system yields tuned-like system. In this
case, PBROM can be improved by using the modes of the coupled system as basis vectors. The
second conclusion is that the stochastic approximation SRBM-BG in contrast to PBROM gives
accurate results when the modes are strongly coupled. The reason behind is perhaps the choice of
the preconditionner Ay, i.e., the dynamic stiffness of the coupled tuned system, see Equations
(17), (20) and (21). But in high modal density regions, it could be improved by defining the
preconditionner Ag as the dynamic stiffness of the uncoupled tuned.

For real bladed discs, the strength of interblade coupling is measured by the amount of
interaction i.e., width of veering between families of modes. If the modal density of a specific
cluster of frequencies of interest is high, the basic mode shape can be used to construct a reduced
model in the same fashion as PBROM. If not, PBROM must be based on the tuned mode shapes
of the coupled system. Similarly if the stochastic reduced basis method is to be applied, the
accuracy of results for the responses will depend on whether Ay represents the uncoupled or
coupled tuned system. Research is underway to overcome this by combining the two approaches
together to form a stochastic component mode synthesis method [12]. This involves using
stochastic modes as basis vectors in the same fashion as in SRBMs and applying the BG scheme
for the computation of the undetermined coefficients in the reduced approximation.
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