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ABSTRACT

Methods are presented for reducing time and ef-
fort when performing aerodynamic optimisation us-
ing response surface models. Significant time sav-
ings are made possible by monitoring the conver-
gence of computational fluid dynamics simulations
and omitting regions of poor designs. In so doing,
optimal regions of the design space can be high-
lighted and surface refinement commenced early in
the convergence of the design point set. A strat-
egy employing surface updates with new data at
points of maximum expected improvement is shown
to perform more efficiently than reducing the de-
sign space to the region of the optimum. The re-
sponse surface evolution methods are demonstrated
through an example two parameter optimisation of
a flap track fairing on a commercial airliner wing.

INTRODUCTION

Aerodynamic shape design can be optimised by
simulating the flow over a number of geometries
throughout a design space so as to construct a res-
ponse surface model (RSM). This model is used as
a surrogate instead of new simulations when search-
ing for the optimum. Since the shape of the RSM
is not known a priori, the same amount of com-
puting effort is normally applied to all points when
building the RSM. However, significant time sav-
ings can be achieved if more effort is directed at
finding the optimum rather than modeling regions
of poor designs.
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A ’reasonable design space approach’ has been
used by Balabanov et al.! and Giunta et al.? to
reduce the design space using a low fidelity analy-
sis prior to evaluation with a high fidelity analysis.
This approach relies on the availability of a suit-
able low fidelity model. Often this model will be
empirically based and may not be applicable for
new areas of research or radical designs.

Modern parallel computing architecture makes it
possible to update the RSM at many points simul-
taneously. A sparsely populated design space can
be updated in promising areas by using parallel up-
dates at maximum expected improvement ® optima.
Sobester et al.# have shown that this method en-
hances the efficiency of RSMs by sampling points
in areas of promising designs.

The RSM schemes mentioned above are based
around finding and searching the area of the op-
timum whilst reducing the effort spent in areas of
poor designs. The expected improvement approach
is attractive because it does not exclude areas of
the design space but, rather, intelligently selects
promising regions. When parts of the design space
are excluded there is a chance that the global opti-
mum could be excluded at an early stage.

This paper presents the use of partially con-
verged computational fluid dynamics (CFD) results
when building RSMs. When RSMs are constructed
at intervals throughout the convergence history of
the CFD simulations, it is seen that all design
points converge at a similar rate and information
about the nature of the design space can be ob-
tained early in the iterative process. Regions of
high expected improvement can be found when just
the broad shape of the RSM is known, without fully
converging the CFD data.
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Figure 1: FTF design variables

The following section describes the example
problem used throughout the paper to demonstrate
the methods used. In further sections the data and
RSMs produced by partially converged CFD are
examined and the techniques discussed are applied
to the example problem.

Frap TRACK FAIRING EXAMPLE
OPTIMISATION

Possible schemes for monitoring the convergence of
RSMs are presented through the optimisation of
the Euler (inviscid) calculated lift /drag ratio (%) of
a flap track fairing (FTF) on a commercial airliner
wing (see figure 1).

The FTF geometry and flow domain is defined
in a parametric computer aided design (CAD) pro-
gramming language. Meshing and flow simulation
are performed with the commercial CFD package,
Fluent™ . The complete process from design point
selection using design of experiment (DoE) meth-
ods through to building the RSM is performed by
an automated system. Automating the optimisa-
tion process makes searching large areas of the de-
sign space with many variables and many points
feasible and is the only way to find truly optimal
designs®.

PARALLEL COMPUTING CONSIDERATIONS

Response surface evolution methods have been in-
vestigated using the University of Southampton’s
404 processor Beowulf cluster. To monitor the con-
vergence of simulations it is necessary to have data
for all the designs. Ideally every design point would
be running in parallel. This is not possible for large
DoEs due to the constraints of the job scheduler (a
maximum of 15 jobs using a total of 120 processors
can be run simultaneously). A more feasible strat-
egy is to run the simulations a number of iterations
at a time. Each design point is submitted in turn
with data being collected and monitored when a
full set of simulations is complete. For DoEs of 15
points or less all points can be run in parallel to
each other.

EvoLuTIioN

A two variable optimisation is considered with the
yaw angle and overhang of the FTF behind the
wing trailing edge as the variables (see figure 1).
Yaw varies from -15°(fairing points away from fuse-
lage) to 15°and overhang from 10 to 40% of the
fairing length. A yaw of more than 10°away from
the fuselage violates the geometry description and
points in this region are not simulated. An LP;
DoE® is used throughout this paper to investigate
possible RSM evolution methods. Varying numbers
of points are required and an LP, allows points to
be added whilst maintaining a space filling DoE
throughout. Jones et al.? use the rule of thumb of
10 times the number of variables as the size of an
initial DoE to construct a RSM. The methods in-
vestigated will be compared to a baseline RSM built
from a 20 point LP,; DoE. The force coefficients for
these 20 CFD simulations converged after approx-
imately 250 iterations. The value and position of
the optimum at stages throughout the convergence
of the CFD are shown in table 1. It can be seen that
the approximate position of the optimum is known
early in the simulation after just 50 iterations. The
position seems to converge no faster than the ob-
jective function value, but it should be remembered
that a far higher accuracy is required in the final
objective function than that needed in the position
to allow updates or reduction of the domain.

RSM approximations using the kriging method
(Jones et al.? have used kriging in global optimisa-
tion) are shown in figure 2. A RSM is plotted for



ITERATION | OVERHANG | YAW L
10 0.400 15.000 | 4.083
50 0.354 10.386 | 8.612
100 0.388 9.375 | 10.405
150 0.400 9.375 | 10.429
200 0.395 9.375 | 10.504
250 0.398 9.375 | 10.526

Table 1: Successive searches of the 20pt RSM

every 10 CFD iterations. The hyper-parameters of
the surface are trained by optimising the concen-
trated likelihood function. It is infeasible and con-
trary to the envisaged advantage of the evolution
approach to train the hyper-parameters individu-
ally by hand for each surface. Instead a genetic
algorithm followed by a dynamic hill climber are
used in the same manner for all the kriging sur-
faces to ensure the hyper-parameters are close to
the optimum. These methods are available in the
Options design exploration system”.

Consideration of the RSM evolution shown in
Figure 2 shows that the contours of the surface de-
velop a characteristic shape very early in the pro-
cess and, in fact, the region of the optimum could
be found, though with little confidence, after only
10 iterations. The plots are all on the same scale
so the convergence of the magnitude of the objec-
tive function can be seen as the plots tend towards
white. With all the surfaces available for compar-
ison, as in Figure 2, it is clear when the shape of
the surface has stabilised, but with no prior knowl-
edge, or if the surface has more than 2 dimensions,
a means of measuring the stabilisation of the shape
of the surface is required.

The correlation coefficient 72, which is usually
used to give the quality of a least squares fitting
to experimental data, is used as a measure of the
quality of one approximation ( fn) after n iterations
to that of another(f,_,, ), m iterations earlier. The
correlation coefficient is defined as follows:
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where NN is the number of points to be corre-
lated. This is either the size of the DoE if the
data from a simulation is to be correlated or a
number of points taken from a RSM for a surface

correlation. This measure of the convergence of the
shape of an RSM can be exploited in the strategy
shown in Figure 3.

The geometry is parameterised and a DoE con-
structed. The CFD simulations are then run, but
after m iterations (this number is problem depen-
dent and in this paper m=10 iterations), the data
is read into a data-base and a response surface ap-
proximation of the partially converged data is con-
structed. The CFD is continued and after two loops
of this cycle the correlation between sets of data m
iterations apart can be calculated. When a high
correlation is found the optimisation might take
one of two routes: 1) expected improvement up-
dates can be employed or 2) the domain can be
reduced to the area around the optimum.

Method 1: The expected improvement (EI) func-
tion is searched with a gradient descent method us-
ing a number of restarts to find points of maximum
EI. New simulations are run to the same number of
iterations at these points and a new RSM is con-
structed. This process can be repeated for as many
updates as necessary or time and resources permit.
The simulations are then fully converged before a
final search for the optimum.

Method 2: The RSM is searched and the domain
reduced to the area around the optimum. This re-
duced domain is now updated with new CFD simu-
lation data (run for the same number of iterations)
at the optimum. After two loops through this cycle
the search result can be compared with the update
point. If the results match to within a certain toler-
ance the final loop can be entered, where the points
in the reduced domain are iterated to full conver-
gence.

Two correlations can be considered, the RSM
correlation and the raw data correlation (the former
compares the entire approximated surfaces, while
the latter just deals with the data obtained directly
from the CFD code). The kriging surface correla-
tion for 10, 30 and 60 points are plotted up to 250
iterations in figure 4. The correlation interval is
10 iterations so the value at, for example, 50 it-
erations refers to the correlation between the sur-
face at 50 iterations and 40 iterations. The kriging
correlation is somewhat erratic early in the simu-
lation, particularly for the 10 point data set. The
correlation is affected by the approximation model
used. The correlation falls sharply when the kriging
hyper-parameters change. When more data points
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Figure 2: Evolution of the 20pt RSM

are used the hyper-parameters are more stable and
the surface correlation convergence is improved. It
seems that the surface correlation is an indicator of
kriging’s ability to represent the data - large drops
in the correlation suggest a poorly trained approx-
imation.

A polynomial regressed RSM requires no training
and should therefore not be as erratic as an auto-
matically trained kriging approximation. However
the correlations in Figure 5 suggest that the poly-
nomial surface is struggling to fit the multi-modal
data in the early stages of the simulations, but the
correlation does show smooth convergence for the
10 point data set after 70 iterations. However, as
in the early stages of the simulations presented, a
polynomial model is unable to approximate multi
modal problems and is likely to perform less well
for a different or multi-dimensional problem.

The data correlations shown in Figure 6 are, of
course, independent of the approximation method.
The drop in correlation at 50 iterations which is
seen for both surface correlations is also present
in the data correlation, indicating that there is an
anomaly in the convergence of the data between

40 and 50 iterations. Inspection of the force coeffi-
cient history files for each design point confirm that
one point shows a different convergence rate at this
stage. The data correlation is higher and less er-
ratic for the 10 point data set than either surface
correlations. As more data points are added the
data correlation drops slightly — naturally there is
more scope for error in more points, but anomalies
in the convergence of individual points have less of
an impact on the overall correlation.

Because the RSM will be used when finding ob-
jective function optima, it is naturally a surface
correlation that will give the better indicator of
when updating or design space reduction can be-
gin. However, for a low number of initial design
points, data correlation give a better indicator of
the stabilisation of the convergence of the simula-
tions at an early stage in the iterations.

RSM evolution can be applied to a reasonable
design space approach and a parallel updating
scheme. The value that the correlations should
reach before updating or reducing the domain de-
pends on the size of DoE and the accuracy required.
Different convergence criteria are applied to the ex-
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ample optimisations later in the paper. If a parallel
updating scheme is to be used then a small Dok
(i.e., smaller than the 10 times number of variables
rule of thumb) and the quality of the RSM through
the initial data points is not crucial because the
RSM gains in accuracy as more data is added. Data
correlations are appropriate for use in determining
when to halt the CFD before adding points. If the
domain is to be reduced to a small region around
the region of the optimum then a large initial DoE
is needed and the surface correlation should reach
a high value before clipping the domain and updat-
ing.

The number of iterations between checking the
correlation should not be too small or too large.
The correlation between data just one iteration
apart will naturally be very high and time is wasted
if early convergence is missed through letting too
many iterations pass. The number chosen here
is largely a tradeoff between CFD run time and
restart time. If a finely meshed Navier-Stokes
simulation is being computed, the time taken for
restarts is negligible compared to run time and the
convergence should be monitored regularly. How-
ever, a simple Euler simulation may be significantly
delayed through regular stopping and restarting.

POSSIBLE OPTIMISATION METHODS
BASELINE FULLY CONVERGED 20 POINT DATA SET

Three possible methods will be compared to the
baseline RSM (built from a 20 point LP, DoE)
optimisation desribed above. A search on the fi-
nal plot in Figure 2 gave an optimum % of 10.53
at 39.8% overhang and 9.38°yaw. The final RSM,
along with the optimum depicted by an asterisk,
is shown in Figure7. The total required wall clock
time, assuming parallel computation to the extent
possible on the computing cluster being used (as
described above), is 3 hours.

METHOD 1: EXPECTED IMPROVEMENT UPDATES

The 10 point LP; set of designs are computed un-
til the 10 iteration data correlation (r%,) is greater
than 0.95. This criterion is satisfied after 40 itera-
tions. A RSM of the expected improvement is con-
structed using this data with the kriging method.
A gradient descent search started at each of the
DoE points yields 5 local maximum expected im-
provement points. The surface is updated at these
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Figure 7: 20pt RSM after 250 iterations

points. All points are now run until 250 iterations
and the kriging RSM searched for the optimum.
The final RSM in Figure 8 shows the optimum at
38.13% overhang and 7.5°yaw.

Significant time savings can be made with this
method if sufficient processors are available because
updates can be started before the initial simula-
tions are converged. FEach design point takes 1%
hours across 6 processors. If parallel updates are
performed sequentially as done by Sobester et al.?,
i.e., the initial data set is fully converged before up-
dates begin, the wall clock time is 3 hours. In this
case the updates are started in parallel alongside
the initial data set after 40 iterations. Although
the total CPU time is the same, the wall clock time
is now 1.74 hours — a 42% time saving.

METHOD 2: REDUCE DOMAIN AND UPDATE

The 60 point LP, set of designs are used to ap-
proximate the region of the optimum to allow the
design space to be reduced. The correlation cri-
terion, (r,) is set to 0.95, as before except this
time surface correlations are used since the data
set is large. The surface reaches this criterion after
30 iterations (the surface at this stage is shown in
Figure 9). The design space is reduced by 50% in
both dimensions around the optimum, i.e., to the
top right corner of Figure 9. 20 points remain in the
reduced domain, which means there is no require-
ment for re-seeding with more points at this stage.
Had a smaller initial DoE been used it would have
been necessary to add points. However, the extra
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Figure 8: 10pt RSM with 5 expected improvement
updates

excluded points of this large DoE consumed little
time and the process has been simplified consider-
ably. There is also more confidence in the region of
the optimum having used more data in the initial
RSM.

The 20 points in the reduced domain are now
run until 250 iterations, giving a final wall clock
time of 3.36 hours. The final RSM constructed us-
ing the kriging method is shown in Figure 10 with
the optimum depicted by an asterisk. It is clear by
comparing Figure 10 to Figure 9 that the kriging
method is not approximating the objective func-
tion well. There is some noise in the data and the
variation in % is small (as shown in the colour bar,
there is 0.25% variation across the surface). This
has lead to the surface being over regressed in the
yvaw direction. However, the optimum of the sur-
face is in a valid position (10.53 at 39.8% overhang
and 9.38°yaw) when compared to the other meth-
ods and the process may now be continued as shown
in Figure 3, with further reduction of the domain
and updating at maximum expected improvement.

METHOD 3: SEARCH ON PARTIALLY CONVERGED
RESULTS

Figure 4 shows high surface correlations for a large
number of data points, implying that it may be
possible to carry out optimisation on the partially
converged results alone and only fully converge one
simulation at the optimum. The 60 point L P, DoE
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Figure 10: Reduced domain 20pt RSM

designs are used to construct a kriging RSM. The
surface correlation criterion is set to rf;, > 0.99 to
ensure the surface has stabilised. This criteria is
met after 130 iterations and the resulting surface
is shown in Figure 11. All the data points were
continued to 250 iterations to allow a comparison
of the partially converged surface with the corre-
sponding converged surface. The correlation 7%,
at 250 iterations of 0.996 shows that a good ap-
proximation to the position of the optimum can be
made. A search on the 130 iteration surface gives
the position of the optimum. This point must then
be simulated to 250 iterations to give the % value at
that point. The final wall clock time is 3.52 hours.

The high correlation between the 130 and 250
iteration surfaces suggest that perhaps the correla-
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Figure 11: 60pt RSM after 130 iterations

tion criterion is too stringent. However a criteria of
7%, > 0.98 is met after 70 iterations and the 70 to
250 iteration r%g, correlation is 0.9272. This is low
for a 60 point kriging correlation (recall Figure 4).
The optimum of the 70 iteration surface is at 40%
overhang and 15°yaw. This does not compare well
with results from the 130 iteration surface and the
other methods researched above.

COMPARISON OF PROPOSED METHODS

Table 2 is a comparison of the three RSM evolution
methods investigated along with the 20 point base-
line optimisation and the 60 point fully converged
RSM constructed when investigating method 3.
The three methods investigated all perform better
than the baseline RSM insofar as a higher optimum
is found. The region of the optimum of the FTF
design space is very flat so there is little difference
between the optimum % of the different methods.
Method 1 is the most attractive in terms of time
saving. The calculations for the wall clock time
taken assume that 15 design points are running at
all times. Method 2 could be more attractive in
terms of time if the design space were reduced fur-
ther, but there is a chance that the optimum could
be excluded, particularly if the surface had a num-
ber of local optima. Method 1 excludes none of
the design space and can therefore cope well with
multiple optima. Method 3 offers no time saving
over the 20 point baseline optimisation, but dis-
plays that the shape of the surface is accurately pre-
dicted with partially converged simulations when



Method  O’hang Yaw Opt & CPU hrs Wall hrs
60 LP; 0.400 7.968 10.519 540 6
20 LP; 0.398 9.375 10.526 180.0 3

1 0.381 7.500 10.527 135 1.74

2 0.400 7.500 10.541 222 3.36

3 0.400 8.202 10.585 290 3.52

Table 2: Comparison of evolution methods

compared with the 60 point fully converged sur-
face.

Method 1 appears to offer the best compromise of
speed and accuracy, and ensures a global optimum
will be found even when applied to more complex
RSMs.

CONCLUSIONS

Methods are presented for reducing time and effort
when performing aerodynamic optimisation using
response surface models. Significant time savings
are possible through monitoring the convergence of
CFD simulations and reducing computational ef-
fort in regions of poor designs. Monitoring of the
simulations can utilise both data and surface cor-
relations to predict when the shape of the RSM
is sufficiently stable to allow updating at optima or
reduction of the domain. A strategy employing par-
allel expected improvement updates initiated early
in the convergence of the simulations of the initial
DoE is shown to perform more efficiently than do-
main reduction.
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