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Abstract

A simplified model problem is used to illustrate some of the parameters controlling the radiation of sound into an

ambient medium due to the growth and subsequent decay of subsonic travelling waves, such as may occur via non-linear

interactions in turbulent free shear flows. It is shown that substantial sound may be generated by apparently subsonic

modes as a result of their growth and decay characteristics. Low frequency modes that saturate over a short timescale are

the most effective radiators.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanisms of noise generation are relatively less well understood for subsonic jets than for supersonic jets
[1] where turbulence-driven linear instability modes of the jet column act as important sound sources. In
subsonic jets the radiation efficiency of such modes is low and it appears likely that non-linear interactions
play a role, either as interactions between primary instability waves or (as in the original Lighthill [2] analysis)
as interactions between fully-turbulent velocity components. In Section 2, we consider an acoustic model
problem related to the first possibility, namely non-linear interaction between two instability modes of the jet
column, as a first step towards showing how such an interaction can lead to enhanced sound radiation
compared with that emitted directly by each mode according to linear theory.

The model problem is that of sound radiation from an infinite plane boundary, generalised to allow for
temporal growth and decay of travelling waves on the boundary. The well-known solution for compressible
flow past a wavy wall (see e.g. Ref. [3]) shows that Mach waves are only radiated when the relative Mach
number between the wall and the free stream is greater than one. Likewise when a stationary medium is
excited by a vibrating plane boundary [4], sound is only radiated into the far field from supersonically-
travelling components of the wall motion. By contrast, when in the latter case the surface wave amplitude
grows and decays along the wall it is possible to have sound radiation even when the relative Mach number of
the travelling-wave zero crossings is subsonic. In their model of jet noise radiation from instability modes,
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Crighton and Huerre [5] explored a limited part of the parameter space of this problem, in which the wave
packet envelope variation is asymptotically slow compared to the primary wavenumber. Here we consider
solutions to a related temporal problem involving forced waves on a plane boundary; no restriction is placed
on the growth rate, and the aim is to show how the various parameters control the sound radiation.

2. Model problem

The geometry of the problem is shown in Fig. 1. A uniform fluid at rest occupies the region y40, and is
excited by small-amplitude normal vibration of the boundary at y ¼ 0. As a starting point we take the (x; z)
Fourier transformed wave equation in velocity potential f given by

1

c2
q2f
qt2
þ ðk2

x þ k2
zÞf ¼

q2f
qy2

, (1)

where wavenumbers in the x and z coordinates are denoted kx and kz, respectively, and c denotes the constant
sound speed. This wave equation is solved in the domain yX0, subject to the boundary condition at y ¼ 0
given by

qf
qy

� �
0

¼ AðtÞ expð�iotþ icÞ, (2)

where o is a (real) frequency and c is a phase angle. The amplitude function A satisfies

dlnA

dt
¼ s, (3)

with the local growth rate s specified as

s ¼ s0 for to� D

¼ �
s0t

D
for � DptpD

¼ � s0 for t4D, ð4Þ

where s0 and D are positive constants. By integration of Eq. (3), taking the amplitude equal to one at t ¼ 0 we
have the amplitude history given by

lnA ¼
s0D
2
þ s0t for to� D

¼ �
s0t2

2D
for � DptpD

¼
s0D
2
� s0t for t4D. ð5Þ

This specifies a problem in which spatially-harmonic waves with wavenumber (kx; kz) parallel to the boundary
grow exponentially with time at early (negative) times, saturate over a controlled timescale, and then decay
y

x

Fig. 1. Schematic of the solution domain. A spatially-sinusoidal normal velocity is applied over the entire plane y ¼ 0.
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Fig. 2. Schematic of the input forcing: (a) growth rate variation from Eq. (3), (b) the resulting amplitude variation with time.
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exponentially for large (positive) times (see Fig. 2 for a schematic of the behaviour). This problem is less
restricted than the Crighton and Huerre [5] problem, in which the wave packet envelope is assumed to vary
spatially over a much longer scale than the Fourier wave. Our interest is in the extent to which the controlling
parameters (wavenumber, sound speed, frequency and saturation timescale, normalised versions of which are
defined in the next section) are active in cutting off the radiation from subsonic modes, where ‘subsonic’ in the
context of the specified model parameters means jkj4o=c, with k2

¼ k2
x þ k2

z .
It is instructive to consider Fourier components of the amplitude variation in Eq. (5). Due to the amplitude

variation with time there will be contributions at all frequencies, including those corresponding to supersonic
phase speeds. The possibility of sound radiation from ‘subsonic’ forcing, as defined above, is therefore
consistent with sound radiation from that portion of the forcing spectrum that is supersonic in a conventional
wavy-wall sense.

2.1. Zero wavenumber analytical solution for a step change in growth rate (D! 0)

During the exponential growth phase to� D the solution to Eqs. (1) and (2) is

f ¼ �
expð�gyþ ðs0 � ioÞtþ icÞ

g
, (6)

where

g ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
z þ
ðs0 � ioÞ2

c2

s
. (7)

The sign of the square root is dictated by causality: the real part of g must be positive to avoid solutions which
grow exponentially with y. In the limit s0=o! 0, corresponding to the time-harmonic problem of Ref. [4],
there is a sharp cutoff in sound radiation as the phase speed o=jkj along the boundary changes from
supersonic to subsonic. For finite s0 this transition is smoothed out and the sound field decays exponentially
with distance y from the boundary for all phase speeds. At the same time it grows exponentially with time, up
to t ¼ �D.

For kx ¼ kz ¼ 0 and D! 0 (i.e. a sudden change in growth rate from s ¼ s0 to s ¼ �s0) the solution for
t40 is found in two parts. For yXct we have

f ¼ �
c expð�ðs0 � ioÞðy=c� tÞ þ icÞ

s0 � io
, (8)

which is a wave travelling outwards in y. For yoct, we have

f ¼
c expððs0 þ ioÞðy=c� tÞ þ icÞ

s0 þ io
� c expðicÞ

1

s0 � io
þ

1

s0 þ io

� �
, (9)
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Fig. 3. Analytic (solid) and numerical (n) solution at time t ¼ 20 for the case D! 0, kx ¼ kz ¼ c ¼ 0 and o ¼ s0 ¼ c ¼ 1. (This

corresponds to M !1, G ¼ 0, O ¼ 1 using the definitions in Section 2.2.)
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which for fixed y decays over time t!1 to the constant given by the second term on the right-hand side. An
example for c ¼ 0 and o ¼ s0 ¼ c ¼ 1, starting the calculation at t ¼ �10 and ending at t ¼ 20, is shown in
Fig. 3, where the real part of f is plotted. The analytical solution given by Eqs. (8) and (9) has also been used
to validate a numerical solution (shown on the figure using symbols) based on second-order central
differencing in space and time. In the numerical solution the surface forcing is given by the real part of Eq. (2).

2.2. Numerical solution for arbitrary growth rate and wavenumber

Solutions for arbitrary kx, holding kz ¼ 0, are obtained numerically. To simplify the presentation of results,
we identify three dimensionless parameters. A Mach number (based on the phase speed of the unmodulated
wave) is defined as

M ¼
o

kxc
, (10)

a saturation parameter by

G ¼ s0D (11)

and a normalised frequency by

O ¼
o
s0

. (12)

It may be noted that any spanwise wavenumber is contained in the solutions that follow, by substituting

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
z

q
for kx. The Mach number in Eq. (10) is the ratio of the phase speed along the boundary to the

sound speed in the fluid; G is twice the growth exponent during the saturation process (�Doto0); and O is the
ratio of the frequency to the initial growth rate. Fig. 4 shows a result at t ¼ 20 for M ¼ 0:5, G ¼ 1 and O ¼ 1,
illustrating the generation of sound from a subsonic mode. The calculation was started at t ¼ �10; however
the results are insensitive to start time so long as it is a sufficiently large negative number.

To measure the relative acoustic output of the solution, we introduce a norm N, defined by

N ¼
�
Rþ1
�1
ðqf=qyÞ0ðqf=qtÞ0 dt

c
Rþ1
�1
ðqf=qyÞ20 dt

, (13)

where the subscript 0 implies y ¼ 0. Introducing a factor r (the unperturbed density) in both numerator and
denominator makes the numerator equal to the integral of pressure times normal velocity, i.e. the radiated
acoustic energy per unit area of boundary, while the denominator is a normalising factor equal to the energy
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Fig. 4. Numerical solution at t ¼ 20 for M ¼ 0:5, G ¼ 1, O ¼ 1 and c ¼ 0.
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Fig. 5. Variation of the norm N, illustrating cutoff with decreasing Mach number M for various frequencies O; G ¼ 10, c ¼ 0; ——,

O ¼ 0:2; – – –, O ¼ 1; – � –, O ¼ 5.
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radiated for zero-wavenumber forcing (kx ¼ 0). In Appendix A it is shown that this norm is invariant to the
choice of integration surface. Its value is in reducing each simulation output, of a form typified by Fig. 3, to a
single numerical value that measures the radiation efficiency of the forcing.

Simulations have been carried out to map out the cutoff dependence on M, G and O, as illustrated in
Figs. 5–7. Fig. 5 shows the variation of the norm N with Mach number M for several O, computed for G ¼ 10.
For large O (i.e. temporal growth rate s0 is relatively unimportant) we recover the standard result [4] that
radiation is only significant for M41. For lower frequencies O there is still significant radiation for Mo1, and
as the frequency is further reduced one needs to go to quite low subsonic Mach numbers before the radiated
energy is significantly cut off.

Fig. 6 shows the effect of frequency O and phase c on radiation from subsonic modes (M ¼ 0:5), again for
G ¼ 10. It can be seen that only low frequencies radiate significant energy and that the effect of phase
disappears at low and high frequencies (N ! 1 and N ! 0, respectively). In the intermediate region there is
an effect of the phase c, three values for which (c ¼ 0, c ¼ p=4 and c ¼ p=2) are shown in the figure. Fig. 7
shows the effect of varying both G and O for the case (c ¼ 0, M ¼ 0:5); N is plotted against the combined
saturation and frequency parameter GO2 for various O. A collapse of the curves for different frequencies is
obtained for high values of GO2. We observe that there is a clear cutoff phenomenon for GO2 � 1,
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Fig. 6. Variation of the norm N, illustrating cutoff with frequency O for various phases c; G ¼ 10, M ¼ 0:5; ——, c ¼ 0; – – –, c ¼ p=4;
– � –, c ¼ p=2.
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Fig. 7. Variation of the norm N, illustrating cutoff with the combined saturation parameter GO2 for various frequencies O; M ¼ 0:5;
c ¼ 0; ——, O ¼ 0:2; – – –, O ¼ 0:4; – � –, O ¼ 0:8.
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corresponding to the case where the initial growth is slow (s0 � o2D) or saturation occurs over a long time
scale. On the other hand, when GO2o1, corresponding to a sufficiently rapid initial growth with s04o2D, the
cutoff (even at M ¼ 0:5) is relatively weak, with a radiation efficiency of at least 15% for all the O considered.

3. Conclusions

Analytical and numerical results from a model problem in acoustics have been used to illustrate the sound
radiated from subsonic travelling-wave disturbances in the form of a growing and decaying wave packet, such
as may occur in transitional and turbulent shear flows. The convective growth and decay is replaced in the
model by the temporal growth and decay of a spatially-sinusoidal travelling wave. It has been shown how
sound radiation is progressively cut off as the phase speed is reduced relative to the ambient sound speed,
particularly for high frequencies and slow mode saturation. However, when the initial growth rate is
sufficiently rapid, or the saturation phase is of sufficiently short duration, the cutoff of subsonic waves tends to
disappear and the radiation efficiency approaches unity regardless of Mach number.

In the subsonic jet noise problem, a possible mechanism of sound radiation is the non-linear (quadratic in
the first instance) interaction between instability waves with similar streamwise wavenumbers k1 and k1 þ dk.
On a near-parallel base flow these grow exponentially (with nearly constant exponent), starting from a very
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small amplitude. As they reach high amplitude the associated Reynolds stresses lead to an increase in shear
layer thickness and hence saturation, the same wavelengths now being stable on the changed base flow.
Among the wavenumbers generated by such an interaction is the low wavenumber dk (and hence low
frequency, for a given group velocity) that satisfies all the conditions for radiation given here, even when the
convective Mach number arising from the interaction is subsonic.

Appendix A. Invariance of the norm N

Using the chain rule and substituting the wave equation (1) we can write a conservation law in local form as

q
qy

qf
qy

qf
qt

� �
¼

qE

qt
(A.1)

with

E ¼
1

2c2
qf
qt

� �2

þ
1

2
k2f2

þ
1

2

qf
qy

� �2

, (A.2)

where k2
¼ k2

x þ k2
z . Integration of Eq. (A.1) from y ¼ 0 to y ¼ y1, and from t ¼ �1 to t ¼ 1, givesZ 1

�1

qf
qy

qf
qt

dt

� �y¼y1

y¼0

¼

Z y1

0

E dy

� �t¼1

t¼�1

. (A.3)

The right-hand side is zero, since E is zero for all y at both t ¼ �1 and t ¼ 1. It follows thatZ 1
�1

qf
qy

� �
1

qf
qt

� �
1

dt ¼

Z 1
�1

qf
qy

� �
0

qf
qt

� �
0

dt (A.4)

and the numerator of the norm N defined in Eq. (13) is invariant with respect to integration surface: it will
have the same value whether calculated at the wall or in the far field ky� 1.
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