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Abstract In this paper, an efficient evolutionary optimisa-
tion of a turbine blade firtree root local profile is presented.
The firtree geometry is designed using an intelligent rule-
based computer-aided design system (ICAD) and analysed
using an industrial-strength finite element code. A large
pumber of geometric and mechanical constraints drawn
from past experience are incorporated in the design of the
model. The high computational cost associated with finding
optimal designs using high-fidelity codes is addressed using
a surrogate-assisted genetic algorithm. The initial surrogate
model is first built based on points sampled with a design-
of-experiment method. A database of designs analysed using
the high-fidelity code is built and augmented while the ge-
netic algorithm progresses. In the procedure for deciding
whether the high-fidelity code should be run, a simple 3¢
principle is used instead of searching for the point with
maximum expected improvement. This is combined with an
appropriate ranking of the design points within the database.
Some benchmark test problems are first used to illustrate
the effectiveness and efficiency of the framework. When ap-
plied to the problem of local shape optimisation of a turbine
blade firtree root, significant improvement is achieved using
a limited computational budget.

Keywords Design - Optimisation - Stress analysis

1 Introduction

The concept of using approximations is not new in the
field of structural optimisation; it can be traced back at
least to 1974 when Schmit and Farshi (1974) published the
concept of approximation techniques for structural synthe-
sis. Since then, various approximation methods have been
developed, such as the use of intermediate variables (for
example, the reciprocal of the original design variables
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(Vanderplaats 1999)), force approximations for stress con-
straints (Vanderplaats and Salajegheh 1989), and Rayleigh
quotient approximations for frequency constraints (Canfield
1990), to name a few. These techniques provide an effi-
cient approach to obtaining responses at a reduced compu-
tational cost. For example, using member forces as interme-
diate variables, the optimum design of an 18-bar truss can
be achieved using only eight detailed analyses (Hansen and
Vanderplaats 1990). However, these methods are difficult to
incorporate into existing analysis capabilities and normally
require problem-specific knowledge. It is' even more chal-
lenging to adopt these methods for problems in the field of
multidisciplinary optimisation. Therefore more general ap-
proximation schemes need to be developed to address the in-
creasing cost associated with running full simulation codes
during optimisation.

In recent years, there has been a growing interest in
methods using approximation models in optimisation, in
which the complex simulation codes are treated as black-
box functions (Ahn et al. 2001; Jones et al. 1998; Simpson
1998; Venter et al. 1998). Data collected via evaluations of
the expensive simulation codes at predefined design sites,
often chosen by experimental design methods, are used in
the construction of mathematical surrogates. Various tech-
niques for the construction of approximation models have
been proposed. Perhaps the most popular techniques in-
volve a polynomial approximation created by least-squares
curve fitting to a set of data. Another line of methods is
based on interpolation techniques, which are believed to be
more suitable for data collected from running determinis-
tic simulation codes. Methods of this type include radial-
basis functions (RBF) developed in the field of neural net-
works (Bishop 1995), stochastic-based methods, developed
in the field of geostatistics, commonly referred to as Krig-.
ing as used by Sacks et al. (1989). An efficient procedure for
global optimisation using a Kriging model was proposed by
Jones et al. (1998), in which a branch-and-bound algorithm
was applied to find the point with potential maximum im-
provement for re-sampling. Other techniques using classifier
systems and the concept of space mapping have also been
proposed.
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An explorative comparison was made by Guinta and
Watson (1998) between polynomial and interpolation models
using test problems. A comparative study between neural
networks and response surface models was provided by
Daberkow and Marris (1998) using a preliminary aircraft de-
sign problem. Among various methods, RBF and Kriging
were identified by Jin et al. (2000) as able to produce better
results than other methods under multiple modelling criteria.
Moreover, the Kriging method is statistically more meaning-
ful and allows the possibility of computing error estimates
for untried data points. One of the drawbacks of the Kriging
method is the relatively high computational cost in estimat-
ing the hyper-parameters in the model, especially when large
numbers of sample points are involved.

Apart from the many different methods for construct-
ing surrogates, a number of different frameworks for the
management of approximation models have also been pro-
posed. It has been argued that any effective framework for
managing the surrogates in optimisation is always associ-
ated with particular optimisation algorithms. Therefore, in
principle, there are at least as many possible frameworks as
optimisation algorithms. In general, these frameworks can
be categorised according to the algorithms with which they
are used. There are two broad classes of optimisation al-
gorithms, gradient-based methods and non-gradient-based
methods in which evolutionary algorithms and direct-search
methods are among the most widely used. A rigorous frame-
work was presented by Booker etal. (1999) for the use
of surrogate models with direct-search methods. Frame-
works based on trust regions and gradient-based search
procedures have drawn most attention in the past few
years (Alexandrov et al. 1997; Alexandrov and Lewis 2003;
Guinta and Eldred 2000; Sellar etal. 2003; Wujek and
Renaud 1998; Alexandrov 1998). One of the features pos-
sessed by this type of rigorous framework is that they all
guarantee convergence to a model local optimum. How-
ever, these work with nonlinear programming techniques or
direct-search methods. The number of studies on how sur-
rogate models can be used with evolutionary algorithms is
relatively limited. In these cases, the high computational
cost associated with the successive application of evolution-
ary algorithms to complex, high-dimensional engineering
problems is a known problem, as typical evolutionary algo-
rithms require thousands of function evaluations to converge
to near-optimal solutions. Therefore, the successive use of
surrogate models is believed to be crucial to the practical ap-
plication of evolutionary optimisation methods to complex
engineering systems.

Several attempts have been made in the last several years
to tackle the problem of using surrogate modelling with
evolutionary search methods, particularly genetic algorithms
(GAs). Robinson and Keane employed variable-fidelity an-
alysis models and approximation techniques to improve the
efficiency of the Evolutionary Strategy (ES) (Robinson and
Keane 1999). A procedure using a number of successive
single-point approximation models with a genetic algorithm
(GA) was proposed by Nair and Keane (1998), in which
some domain knowledge was employed to construct the sur-
rogate models and a simple generation-delay approach was

used to control the use of exact models. Ratle proposed
a simple local convergence criterion to decide when the
exact model should be resorted to in a procedure integrat-
ing a genetic algorithm with Kriging models (Ratle 1998).
However, this does not prevent the search from converging
to false optima. A revised criterion was proposed by El-
Beltagy and Keane (1999) for the similar synthesis between
GA and Kriging models, where a gradually reduced toler-
ance was used to control the switch between surrogate and
exact models for each individual in the population. However,
the specification of criteria values in the above methods de-
pends largely on the users and may not be appropriate for
all problems. Nevertheless, the requirement for some sort of
re-sampling was identified as necessary to overcome the in-
adequacy of the surrogate models.

A different type of effort was attempted by Liang et al.
(2000), where a hybrid search procedure was formulated
with the evolutionary search working on the quadratic re-
sponse surface constructed from many local optima obtained
from local searches. This method essentially reduced the dif-
ficulties in building a global surrogate model without chang-
ing the overall landscape of the exact functions. However,
the quality of the final global surrogate model depends very
strongly on the accuracy of the local search results and the -
use of evolutionary search methods in finding global optima
in a simplified smooth landscape with few local optima may
be questionable. Jin also proposed a framework for coupling
Evolutionary Strategy (ES) and neural-network-based surro-
gate models (Jin et al. 2000). Two types of evolution control
methods were presented to decide the frequency at which
the exact model should be used. The common weakness in
the above methods is that neither the historical search data
nor the convergence properties of the evolutionary search
method are fully utilised.

In this paper, a real-coded genetic algorithm was coupled
with a Kriging surrogate model in order to reduce computa-
tional cost without sacrificing the ability of the GA in find-
ing the global optimum for complex landscapes. Instead of
using a simple generation-delay criteria and user-specified
tolerance control parameters, a new approach based on the
posterior variance estimate is used to suggest new sample
points for re-evaluation using exact models. The new sample
points are then inserted into an ordered database storing all
the exact solutions evaluated so far, and the surrogate model
is updated when these new points fall into the section of
the data set used in the construction of the surrogate model.
The following sections start with a description of the Krig-
ing method, followed by detailed discussion of the proposed
framework for incorporating a Kriging model into the ge-
netic algorithm. Test functions are first used to illustrate the
effectiveness of the proposed framework, followed by the
application of the framework to a local shape optimisation
problem.

2 Surrogate modelling

Let Y(x) denote the true response of the system under study
and X = (x1, ... , x,)T denote the vector of design or con-
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trol variables. Sometimes the true response of the system can
be represented in explicit mathematical form, but, in most
cases, knowledge of the system is incomplete or the model is
too complex to represent using explicit mathematical func-
tions. Therefore a complex computer code is often used to
simulate the relationship between the responses and inputs.
‘Whatever the case, assume that observations can be made ei-
ther through physical experiments or computer simulations
at some values of the design variables. In this work, let us
suppose that data has been collected at n points denoted by
x® = (xg'), oDy G =1,...,n) and the associated re-
sponse is denoted by y® = ¥(x®). Let y(x) represent the
approximation model. The relationship between the true re-
sponse and approximation can be represented as follows:
Y(0) = y®) + A®) &)
The difference between the true response and the approx-
imated response, the total error or residual, is due to two
types of errors: one is system error (bias error) denoted
by €(x), which exists because of the incompleteness of the
models employed. The second is random error denoted by
8(x), which exists because of a number of reasons such as
the effect of uncontrollable factors in physical experiments,
discretization errors typically encountered in finite element
analysis and computational fluid dynamics, and round-off
errors, etc. However, numerical errors can usually be con-
trolled so that the output of deterministic simulation codes
can be regarded as deterministic. Therefore the difference
between evaluated response and predictions here is entirely
the system error, as described in the following equation:
Y(x) = y(x) +€(x) @
Consequently the normal distribution assumption commonly
used for e(x) is unjustifiable in this case. This partly explains
why the least-squares model does not always provide a good
approximation to a deterministic computer simulation code,
where multiple evaluations for the same set of inputs will
give the same results. Among various techniques for interpo-
lating such data, radial basis function neural networks (RBF)
and Kriging were identified by Jin et al. (2000) as being able
to produce better results than other methods under multiple
modelling criteria. The choice of Kriging techniques in this
work is due to the fact that this method not only provides
an estimate to the function values but also an estimate of
posterior variance, which is used to control the frequency of
re-sampling. A brief description of the Kriging model used
is provided below and detailed discussions can be found in
the work by Jones et al. (1998).

The Kriging model is typically expressed as
yx) =p+Z(x) ©)
where Z(x) is a Gaussian random process with zero mean
and variance o2, The covariance matrix of Z(x) is given by

e (2(¢). 2(x')) =0k (¥.)

@

where R(.,.) is a correlation function between x¢ and x/.
Different types of correlation function can be employed as
given by Sacks et al. (1989), Guinta and Watson (1998).
A commonly used type of correlation function can be ex-
pressed as

R (xi, xj) = ﬁ exp (—Gk
k=1

where 6y > 0 and 1 < p <2 are the hyperparameters. The
choice of p; =2 would provide enough flexibility for mod-
elling smooth and highly nonlinear functions for most cases.
The hyperparameters 6 are estimated by maximising the
log-likelihood function given by

®

; i| Pk
i J
xk'—‘.xkl )

1 1
) [n Ino? +1n|R]| +;(y—lﬁ)TR"l(y—1ﬂ)] (6)

where o2 and 8 can be derived using the following equations
once the 6 are given

B= (1TR*11)"1 "Ry @)
1
6= ~(y- 1R (y-1p) )

A numerical optimisation procedure is required to obtain
the maximum likelihood estimates (MLE) of the hyperpa-
rameters. Once the hyperparameters are obtained from the
training data, the function value at a new point x* can be
predicted by

5¢) =B +r"R™ (y-1p) ©
along with the posterior variance, given by
TR-1,)2
2o 2 o1, (1I-1"R7'r)
- 1-rR ——— 1
s =0 l: rR™'r+ (ITR‘ll) (10)
where r(x*) = R(x*,x!),..., R(x*,x") is the correlation

vector between the new point x* and the training dataset.
This quantity provides a good indication on the accuracy of
the prediction at new points and will be used in our frame-
work to decide whether exact analyses need to be used. To
obtain an estimate of the accuracy of the predictions of the
Kriging model, a leave-one-out cross-validation procedure
can be employed, as described in Jones et al. (1998). The
measure used in such a procedure is called the ‘standardised
cross-validated residual’ (SCVR) defined as

y (<) =95 (/)
s-j (x/)
where $_;(x/) and s_;(x/) denote the mean and variance

computed by (9) and (10) without using the jth training data.
A good predictor would mean that the Gaussian process

SCVR; = a1
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prior is appropriate for the dataset and majority of the esti-
mates will be scattered in the interval [—3, 3]. Plotting the
values of SCVR; against the predicted function values would
also provide clues and solutions to problems that might exist
in the model, for example, if there is any linear trend in such
a plot, it is sometimes possible to improve the prediction by
using log transformation.

Another useful concept is the expected improvement, see
Jones et al. (1998), in which the point with maximum ex-
pected improvement is found by using a branch-and-bound
algorithm followed by re-sampling at that point and the re-
construction of the surrogate. In this work, a simple 3o
principle is proposed and used instead of the maximum ex-
pected improvement in determining whether or not an evalu-
ation using the exact model is necessary. This eliminates the
need for an optimiser to find the point at which maximum

expected improvement can be achieved. This principle is de--

scribed below

Evaluate Y(x*) when

q
F(x*) —3s5(x*) < l Z yjl-’”’ (minimisation) (12)
q

j=1

where j(x*) and s(x*) are computed using (9) and (10),
ybests represent the g best solutions in the dataset. Note that
the right-hand side reduces to y,;, when g = 1 for minimi-
sation problems. The use of this principle is discussed in the
following section.

It should also be mentioned that the basic Kriging model
could further be extended to include derivative information
as reported by Morris et al. (1993) when derivatives are
available either analytically or computed using automatic
differentiation tools, adjoints, etc. The availability of effi-
cient adjoint methods for sensitivity computations makes
this expansion more attractive than ever for complex simu-
lation codes.

3 A framework for managing surrogates within genetic
algorithms

One of the main challenges in using surrogate models in
global optimisation is to achieve a good balance between ex-
ploiting the surrogate and improving the accuracy of the sur-
rogate. A commonly used strategy is to re-sample the point
to which the surrogate converges under certain criteria and
to reconstruct the surrogate using the augmented dataset.
A revised methodology would be re-sampling the point at
which the expected improvement is maximised. A common
feature of these strategies is the use of an incrementally
augmented dataset. In this work, a general framework for
managing the surrogates with genetic algorithms is proposed
by efficient and effective use of a simple 3¢ principle and
historical data. This framework is based on one of the basic
features of the genetic algorithms, that is, as the search pro-
ceeds, the population tends to be filled with more and more
similar solutions close to the optima. There are two features

that make this framework distinct from previously proposed
ones:

o the use of a simple 3¢ principle (12) eliminates the need
for a search process for the point with maximum ex-
pected improvement, and;

o ranking of the historical dataset allows more efficient and
effective use of the results obtained from exact and usu-
ally computationally expensive codes.

The proposed procedure is illustrated in Fig. 1. The algo-
rithm starts with evaluations of the exact code on data points
selected using design-of-experiment methods, for example,
Latin hypercube sampling. The results are then archived in
a central database according to the ranking of the fitness,
and the top p or all of the solutions in the database are then
used to construct the initial Kriging model. What follows
is a typical genetic algorithm process with the fitness being
evaluated first by surrogate model, then if the 3¢ princi-
ple requires it, the exact expensive code is executed and the
results inserted into their proper places in the database ac-
cording to their fitness. Therefore the better solutions will
come before the worse solutions and possibly into the top p
of all solutions used in building the surrogate and will play
arole in the update of the surrogate. The surrogate model is
only updated when there has been a change in the solutions
used to build the surrogate. It should be noted that the hy-
perparameters in the Kriging model are kept constant once
found in the construction of the initial Kriging model. As
mentioned earlier, the number of similar solutions will in-
crease as the GA proceeds, so the hyperparameters will have
a less important role in the later stages of the GA search.
This will further expedite the search as the estimation of hy-
perparameters itself involves the solution of an optimisation
problem, which can be time consuming. The update of the
Kriging model will only involve the re-computation of the
mean and variance using (8) and (9) based on the updated
database. However, it would be beneficial and sometimes ne-
cessary to update the hyperparameters when more points are
added into the dataset, especially if the response surfaces
exhibit multimodel behavior.

The 30 principle used is based on the fact that if the
average fitness of the top g designs lies outside the inter-
val [(x*) —3s(x*), $(x* + 3s(x*))] computed at point x*,
the probability of producing a better design at point x* is
very small. Two control parameters p and g are used to
specify the number of design points to build the surrogate
and number of design points used in the right hand of the
3o principle. It is not difficult to understand the effect of
these two parameters: increasing the value of parameter p
will cause more points to be used in building the surrogate
model, and increasing the value of parameter ¢ will lead
to more new points falling into the p interval and therefore
more exact evaluations.

The real-coded genetic algorithm used in this work is de-
rived from the basic classes available from the C++ class li-
brary GAlib, developed by Matthew (1999). Instead of using
binary strings to represent real values, as in most common
implementations of genetic algorithms, real coding offers
a direct way of representing solutions in numerical opti-
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Fig.1 Procedure for incorporat-
ing Kriging model into genetic al-

A 4

Initialisation of the first
population using DoE

Evaluation using
exact model

N

N

gorithms

eV
p—y

Modelling using top
p individuals (Initial
pop) .

Update the Surrogate Central pool of
using updated
No| dataset exact solutions
(Ordered by
fitness)
Yes
Top p solutions
changed?
4 Insert according
to fitness values
% Evaluate points which lie

outside 3 £ bounds

misation problems. Each chromosome is an array of real
numbers, e.g., the design variables. The use of real coding
eliminates the need for coding and decoding processes. Non-
uniform crossover and random mutation operators are used
in the current implementation of the GA and are briefly de-
scribed below. _ ‘ o .
Letx' = {x{,x},...,x, }andx/ = {x], xJ, ..., xi,} rep-
resent two designs in the parent population; the child x¢ is
generated by a BLX crossover, which is defined as

¥=(1-ox4ax/, k=1,---,m (13)
Non-uniform mutation is defined as
x,'€”=x,lc+,8(x,’:——x,lc), k=1,---,m 14)

where « and g are random numbers between 0 and 1. Fi-
nally, it should be pointed out that duplicate points are not
archived to avoid problems in the computation of the inverse
of the correlation matrix. Also any type of implementa-
tion of the genetic algorithms could be used in this general
framework for exploiting surrogate modelling.

N

Genetic Operators

New population

4

Evaluation using
Surrogate

4 Experiments on benchmark test functions

Two commonly used benchmark test functions are used here
to test the effectiveness of the proposed framework. The first
is an unconstrained 20D Rastringin function as defined by
(15) and the second is the constrained 20D Bump function
introduced by Keane, which is given by (16). Both of these
two functions have a large number of local minima and are
usually difficult for gradient-based optimisers to find global
optima.

n
Frasringin = (10m) + Y. (? = 10 cos(2x;)) (15)
i=1
n n
abs (Z cos*(x;) =2 H cos? (x;))
FBump = =l =l (16)
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, - % 15n

subject tonx, > 0.75 and Zx, < -
i=l i=1

The bounds of variables for these two problems are —5.12 <
Xx; < 5.12 and 0 < x; < 10, respectively. The average conver-
gence curves against the number of generations are shown in
Fig. 2 for the Rastringin function and in Fig. 3 for the Bump
function. It can be seen that the number of exact analyses
has been reduced to only one third of the original number
that would be required to obtain similar results using a dir-
ect optimisation approach. The standardised cross-validated
residual is also shown in Fig. 4 for the initial Kriging surro-
gate for the Rastringin problem. It is shown that a reason-
ably good approximation has been obtained. The proposed

framework is next applied to the local shape optimisation of
the firtree problem.

5 Local profile optimisation of turbine blade firtree root

In this section, a turbine blade firtree root local notch profile
optimisation problem (Song et al. 2002) using cubic non-
uniform rational B-splines (NURBS) is chosen to illustrate
the effectiveness of the proposed framework. This notch is
part of the geometry at the base of a turbine blade that is
used to attach the blade to the rotating disc and is a region
where high contact stresses occur. Here the firtree geometry
has been modelled using the rule-based design capability
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3 Fig.4 Standard cross-validation
residuals of initial kriging model
for Rastringin function
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Fig.5 NURBS representation of double-arc fillet using seven control
points and its defining coordinates

provided by ICAD. The notch geometry is modelled using
NURBS, rather than circular arcs, which gives more flexibil-
ity in modelling local shape variations. However, the use of
NURBS introduces more design variables, thus increasing
the cost of finding an optimum design. The definition of the
local profile is illustrated in Fig. 5. Finite element analysis is
carried out to evaluate the peak stress at the notch region and
is used as the objective function in the optimisation. Results
are shown in Fig. 6, in which two convergence curves are
shown, one without using the surrogate model, and the other
with. It can be seen that comparable results can be obtained
with only one third of the number of exact function evalu-
ations that would be required when direct-search methods
are used. Comparison between the original and optimised
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geometry is shown in Fig. 7. The worst principal stress at
point B (where the maximum stress occurs) is reduced from
745.4 MPa to 685.6 MPa — a reduction of over 8% without
worsening the stresses at point A, using around one third
of the computing effort which would otherwise be required
using direct GA search.

6 Conclusion

An efficient evolutionary optimisation process for improv-
ing the local profile of a turbine blade firtree root is pro-
posed using a surrogate-assisted evolutionary framework.
The geometry of the firtree root is designed using a rule-
based computer-aided design system (ICAD) with the local
profile defined using NURBS. The resulting model is ana-
lysed using an industrial-strength finite element code. Due
to the high computational cost associated with finding the
optimum using such high-fidelity codes, a surrogate-assisted
genetic algorithm is applied to the problem. The initial sur-
rogate model is first built based on points sampled with
design-of-experiment methods. A database of designs eval-
uated using the high-fidelity code is built and augmented
“while the genetic algorithm progresses. In the procedure for
deciding whether the high-fidelity code should be applied,
a simple 3o principle is used instead of searching for the
point with maximum expected improvement. This is com-
bined with appropriate ranking of the design points within
the database. Some benchmark test problems are used to il-
lustrate the effectiveness and efficiency of this framework.
When applied to the problem of local shape optimisation of
the firtree root, significant improvements are achieved under
a reduced computational budget.
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