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Abstract

In a companion paper (Nair, P. B., and Keane, A.
J., “New Developments in Computational Stochas-
tic Mechanics, Part I: Theory”, AIAA-2000-1827),
stochastic reduced basis approximation (SRBA)
methods were presented for analysis of systems gov-
erned by stochastic partial differential equations
(PDEs). The fundamental idea proposed was to
use the terms of the Neumann expansion series as
stochastic basis vectors along with undetermined co-
efficients for representing the response process. So-
lution procedures based on variants of the stochastic
Bubnov-Galerkin scheme were developed for deter-
mining the coefficients of the reduced basis repre-
sentation. This paper presents detailed numerical
studies for two example problems from the domain
of stochastic structural mechanics. The main ob-
jective here is to study the numerical characteris-
tics of SRBA methods, and to compare the results
with the Neumann expansion scheme. It is demon-
strated that the SRBA methods give significantly
better results as compared to the Neumann expan-
sion scheme, particularly for large stochastic varia-
tions in the random system parameters.

Introduction

In a companion paper!, stochastic reduced basis
approximation (SRBA) methods were proposed for
analysis of systems governed by stochastic PDEs.
In particular, efficient numerical schemes were de-
veloped for solution of large-scale linear algebraic
systems of equations with random coefficients, such
as those obtained from discretizing linear stochas-
tic PDEs in space and the random dimension of the
problem. Nonlinear stochastic PDEs can also be ul-
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timately reduced to this form by employing stochas-
tic linearization techniques.

The fundamental proposition made in the SRBA
formulation was that the response process can be
represented in the subspace spanned by the terms of
the Neumann expansion series. This leads to a re-
duced basis representation of the system response in
terms of stochastic basis vectors and undetermined
coefficients. An attractive feature of this formula-
tion is that a complete probabilistic description of
the response can be computed to an arbitrary degree
of accuracy by increasing the number of stochastic
basis vectors. Further, since only a reduced-order
system of equations are solved in the SRBA formu-
lation, the response statistics can be computed in a
highly efficient fashion.

Two variants of the Bubnov-Galerkin scheme were
developed for computing the undetermined coeffi-
cients in the reduced basis representation. In the
first formulation, the coefficients are considered as
deterministic scalars which are computed by solv-
ing an ensemble averaged reduced-order determin-
istic system of equations. This leads to an explicit
expression for the stochastic response as a polyno-
mial in the random system parameters. Hence, all
the statistical moments of the response can be an-
alytically computed; see, McGullagh? for a detailed
exposition on statistical analysis of random polyno-
mials. This formulation was referred to as the ap-
proximate SRBA (ASRBA) method. A simplified
ASRBA method was also presented which involved
rearranging the first-order Neumann expansion term
to expand the matrix of basis vectors.

The second formulation referred to as the SRBA
method considers the coefficients of the reduced ba-
sis as random functions. This ensures that the
stochastic residual error is orthogonal with respect
to the approximating space of basis vectors with
probability one. However, in order to derive explicit
expressions for the random functions, a reduced-
order matrix must be symbolic inverted. As shown
in the companion paper?, this can be readily done
when only two or three terms of the Neumann ex-
pansion series are used as basis vectors. In contrast
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to the ASRBA method, the SRBA formulation leads
to a very complicated (albeit explicit) expression for
the response process. Hence, a complete statistical
description of the response would involve the use of
a simulation procedure.

This paper presents some studies on the appli-
cation of the SRBA methods proposed in the com-
panion paper! to problems in structural mechanics.
The objectives of this paper are to : (1) conduct
detailed studies on the convergence characteristics
and accuracy of SRBA and ASRBA methods, and
(2) compare the results with the Neumann expan-
sion scheme.

Two classes of problems are considered: Class I:
linear stochastic structures subjected to static loads,
and Class II: linear stochastic structural dynamical
systems subjected to harmonic forcing. The first ex-
ample involves static response analysis of a 40 mem-
ber frame structure with stochastic Young’s modulus
subject to a deterministic force. The second exam-
ple involves frequency response analysis of 20 mem-
ber frame structure with stochastic Young’s modulus
and mass density.

Monte Carlo simulation studies are conducted to
generate benchmark results against which the var-
ious approximate methods are compared. Results
are presented for the first, second, and third-order
SRBA methods which are henceforth referred to as
SRBA1, SRBA2, and SRBA3, respectively. The ap-
proximate SRBA (ASRBA) methods of order one,
two, and three referred to as ASRBA1, ASRBA2,
and ASRBA3 have also been applied to the exam-
ple problems. Recollect that the number of basis
vectors used in the formulations is one greater than
the order of the method. The results obtained using
the SRBA and ASRBA methods are compared with
those obtained using the first, second, and third-
order Neumann expansion scheme, referred to as
NEU1, NEU2, and NEU3.

The effect of increase in the standard deviation
of the random system parameters on the accuracy
and convergence of the various methods are studied
in detail. It is demonstrated that the SRBA and
ASRBA methods give significantly better results as
compared to the Neumann expansion scheme, par-
ticularly for large stochastic variations in the ran-
dom system parameters.

Example 1: Static Analysis of a Linear
Stochastic Structural System

The first example considered here is a 40 member
cantilevered frame structure with random Young’s
modulus shown in Figure 1. Each structural mem-
ber is modeled using two Euler-Bernoulli beam ele-
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ments, which leads to a total of 180 degrees of free-
dom (dof). The Young’s modulus of each structural
member is modeled as Eo(1+6;), i = 1,2,...,42;
where 6; are uncorrelated zero-mean Gaussian ran-
dom variables with standard deviation of oy. The
nominal values of the axial and flexural rigidity are
taken as EoA = 6.987x10% N, and Eol = 1.286x103
Nm?2, respectively. The structure is subject to a de-
terministic static force at the tip of the structure.

Figure 1 : 40 Member Frame Structure

Using a Taylor series approximation for the struc-
tural stiffness matrix, the stochastic linear algebraic
system of equations for static equilibrium can be
written as

40
<L + Zainz) u(®)=f (1)
=1
where L denotes the stiffness matrix computed using
the mean value of the Young’s modulus, and II; can
be interpreted as the sensitivity of the stiffness ma-
trix with respect to the Young’s modulus of member
i. A summary of the approximate methods com-
pared in this paper is presented below for the sake
of completeness.

The Neumann expansion scheme for the displace-
ment can be written as

40
u(®) =Y (1) ,(0) 2)
=1
where
40 Y_l
(@) = [L1) 6,11, : (3)
j=1 )

It can be seen that equation (3) is a polynomial
in ;. As mentioned earlier, the fundamental idea
used in the SRBA formulation is to postulate an
approximation for u(®) of the form

() = Y- G(O)¥i(©) @
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where ¢;(®) denotes the undetermined coefficients
in the reduced basis approximation.

The coefficients in equation (4) are computed us-
ing equation (1) and (4) via a stochastic Bubnov-
Galerkin projection scheme. Recollect that in the
ASRBA formulation, the coefficients are considered
as deterministic scalars, whereas in the SRBA for-
mulation the coefficients are considered as random
functions. The implication of this being that the
ASRBA method allows all the statistical moments of
the response to be computed analytically since equa-
tion (4) will give a polynomial expression in terms
of 8; for the response process. In contrast, since the
resulting expression using the SRBA method is a
highly nonlinear function of 8;, simulation schemes
have to be employed to compute the response statis-
tics.

Three cases are taken up to study the accuracy
of the various methods for increasing coefficient of
variation of the random Young’s modulus. The value
of gy is set at 0.05, 0.10, and 0.20 for case 1, case 2,
and case 3, respectively.

For each case, Monte Carlo simulation (MCS) us-
ing exact static analysis with a sample size of 10000
is used to generate benchmark results. The results
obtained using the approximate methods are com-
pared with these benchmark results, referred to as
Exact MCS. The same sample size was also used to
compute the pdf of the response using the explicit
expressions obtained for all the approximate meth-
ods. Note that the pdfs are normalized with respect
to the mean value predicted using exact MCS.

Table 1 : Comparison of Methods for Case 1;

o9 = 0.05
Method Error in Mean Error in STD

(%) (%)

Max Avg. Max Avg.

SRBA1 0.1932 0.0074 0.7301 0.2798
SRBA2 0.0017 0.0001 0.0692 0.0103
SRBA3 0.0001 0.0000 0.0010 0.0002
ASRBA1 0.2558 0.0081 1.2473 0.8963
ASRBA2 0.0075 0.0004 0.0559 0.0113
ASRBA3 0.0004 0.0000 0.0044 0.0007
NEU1 0.5037 0.2555 1.5818 1.2340
NEU2 0.0123 0.0026 0.8051 0.7582
NEU3 0.0052 0.0019 0.0297 0.0207

A comparison of the percentage errors in the mean
and standard deviation of the static response com-
puted using all the methods for case 1 (op = 0.05) is
summarized in Table 1. As mentioned earlier, these

errors are computed with respect to the results ob-
tained using Exact MCS. The maximum and average
errors in the mean and standard deviation (STD)
across all the 180 dofs are shown in the Table. It
can be clearly seen that when oy = 0.05, all the
approximate methods give excellent results for both
statistical moments of the response. SRBA methods
are seen to show much faster convergence to the ex-
act statistics when the number of basis vectors are
increased as compared to the ASRBA methods, and
the Neumann expansion scheme.

It is important to note that, in spite of considering
the coefficients in the reduced basis as determinis-
tic constants, the ASRBA methods give significantly
improved results as compared to the Neumann ex-
pansion scheme. Further, the errors in the statistics
becomes nearly zero when four basis vectors are used
in the ASRBA formulation.

The probability density function (pdf) of the
transverse component of the tip displacement com-
puted using all the first-order methods are compared
with the pdf obtained using exact MCS in Figure 2.
Note that all the approximate responses are normal-
ized with respect to the mean value predicted by
exact MCS in this figure. It can be clearly seen that
both ASRBA1 and SRBAI1 give better approxima-
tions for the tails of the pdf as compared to NEU1.
For all the second and third-order methods, the pdf
was observed to show nearly exact agreement with
the results obtained using Exact MCS.

30 T T T T T

— ExactMCS
-~ SRBA1

- - ASRBA{
¥ NEU1

25+

20+

1
0.98 1

Ot 056 108
Figure 2 : Comparison of pdf of Tip Displacement
Obtained Using First-order Methods for Case 1;

gp = 0.05
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For case 2, oy was chosen to be 0.10. The trends
of the percentage error in the mean and standard
deviation computed using various methods for this
case are summarized in Table 2. It can seen that the
general trends for the mean displacement appear to
be rather similar to those observed earlier for case
1. However, the errors are seen to be higher for the
standard deviation of the response when the first-
order methods are used, with SRBA1 giving the best
results.

Table 2 : Comparison of Methods for Case 2

gy = 0.10
Method Error in Mean Error in STD
(%) (%)
Max Avg. Max Avg.
SRBA1 0.8199 0.0297 2.5895 1.1029
SRBA2 0.0150 0.0009 0.2601 0.0311
SRBA3 0.0056 0.0003 0.0059 0.0018
ASRBA1 1.0867 0.0496 4.3583 3.5258
ASRBA2 0.0715 0.0048 0.4238 0.1938
ASRBA3 0.0107 0.0006 0.0474 0.0147
NEU1 2.0697 1.0406 5.3869 4.5627
NEU2 0.1379 0.0372 3.3933 3.1686
NEU3 0.0833 0.0322 0.3952 0.3117
6 ‘ , ; ; : :
O SREAT
s
oo _
v v YooV,
w WVWVySVVV?W 7 v v.ra
g Wi Vg VW ‘W?WW TR
4—*:*# ?**“’*ﬂ*** v Ow W w w W W
H Hgorn® * * ¥k *k
*f*r:;:*f;*ﬁéﬁﬁﬁ’mﬁ}fﬁmﬁmﬁzzﬁw

*

% *x

*¥ ** *¥

0

Percentage Error in Standard Deviation of Displacement
«w
T

o
:%)O@Ooooooooooooooooo
S0
2_0%% o] B
%ff°
o 0
0, 0 9%° 0o, o
0 o o o
©P0® 00 00 g oo
0 0y 00 % " o
1+ ‘00 000 o S 0 oo A
0" 50 ¢Focd®
00 000
0 0500 %000
0% 00 o0 0000‘30%0 o
00
0 ! | i 1 - 020020000 o 169@2§6h
0 20 40 60 80 100 120 140 160 180

" Degree of Freedom Number
Figure 3 : Errors in Standard Deviation of
Displacement Using the First-order Methods for
Case 2; g9 = 0.10

As observed earlier for case 1, the SRBA meth-
ods give the best results for this problem, with the
results becoming nearly exact for SRBA3. Both the
SRBA and ASRBA methods converge much more

4

rapidly to the exact MCS results as compared to
the Neumann expansion scheme.

T
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Figure 4 : Comparison of pdf of Tip Displacement
Obtained Using First-order Methods for Case 2;

gy = 0.10

The errors in the standard deviation of the dis-
placement at all dofs for the first-order methods are
shown in Figure 3. As expected, it can be seen that
the pattern of the error distribution across the dof
are identical for the ASRBA methods and the Neu-
mann expansion scheme of same order, although the
magnitude of errors are rather different. The pdf of
the transverse displacement component at the tip of
the structure is shown for all the first-order methods
in Figure 4, along with the pdf obtained using ex-
act MCS. It can be seen that SRBA1 and ASRBA1
show better agreement with exact MCS, particularly
for the tails of the pdf.

The percentage errors in the standard deviation
across all the dofs for the second-order methods are
shown in Figure 5. This figure clearly illustrates
the improvements which can be achieved over the
Neumann expansion using a stochastic reduced basis
approximation.
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Figure 5 : Errors in Standard Deviation of
Displacement Using the Second-order Methods for
Case 2; gy = 0.10

In case 3, og is chosen to be 0.20. This corre-
sponds to a pathological scenario involving large ran-
domness in the Young’s modulus, and is expected
to give insights in to when the various approximate
methods may break down or give unacceptable re-
sults. The trends of the percentage error in the mean
and standard deviation of the displacement across all
the dof are summarized in Table 3.

Table 3 : Comparison of Methods for Case 3

Jg = 0.20
Method Error in Mean Error in STD

(%) (%)

Max Avg. Max Avg.

SRBA1 4.1740 0.3077 12.256 6.8405
SRBA2 0.2468 0.0251 1.3136 0.5975
SRBA3 0.0864 0.0055 0.2333 0.0499
ASRBA1 5.4806 0.5610 18.378 16.043
ASRBA2 1.0590 0.1131 5.6885 4.2522
ASRBA3 0.0765 0.0226 1.8173 1.3536
NEU1 9.2472 4.5225 21.845 19.610
NEU2 2.1011 0.6525 16.981 15.713
NEU3 1.6954 0.6144 6.9611 6.0466

From these trends a number of observations can
be made. First, it can be clearly seen that the re-
sponse statistics computed using all the first-order
methods are unacceptable for the purposes of reli-
ability analysis. The percentage error in the mean
and standard deviation across all the dofs for the
first-order methods are shown in Figures 6 and 7.

The pdf of the tip displacement computed using
the first-order methods are compared with that ob-
tained using exact MCS in Figure 8.
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Figure 6 : Errors in Mean Displacement Using
the First-order Methods for Case 3; oy = 0.20
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Figure 7 : Errors in Standard Deviation of
Displacement Using the First-order Methods for
Case 3; g9 = 0.20
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Figure 8 : Comparison of pdf of Tip Displacement
Obtained Using First-order Methods for Case 3;
og = 0.20

It can also be observed from Table 3 that all the
second-order methods show good agreement with ex-
act MCS for the mean displacement. However, the
maximum error in the standard deviation is of order
of 17 % for NEU2. In comparison, the errors using
SRBA2 and ASRBA2 is just of the order of 1.3 %
and 5.7 %, respectively. The percentage error in the
standard deviation of the displacement across all the
dof using the second-order methods are compared in
Figure 9.

The pdf of the tip displacement computed using
the second-order methods are compared with ex-
act MCS in Figure 10. It can be clearly seen that
SRBAZ2 shows excellent correlation with Exact MCS.
This clearly demonstrates that SRBA2 gives excel-
lent results for large coefficient of variation of 8;.

When the order of the methods are increased, the
SRBA methods show faster rate of convergence as
compared to both the other methods. It can be seen
from Table 3 that SRBA3 gives nearly exact results
for both statistical moments of the response. How-
ever, the expressions for SRBA3 are rather cumber-
some as compared to the family of ASRBA methods.
In contrast, the order of the ASRBA method can be
increased to arbitrary degree with negligible incre-
ment in the computational effort. In general, it can
be observed that results from ASRBA3 are compa-
rable in accuracy to those from SRBA2.
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Figure 9 : Errors in Standard Deviation of
Displacement Using the Second-order Methods for
Case 3; 0p = 0.20
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Figure 10 : Comparison of pdf of Tip
Displacement Obtained Using Second-order
Methods for Case 3; g9 = 0.20

The percentage errors in the mean and standard
deviation for all the third-order methods are com-
pared in Figures 11 and 12. It can be clearly seen
that both SRBA3 and ASRBA3 gives significantly
better results as compared to NEU3. The pdf of the
tip displacement for all the third-order methods are
compared in Figure 13.
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Frequency Response Analysis
of a Stochastic System

This section presents results for frequency response
analysis of a 20 member frame structure with ran-
dom Young’s modulus and mass density shown in
Figure 14. The structure is modeled using 4 ele-
ments for each beam member, which leads to a finite
element model with a total of 210 dof. The axial and
flexural rigidity of each structural member are mod-
eled as EoA(1+m;) and Eol(1+n;),i=1,2,...,20,
and the mass density of each member is modeled as p
= po(l+m;), i =21,22,...,40. 5; are considered as
uncorrelated zero-mean Gaussian random variables,
while EoA = 6.987 x 10° N, Eol = 1.286 x 103
Nm?, and p, = 2.74 kg/m. This leads to a total of
40 random system parameters for this problem.

The structure subjected to transverse harmonic
excitation at node 1. The transverse component of
the displacement response at node 9 is studied in the
region of 0-500 Hz.

The governing equations for the frequency re-
sponse of this linear system can be written as

40
(L(w) + me«a)) W@ =f (5
i=1

where L(w) denotes the dynamic stiffness matrix
computed using the nominal values of the Young’s
modulus and mass density. IT;(w) can be interpreted
as the sensitivity of the dynamic stiffness matrix
with respect to n;. Equation (5) is required to be
solved for each excitation frequency of interest.
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In contrast to equation (1), equation (5) denotes
a system of complex linear algebraic equations with
random coefficients. Further, the stochastic basis
vectors are complex, which in turn leads to the
requirement of considering the coefficients in the
SRBA formulation as complex quantities. It is im-
portant to note that the Galerkin projection scheme
has to be appropriately modified to tackle complex
vectors. In particular, the stochastic complex resid-
ual error has to be orthogonalized with respect to
the approximating space by using the definition for
the inner product in the field of complex numbers,
i.e., xfx = 0; where the superscript H denotes the
complex conjugate transpose.

Two cases corresponding to standard deviation of
7; of 0.05 and 0.15 are considered. Results are pre-
sented for the SRBA1, SRBA2, NEU1, and NEU2
methods. The response for all the methods was com-
puted at 150 equally spaced points in the region of
0-500 Hz. A sample size of 5000 was used for all the
simulations. Again the results are compared to an
"exact” MCS.

L=10m
2 4 6 8 10

§ 1 3 5 7 9

F

Figure 14 : 20 Member Frame Structure

The mean and standard deviation of the FRF pre-
dicted by the various methods for Case 1 are shown
in Figures 15 and 16. Similar to the earlier exam-
ple, it can be clearly seen that the SRBA meth-
ods allow significantly better approximations to be
obtained as compared to the Neumann expansion
scheme. In particular, SRBA2 gives high-quality
approximations for both statistical moments of the
displacement response.

It can be observed that in general that NEU2 gives
more erroneous results as compared NEU1 for both
statistical moments of the frequency response, par-
ticularly near resonance frequencies. This indicates
that the Neumann expansion scheme fails to con-
verge for this problem, particularly for high exci-
tation frequencies. However, the terms of the Neu-
mann series gives a good subspace for approximating
the response process.

The mean and standard deviation of the displace-
ment response for o, = 0.15 is shown in Figures 17
and 18. It can be seen that the errors in the standard
deviation are much higher as compared to Case 1.
The high error in the Neumann expansion scheme is

8

seen to have a knock-on effect on the quality of the
basis vectors used in the SRBA formulation. This
leads to a slow rate of convergence for the SRBA
methods, particularly for the standard deviation of
the response at high excitation frequencies.

10° T T T T T T T T

— Exact MCS
NEU1
- NEU2
102 ~ SRBAt
~ - SRBA2

Mean Displacement Response
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Figure 15 : Comparison of Mean FRF for Case 1
on=0.05
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Figure 16 : Comparison of Standard Deviation of
FRF for Case 1 ;= 0.05
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Figure 17 : Comparison of Mean FRF for Case 2
o= 0.15
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Concluding Remarks

Detailed numerical studies have been presented for
two example problems to test and validate the
formulations presented in the companion paper®.
These studies clearly demonstrate that the conver-
gence rates of the SRBA and ASRBA methods are
significantly better than for the Neumann expansion
scheme. It is also shown that both variants of the
SRBA methods give significantly better results for
the pdf of the displacement response. In particu-
lar, for the statics problem, it was shown that high-
quality approximations can be obtained using the
second-order SRBA method and the third-order AS-
RBA method when the coefficient of variation of the
random system parameters are of the order of 20%.

The results obtained for the structural dynamics
problem suggests that high-quality approximations
can be obtained for both the mean and standard
deviation of the frequency response for small coeffi-
cient of variation of the system parameters. In con-
trast, the Neumann expansion does not converge at
higher frequencies of excitation even for cases involv-
ing small randomness. The accuracy and conver-
gence rate of the SRBA methods is seen to worsen
at higher frequencies for moderate to large coeffi-
cient of variation of the random system parameters.
This can be attributed to the divergence of the Neu-
mann expansion scheme, which in turn calls for the
requirement of increasing the number of basis vec-
tors to achieve good quality approximations.

However, the process of testing the formulations
proposed in this research is far from complete. The
issues which remain to be investigated are summa-
rized below :

e Implementation and testing of the simplified
ASRBA method proposed in the companion
paper?.

e Comparison of SRBA methods with the Poly-
nomial chaos expansion scheme presented in
Ghanem and Spanos® in terms of accuracy,
convergence characteristics, and computational
cost.

e Application of SRBA methods to random vi-
bration analysis of nonlinear stochastic sys-
tems in conjunction with stochastic lineariza-
tion techniques.

e Studies on the effect of simplifying the terms in
the SRBA formulation on the accuracy of the
results.

As computational experience accumulates on a va-
riety of problem domains, better insight will be ob-
tained into the characteristics of the SRBA methods.
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It is hoped that the formulations developed in this
research will accelerate the development of efficient
solution schemes for tackling a wide variety of prob-
lems in computational stochastic mechanics.
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