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Abstract

The focus of this paper is to develop efficient nu-
merical schemes for analysis of systems governed by
stochastic partial differential equations (PDEs). In
particular, Stochastic Reduced Basis Approximation

(SRBA) methods are proposed for efficient solution

of large-scale linear algebraic system of equations
with random coefficients. The terms of the Neu-
mann expansion are deployed as stochastic basis vec-
tors in the SRBA methods. The stochastic system
response is expressed in terms of these basis vectors
and undetermined deterministic scalars (or random
functions). Variants of the Bubnov-Galerkin scheme
are employed to compute the undetermined terms,
which allows explicit expressions for the response
quantities to be derived. This enables a complete
probabilistic description of the response quantities to
be obtained in a computationally efficient fashion.
The application of SRBA methods in conjunction
with stochastic linearization techniques to nonlin-
ear stochastic systems is outlined. In a companion
paper (Nair, P. B., and Keane, A. J., “New Develop-
ments in Computational Stochastic Mechanics, Part
II: Applications,” ATAA-2000-1441), results are pre-
sented for a variety of problems to demonstrate that
significant improvements over the Neumann expan-
sion scheme can be achieved.

1. Introduction

The equations governing the physics of many com-
plex systems can be described by ordinary or Partial
Differential Equations (PDEs). A wide body of nu-
merical methods based on finite differences, finite
elements, and boundary elements are available in
the computational mechanics literature to approx-
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imately solve the governing equations for the re-
sponse quantities of interest. Over the last 50 years,
significant progress has been made in the theoretical
groundwork of these methods for cases when a sys-
tem is modeled in a deterministic framework, and
when a deterministic linear system is subjected to
random excitation.

By contrast, the use of probabilistic models for the
physical system parameters and the excitation fields
lead to a significant increase in the problem complex-
ity. This is primarily due to the difficulties in arriv-
ing at tractable descriptions of the system response
in terms of the stochastic differential operators and
the random excitation field. Exact solutions to this
class of problems are possible only under restrictive
assumptions for simple problems; see, for example,
Pugachev and Sinitsyn®. In the context of stochastic
analysis of large-scale systems of practical interest,
most research work has focused on computationally
efficient methods which allow the response statistics
to be approximated with reasonable accuracy.

The approaches in the literature can be broadly
clagsified into different categories depending on how
the physical system parameters are modeled (ran-
dom field or random variables), the scheme used
for discretizing the random fields, the linearization
techniques employed to simplify the nonlinear terms,
the spatial discretization scheme, and the algorithm
used to solve the resulting random algebraic equa-
tions. The interested reader is referred to the mono-
graphs of Ghanem and Spanos?, and Kleiber and
Hien® for a detailed exposition of computational
stochastic mechanics. A recent overview of devel-
opments in stochastic mechanics has been presented

in Grigoriu®.

A spectral stochastic finite element method (SS-
FEM) was proposed by Ghanem and Spanos®*%5.
In this approach, the random fields describing the
coefficients of the PDEs are discretized using the
Karhunen-Loeve (KL) expansion scheme. Subse-
quently, a finite element procedure was used to de-
rive a system of linear algebraic equations with ran-
dom coefficients, which is then approximately solved
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using the Neumann expansion scheme. An alterna-
tive approach was also proposed, wherein the solu-
tion vector is represented by the Polynomial chaos
decomposition with unknown coefficients. Using the
Bubnov-Galerkin scheme, a set of deterministic lin-
ear algebraic equations (with increased dimensional-
ity proportional to the number of terms in the poly-
nomial chaos) was obtained for the unknown coef-
ficients. Since, this method increases the dimen-
sionality of the original problem, it is referred to
as the increased basis approzimation method in this
paper. This approach was demonstrated to give bet-
ter results as compared to the Neumann expansion
scheme. The reader is directed to Ghanem® for a re-
cent review of the mathematical background of the
SSFEM.

Monte Carlo Simulation (MCS) techniques’ and
response surface methodology (RSM)® have been
widely applied to a variety of problems. These ap-
proaches are quite general in scope and utilize exist-
ing deterministic analysis software. However, due to
the requirement of many deterministic simulations,
they are practical only for problems where deter-
ministic analysis takes modest computational effort.
Methods based on Taylor or Neumann expansion se-
ries of the response have been popularly used in the
stochastic finite element literature; see, for example,
references®?1%. These methods are computationally
more efficient as compared to MCS and RSM. How-
ever, these approaches give reasonable quality ap-
proximations only when the coefficients of variation
of the random physical parameters are small.

More recently, Elishakoff and his colleagues (see,
for example, references'!!?) have focused on finite
element analysis of structures with large stochastic
variations. The key idea has been to develop ap-
proaches which do not use perturbation schemes.
However, it remains to be seen how readily the meth-
ods in references'*'2 can be extended to general fi-
nite element analysis. An excellent discussion on the
motivation for additional work in the area of stochas-
tic finite element analysis can be found in Elishakoff
and Ren!3.

The authors’ have developed reduced basis ap-
proximation concepts for large-scale random eigen-
value problems'®. The approach developed in
reference' is similar in spirit to that presented here,
although the choice of basis vectors is different.
The fundamentals underpinning the proposed ap-
proach are borrowed from the area of reduced basis
approximation concepts; see, Noor!® for an excel-
lent overview of applications to deterministic sys-
tems. The choice of basis vectors used in this pa-
per was proposed earlier by Kirsch!6—'2 in the con-

2

text of static structural reanalysis. Subsequently,
this method has been applied with a great deal
of success to structural reanalysis for topological
modifications'®, damage tolerance analysis®®, and

evolutionary design optimization?!.

This paper is concerned with the analysis of sys-
tems governed by stochastic PDEs. In particular,
efficient techniques are proposed for solving large-
scale linear algebraic systems of equations with ran-
dom coefficients, such as those obtained by discretiz-
ing linear stochastic PDEs in space and the random
dimension. Nonlinear stochastic systems can also
be ultimately reduced to this form using stochas-
tic linearization techniques. The fundamental idea
used here is to represent the response process as a
linear combination of stochastic basis vectors with
undetermined coefficients. The undetermined coef-
ficients are either considered as random functions or
deterministic scalars. Methods based on this repre-
sentation, where the number of undetermined terms
is less than the dimension of the discretized problem
are referred to as stochastic reduced basis approzi-
mation (SRBA) methods in this paper.

The terms of the Neumann expansion are chosen
as the basis vectors in this research. Two proce-
dures are developed for computing the undetermined
coefficients in the SRBA. The first procedure uses
an approximate stochastic Bubnov-Galerkin scheme
(see Section 2), wherein the coefficients of the SRBA
are considered as deterministic scalars. The sec-
ond procedure uses an exact stochastic Bubnov-
Galerkin scheme. This formulation is developed for
cases wherein only two/three basis vectors are used.
Hence, it becomes possible to treat the SRBA coef-
ficients as random functions, which ensures that all
the statistical moments of the weighted residual er-
ror are zero. Both these procedures allow explicit
expressions for the stochastic response quantities to
be derived. This enables a complete probabilistic de-
scription of the response quantities to be obtained in
a computationally efficient fashion. It is shown that
the SRBA methods require of the order of O(n?)
operations in addition to one deterministic analy-
sis; where n is the dimension of the corresponding
deterministic problem. The application of SRBA
methods to nonlinear stochastic problems in con-
junction with stochastic linearization techniques is
also outlined. In a companion paper, results are pre-
sented for a variety of example problems to demon-
strate that high-quality approximations of the re-
sponse statistics can be achieved for moderate to
large coeflicient of variation of the random physical
parameters.
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2. Preliminaries

This section summarizes some of the fundamen-
tal concepts used in developing the SRBA meth-
ods. The greek characters @, 6, {, and 1 are used
throughout this paper to reference random quanti-
ties. {.) is used to refer to the expected value or the
ensemble average of a random quantity {.}.

2.1 Discretization of Random Fields

Random field discretization involves its representa-
tion in terms of a finite number of random vari-
ables. An excellent overview of discretization proce-
dures for random fields such as the Karhunen Loeve
(KL) expansion, Polynomial chaos decomposition,
and linear estimation theory can be found in the
literature®?2. For example, the KL expansion of a
random field w(x, ®) defined on the domain 2 with
covariance function R, (X1,X2) can be written as

w(x, ©) = (w(x,0)) + Y _mypwi(x), (1)

i=0

where u; and w;(x) are the characteristic functions
(eigenvalues and eigenvectors, respectively) of the
following deterministic integral eigenvalue problem,

piwi(x) = /Q Ruw(x, xo)wiGa)dxs.  (2)

The vector of zero-mean random variables {n;}
are orthogonal, i.e., (n;m;) = p;d;;; where &;; de-
notes the Kronecker delta function. For a detailed
overview of the mathematical characteristics of the
KL expansion scheme, the reader is referred to the
monograph of Ghanem and Spanos?. A discussion
on numerical solution of equation (2) for complex
domains can be found in reference®®. The applica-
tion of the Polynomial Chaos decomposition scheme
for representing random fields with unknown corre-

lation functions can be found in Ghanem??.

2.2 Bubnov-Galerkin Scheme for Stochastic
Problems

In the computational stochastic mechanics litera-
ture, the following definition is used to check the
orthogonality of two random vector functions x; (©)
and x3(O)

(x] (©)x2(@)) = 0. (3)

Equation (3) is essentially the expected value of
the inner product defined in the Hilbert space of ran-
dom variables, i.e, only the mean value of the inner
product is enforced to be zero for values of @. The

3

Bubnov-Galerkin scheme used in most of the formu-
lations in the literature uses the above definition to
constrain the random residual error to be orthogo-
nal to the approximating space of basis functions.
This scheme is henceforth referred to as the approz-
imate stochastic Bubnov-Galerkin scheme. An alter-
native procedure would be to orthogonalize the ran-
dom residual error to the approximating space such
that all the statistical moments of the inner product
are zero, i.e.,

k
(x](@)x2(®))") =0,k =1,2,...,00. (4)

The projection scheme which leads to satisfaction
of equation (4) is referred to as the ezact stochastic

Bubnov-Galerkin scheme in this paper.

3. Discretization of Linear
Stochastic PDEs

This section outlines a general scheme for discretiz-
ing linear stochastic PDEs in space and the random
dimension on the lines of that presented earlier by
GhanemS. A general expression for the discretized
equations is derived, which sets the stage for the
development of SRBA methods. Consider a linear
stochastic PDE of the form

Ta[u(x,t,0©)] + Qg [u(x,t,0)] = f(x,,0), (5)
where x € D denotes a point in the space defined
by D; t € [0,T] refers to time; ® € 2 belongs to
the Hilbert space of random variables. 7, and Qg
denotes linear stochastic differential operators with
respect to time and space respectively. These op-
erators have coefficients a(x, ®) and B(x, ®) which
are considered to be random fields. f(x,t,®) de-
notes the random excitation field for which a solu-
tion u(x, ®) is sought.

The random fields in equation (5) can be dis-
cretized in terms of a finite number of random vari-
ables. This can be done using any of the techniques
mentioned earlier in section 2. Equation (5) can sub-
sequently be rewritten as

(T + 7o) fu(x, 1, ©)+(L + Ly) [u(x, 1, ©)] = f(x,1)

(6)

where 7 and £ are the deterministic components
of the stochastic differential operators with respect

+f (x,t,m),
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to time and space, respectively; 7o and Ly are the
random components of the differential operators;
f°(x,t) and f'(x,t,n) denote the deterministic and
random components of the excitation field.

Consider for the sake of simplicity that the ran-
dom fields appear as multiplicative terms in the dif-
ferential operators. Hence, spatial discretization of
equation (6) using any conventional finite element
formulation and applying the appropriate boundary
conditions leads to a matrix system of ordinary dif-
ferential equations of the form

kl1
(M"T +3 GiMiﬁ) u(t)+

i=1
kl2
(K" +y CK)

=1

kl3

u(t) = £°(t) + Z mifi(t), (7)

where M°, M¢, K°, and K¢ € R*" are determin-
istic matrices; 7; denotes a deterministic differential
operator with respect to time; n is the total number
of degrees of freedom; f°(t) and fi(t) € R"*! are
deterministic vectors; kl1, kI2, and kI3 denote the
number of terms used in discretization of the random
fields a(x, ®), B(x,0), and f(x,t, ®), respectively;
8;, (;, and n; are random variables arising from the
discretization procedure applied to the appropriate
random fields.

For static problems, equation (7) will be a sys-
tem of linear algebraic equations in terms of the ran-
dom variables. Similar sets of equations could be ar-
rived at for time dependent problems by transform-
ing the equations to the frequency domain, which
leads to a system of complex linear algebraic equa-
tions with random coefficients for each excitation fre-
quency of interest. Without any loss of generality,
a general form for the resulting system of linear al-
gebraic equations with random coefficients can be
written as

(L + i HZIL) u(@) =f°+ Eq: T]ifi (8)
i=1 =1

where L € £**" and II; € R™*™ are deterministic
matrices; o, f! € R™*! are deterministic vectors;
u(®) € <! is the stochastic response vector; © =
{6;},i=1,2,...,pis the vector of random variables
arising from discretization of all the random fields
describing the system properties in equation (5). 7;,
i =1,2,...,q denotes the random variables arising
from discretization of the excitation field.

For problems where the system parameters and
the external forces are considered as random vari-
ables, an equation similar to equation (8) could be

4

derived by expanding the global coefficient matrices
using a first-order Taylor series and appropriately
representing the random forces.

4. The Neumann Expansion Scheme

The Neumann expansion for u(®) can be written
as

%

u(@) =) (-1)° L™ 6,1,
=0 Jj=1

q
‘L7t f0+ZT}jfj R

=1

(9)

The Neumann expansion series is convergent only
when ||[L™ 3°%_, 6;TL;{| < 1. More rigorously, equa-
tion (9) converges when p(L~'}°F_, 6,11;) < 1;
where p denotes the spectral radius of a matrix.
These conditions imply that the Neumann expansion
series will convergence only when the magnitude of

6; is small.

Consider the special case where the governing
stochastic PDE is elliptic, i.e., the coefficient matri-
ces of the discretized equations are symmetric pos-
itive definite. Then, it can be readily shown (see
reference?®) that equation (9) is unconditionally con-
vergent if the following condition is met for any ar-
bitrary ve Rn*1,

P
vl (L + Z Gil'Ii) v<viLy (10)

i=1

A detailed discussion on how to choose L in struc-
tural applications so as to satisfy equation (10) was
recently presented by Dasgupta?®.

5. Stochastic Reduced Basis
Approximation (SRBA) Methods

This section presents SRBA methods to efficiently
solve equation (8), particularly for large values of
n and for large coefficient of variation of 6;. The
main objective here is to represent u(@®) explicitly
in terms of the random variable vector ©.

The SRBA methods developed in this research at-
tempt to improve the range of validity of the Neu-
mann expansion scheme. The fundamental assump-
tion made here is that a good approximation for the
stochastic process u(®) can be obtained in the sub-
space spanned by the terms of the Neumann expan-
sion series. The stochastic reduced basis representa-
tion may be written as

American Institute of Aeronautics and Astronautics



i

P
Z OjL'll'Ij
Jj=1

(@) =

-
Il
=)

j=1

(11)
where ;(®) are undetermined quantities in the
SRBA; u, = L™1f° and u;, = L™1fF ¢ R7*! are
deterministic vectors. Equation (11) can be written
using matrix notation as

(®) = ¥(0)Z(0) (12)

where ¥(@) = [¥y(0),¥(0),...,79,(0)]
grx(m+1) denotes the matrix of stochastic basis
vectors, and E(@) = {&(0),£&1(0),...,6m(0)}T
€ Rm+UX1 denotes the vector of undetermined co-
efficients. ¥;(®) denotes the it* basis vector, which
is a polynomial in 6;. The basis vectors are a se-
quence of the form

q
0)=u,+ me
=1

(13)

p

@)=Y 6 b(”)+z b,
i=1

(14)

where b{" = L~'I;u, and b{}” = L-'Mu, €
$">1 are deterministic vectors. A general expression
for the m*" basis vector can hence be written as

p
U= Y 06;,...6;,
915825000y bm=1
(m1) - (m2)
m m
X b%lzz im + Z nim+1bi1i2...im+1 (15)
im41=1
where b{") . = LI, L', ...L 'L, u
and b{™? = LU0, LT, .. LML,

4122 m41
€ R are deterministic vectors. From the above

equations, it can be seen that the basis vectors can
be computed in a recursive form as

= (Zp: HiL—IHi) Up_q

=1
A recursion equation for the tensors in equation
(14) can be similarly written as

D
= ( > L_lﬂk+1>
k+1=1

(16)

((k+1)1)
41928041

pUFD)

t182...9%

(17)

q
u, + anuj ;

5

((k+1)2)
i1dg. ikt

(18)

b'k2)
ll P2, g1

Equations (16-18) enable the computation of the
deterministic tensors in the explicit expression for
the basis vectors in an efficient fashion. In order to
compute E(@) via the Bubnov-Galerkin scheme, it
is necessary to formulate a stochastic residual error
vector R(®). This is achieved by substituting equa-
tion (12) in equation (8), which gives

:(ZLlnk
k+4+2=1

- Z’?ifi
)

In the Bubnov-Galerkin scheme, the coefficient
vector () is computed by enforcing orthogonality
of R(®) with respect to the approximating space,
ie,, ¥(O®). Two procedures are developed in the
subsequent sections for computing =(®). These
procedures are based on the approximate stochastic
Bubnov-Galerkin scheme and the exact stochastic
Bubnov-Galerkin scheme outlined earlier in Section
2. It is shown that both procedures allow an explicit
expression to be derived for the stochastic process
u(e).

5.1 Approximate Stochastic Bubnov-Galerkin
Approach

y4
= <L+Zeim> (O
=1

The undetermined coefficients in the SRBA are eval-
uated here such that the stochastic residual error
R(®) is orthogonal to ¥(@®) in an approximate
sense. Here the definition of the inner product of
two random vector functions in the Hilbert space of
random variables is employed. This can be formally
stated as

(T (O)R(©)) =

Equation (20) leads to a deterministic matrix sys-
tem of equations of dimension (m + 1) X (m + 1)
for the coeflicient vector =, which is considered here
to be deterministic. This formulation is henceforth
referred to as the approximate SRBA (ASRBA)
method. The order of the approximation is consid-
ered to be equal to m; where m+1 is the number of
basis vectors used (see equation (11)). The system
of equations to be solved for the coefficients = can
be written as

(20)

(¥T(©)L¥(O)) + Z (0, 37(©)IL;T(@)) | E =

i=1
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q
<\1:T(@) (fo +3 f) > (21)
i=1
The above equation can be rewritten in a compact
form as

[LR+HR]3:FR (22)

where Lg, IIg € RM+tUx(m+1) are deterministic
matrices; Fp € RM+DXL ig the deterministic re-
duced force vector. The elements of these terms can
be readily computed using the joint statistics of the
random variables ;. General expressions for the el-
ements of these terms are presented in Appendix A.
These allow the computation of the vector of de-
terministic constants =, which is then used in con-
junction with equation (11) to arrive at an explicit
expression for 4(®).

The ASRBA formulation can be simplified by
rewriting the reduced basis approximation as follows

P q
(@) = &To(0) + ) _ &if; b{" + >, njb%z) ,
i=1 Jj=1

(23)

where &;,7 = 0,1,2,...,p denote deterministic un-
determined scalars.

Equation (23) includes only the first two terms
of the Neumann expansion series, and the number
of undetermined scalars is p + 1. Substituting equa-
tion (23) in (8) and using the approximate stochastic
Bubnov-Galerkin scheme leads to a system of de-
terministic equations of dimension p + 1 similar to
equation (21). General expressions for this matrix
system of equations are considerably simpler as com-
pared to the ASRBA formulation presented earlier.
This simplified formulation is henceforth referred to
as the simplified ASRBA method.

5.2 An Exact Stochastic Bubnov-Galerkin
Procedure

In contrast to the earlier formulation, here it is
aimed to ezactly orthogonalize the stochastic resid-
ual error vector R(®) with respect to the approxi-
mating space ¥(@®). This implies that all the sta-
tistical moments of the inner product of ¥(®) and
R(O) should be zero. This condition can be written
as

(TTO)R(O)) =0k=1,2,...,00 (24)

It can be seen that equation (24) will be satis-
fied only when, for each realization of the random

6

variable vector ® , the term in the brackets is zero.
Hence, Z(©) should be computed as

i=1

-1
2(0) = [xpT(@) (L + i 9,,-ni> \I:((a)}

(25)

x ¥ (@) (f" + Xq:nifi>

3=1

It can be observed from equation (25) that,
achieving an explicit expression for 2(®), would in-
volve symbolically inverting a random matrix of di-
mension (m + 1) x (m + 1). This could be readily
achieved for small values of m. From the authors’
previous experience, it has been observed that gen-
erally two or three basis vectors are sufficient to en-
sure good approximations for large variations in 6;.
Experimental evidence for this observation is pre-
sented in the companion paper. Consider, for ex-
ample, the first-order SRBA method where u(®) is
approximated using two basis vectors as given below

4(0) = &(0) <uo +y 6‘¢ui) +

i=1

i Xq: 6in;bl;”

=1 j=1

P
&(0) Zeibl(.“) + (26)
i=1

The corresponding 2 x 2 matrix system of equa-
tions to be explicitly solved for Z(®) can be written
as

[Lr(®) + IIr(©)|E(O) =Fr(©)  (27)

Explicit expressions for Lg, Iz, and Fg can be
readily derived in terms of the random variables us-
ing tensor notation (see Appendix B). These explicit
expressions can be used to represent the random
functions £ (@) and & (@). Similar equations can
also be derived for the case when three basis vectors
are used in the SRBA. The use of symbolic compu-
tation software is expected to greatly alleviate the
tediousness of the derivation. It is expected that the
explicit expressions for the reduced matrices can be
simplified by replacing terms of order greater than
four by their ensemble averages, without significant
loss of accuracy.

5.3 Remarks

It can be readily shown that the computational cost
involved in both the SRBA methods for construct-
ing the reduced-order problem are of the order of
O(n?), since only matrix vector multiplications are
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involved. It is assumed here that for most problems
of practical interest, the number of random variables
p € n. Further, as is shown later in the compan-
ion paper, two or three basis vectors are sufficient to
obtain nearly exact results for cases when the coef-
ficient of variation of 8; is of the order of 20%.

Consider the case when rank(} ), 6;II;) = 1
Then it can be readily shown that the first-order
SRBA method will give the exact results with prob-
ability one. For example, for a truss structure with
one member having random Young’s modulus, exact
results can be obtained using the first-order SRBA
method. This can be formally proved using the ob-
servations made earlier in reference?®.

Currently, it is not clear how to compute a prior:
error estimates for the SRBA methods. However, a
posteriori error estimates of the response statistics
can be estimated using the statistics of R(®).

6. Determination of Response
Statistics from SRBA

Consider the case wherein the ASRBA method of
order m is used to approximate the stochastic re-
sponse quantities. The ASRBA method leads to a
random polynomial for the response process of the
form

(@) =) &¥;(0) (28)

3=0

Since the coefficients &; are considered here to
be deterministic scalars, the mean and variance of
the response quantities can be expressed in terms
of the statistics of ¥;. Note that these statistics
can be analytically computed using using equation
(15) and the joint statistics of 6;; see, for example,
McCullagh®” and chapter 4 of reference? for details
on statistical analysis of random polynomials. The
moments of the response can also be analytically
computed for the simplified ASRBA formulation.

In contrast, the SRBA method leads to the coef-
ficients being highly nonlinear functions of the ran-
dom variable vector ®. Hence analytical solutions
for the statistics of i(®) are not readily possible.
Fortunately, sampling the SRBA representation for
each realization of ® involves only a few operations
when p € n. In particular, the first and second-
order SRBA method requires of the order of p® and
p® operations, respectively. This operation count
can be further reduced by replacing all terms of order
greater than 2 by their ensemble averages. Hence,
Monte Carlo integration techniques can be readily
applied to compute the response statistics in a com-
putationally efficient fashion. In fact, the complete

7

probability density function of the response is within
reach by using a simulation scheme in conjunction
with non-parametric kernel density estimation tech-
niques. However, it may be possible to simplify the
SRBA representation by assuming the random func-
tions to be random variables. The effects of such ap-
proximations on the accuracy of the SRBA methods
remain to be seen.

In the context of reliability analysis (see, for ex-
ample, reference®®~2%) SRBA methods allow the
derivation of an explicit expression for the multi-
dimensional limit state curve. This potentially en-
ables the efficient computation of failure probabil-
ities without resorting to first or second order re-
liability approximations. Furthermore, the explicit
expressions for (@) can also be used to efficiently
compute response sensitivities for robust design op-
timization studies.

6. Application to Nonlinear
Stochastic Systems

This section discusses how SRBA methods can be
applied in conjunction with stochastic linearization
techniques to analysis of nonlinear stochastic sys-
tems subjected to random excitation. Consider for
example, random vibration analysis of a geometri-
cally nonlinear stochastic structural system. Dis-
cretization of the governing nonlinear PDEs in space
and the random dimension typically leads to a sys-
tem of nonlinear ordinary differential equations of
the form

M(0)i(0) + C(0)u(®) + K(®)u(®)+

I'(©,u(®)) = F(0) (28)

where M(®), C(0), and K(®) € R"*" are the lin-
ear stochastic mass, damping, and stiffness matrices;
I'(®,u(®)) € ®**! denotes the stochastic nonlinear
restoring force vector; ® denotes the random vari-
ables arising from discretization of the underlying
random fields of the physical parameters.

Consider the case when the random system pa-
rameters appear as multiplicative terms in all the
differential operators. The nonlinear stochastic vec-
tor can hence be written as

p
I(0,u(®)) =I°(u(®)) + AT (u(©)) (29)

g=1

where T'° and T'¥ € R®"*! are functions of the dis-
placement vector alone. These terms can be re-
placed by an equivalent linear matrix using any
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stochastic linearization formulation; see, for exam-
ple, references3°—3!. Expressions similar to equation
(28) can also be arrived at for the linear stochastic
terms. Transformation of the linearized equations
to the frequency domain leads to a system of linear
algebraic equations with random coefficients of the
form :

q
u(®) = Fo(w)+ 3 niFi(w)
=1

(30)

where D%(w) = (K° + K¢ — w?M?° + jwC°) and

Di(w) = (K + K! — w?M' +jwC?); K2 and K¢ are

deterministic linear matrices obtained by stochastic

linearization of the nonlinear vectors I'(u(®)) and

T (u(®)), respectively; j = v/—1; K°, K, M°, M*,

C°, and C* are deterministic matrices obtained by

representing the linear stochastic matrices in a form
similar to equation (29).

i=1

[D“ (W) + z,,: 9D (w)

Equation (30) can be readily solved using either
the ASRBA or SRBA method to arrive at an ex-
plicit expression for the stochastic response vec-
tor u(®). An iterative procedure is employed to
compute the response statistics, wherein the linear
stochastic equations are solved first to arrive at an
initial guess for the statistics of u(®). In subse-
quent iterations, the response statistics at the pre-
vious step are used to compute the equivalent linear
matrices K¢ and K:. The iterations are terminated
when the response statistics do not change apprecia-
bly across subsequent iterations. Further, it is also
possible to reduce the dimensionality of the problem
at each iteration by using the eigenvectors of the de-
terministic eigenvalue problem (K°+XK2)¢ = AM°¢
to transform equation (30) to modal coordinates.

8. Concluding Remarks

Efficient numerical schemes based on stochastic re-
duced basis approximations are presented for anal-
ysis of systems governed by stochastic PDEs. The
methods presented here are quite general in scope
and can be applied to a wide spectrum of problem
domains. A major advantage of the present ap-
proach is that an explicit representation of the re-
sponse quantities in terms of the random system pa-
rameters can be achieved. This enables a complete
probabilistic description of the response quantities
to obtained in a computationally efficient fashion.

More importantly, in contrast to the increased ba-
sis approximation procedure wherein a polynomial
chaos decomposition is used for u{®), the stochas-
tic reduced basis methods developed here lead to a
substantial reduction in the problem size. SRBA

8

methods are hence expected to be computationally
more efficient, particularly for large-scale systems.
Further, in contrast to the increased basis method,
the random variables which appear in the expression
for the response vector have physical meaning. In
a companion paper, numerical results are presented
for a class of problems in computational mechanics.
It is shown that SRBA methods do not compromise
on accuracy while achieving this substantial reduc-
tion in the computational cost. Some comparison
studies with the Neumann expansion scheme are also
presented to demonstrate that SRBA methods give
significantly better results.
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Appendix A

The expressions for the deterministic reduced matrices which arise

in the ASRBA method (see equation

(22)) are summarized below. Ly € R(m+Dx(m+1) ig 5 deterministic matrix, a typical element of which can

be computed as

Lr(k,l) = (¥TLY,)
= Clipringninnds (B ) TLOSD, )
+ 012112 SAkJ1j2.. ]1+1(b£f112) Zk)TL(bgllzj)z jl+1)
+ 013122 det1d1d2.- Jl(bl(ffz)~~~ik+1)TL( Jlllj)z Jl)
+ Czlﬂz k417102 ]t+1(bgffz)mik-l—l)TL(bgllzj)z JH—I)

Iz € RIMHDX(Mm+1) i5 5 deterministic matrix, a typical element of

which can be written as

P
Makl) = O 6:¥iTLT,)
=1
_ pl (k1) T (1)
- Bhlz dkp1j1d2. 0 (blllz lk) H (bjljz Jl)
k1) T (12)
+ Bfnz Akprfre-Ji1 (b£112 Zk) Iy (biljz Jz+1)
(k2) T (11)
+ 323122 dpy2dije-Ji (bilig..‘ik_;.l) H k+1 (bjljg ]1)
4 (k2) T (2)
+ Blﬂz ’Lk+2‘71.72»~jz+1( i1i2~..ik+1) I1 +1(bJ1J2 Jt+1)
The tensors B and C are tabulated below :
Czll Aej1eedl (9i19i2 ce eik0j10j2 e 0jt> 0121 dkf1edier (62'161'2 s gikohejz ce e 9]'1"71'1+1>
0231 Apprdred1 <0i1 61’2 v eikmkﬂ 9]'1 0]'2 cee 0j1> i.,.ik.{,ljl...jl“ - <6i1 91'2 v eikn":k+1 gjl 0]'2 s 0]'1 njz+1)
B7'11 2k+1]1 Ji = (011 0i2 . lk+1 0,11 0]2 e 9.71) 1'21...1:k+1j1..‘j1+1 = (911 01’2 et 0ik+16j1 0.72 M 6]1 77]'1+1>
Bf)l dpp2dieedt (011 01’2 s 0ik+1 ﬂik+299‘1 0j2 s 0jl> 211...ik+2j1...j1+1 = <0i1 aiz s 0ik+1 Tlik+20]l 6]2 .. 177]1+1>
Similarly, a typical element of Fp € R(™+t1*1 can be evaluated as
q
Fr(k) = (TOHE+D (Tim)f
i=1
k1 T
= (040 050 ) TE
k2 T
+ <0z1012 .- 9ik7h’k+1)(b5m) lk+1) £°
1 T pk+1
+ <911022 M elknk+l>(b§112) Zk) f +
k2 T ok+2
-+ <021912 eik"?ik+1 nik+2>(b£112) "'k+1) f *

When the random variables #; and 7; are uncorrelated, the expectation operations for the tensors
B and C can be readily calculated. In the notation used here, repeated indices indicate summation
with respect to that index over its range. Using this, the values of the deterministic coefficients =

can be computed.
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Appendix B

For the sake of notational simplicity consider the case when the force vector is deterministic.
Then the reduced-order matrices for the first-order SRBA method (see equation (27)) can be

written using tensor notation as

uTLu® 4 6;u°TIL;u° 0.u°TLb!! + 6,0.u°TTI, bl
L I, = 4 ? 1 i Y5 iD;
e sym 6:9;(b!") "Lb}! + 6,0;0,(b}') TL;b}! (a7
uono
Fp= [Gi(blu)Tf"] (18)

In the notation used here, repeated index implies summation with respect to it over its range.
Using equations (17) and (18), an explicit expression can be derived for the random functions in

the reduced basis representation.
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