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Abstract

In many problems in science and engineering, there are often a number of computational models that can be used to simulate
the problem at hand. Models of physical systems can differ according to computational cost, accuracy and precision. This paper
presents the concept of multilevel optimization, where different models of the problem are used in combination. This initial
study compares several strategies for combining fast evaluations of limited accuracy with a few accurate calculations. It also
attempts to show how different optimizers work under these different combination strategies. A specially designed test function
is used to carry out these comparisons. Of the proposed strategies and optimisers, a sequential mixing strategy applied to a
genetic algorithm with clustering gives the best results. This paper highlights the need to develop specialized optimization
algorithms for this kind of problem. © 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many optimization problems there may exist a
number of different ways in which a particular pro-
blem is modelled. Some methods may be quite elabor-
ate in their representation, while others involve a
simplification of the problem, with the former being
more accurate but at the same time more computation-
ally expensive than the latter. It is therefore important
to understand how a significant number of less accu-
rate evaluations may be integrated with fewer accurate
ones, to arrive at an optimum design.

The multiplicity of computational models for a
given object of simulation may arise from at least
three main causes. It could be due to different math-
ematical formulations being used to construct the
model, such as Euler and Navier-Stokes approxi-
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mations in computational fluid dynamics (CFD). It
could also be due to different discretization limits
within one formulation, such as mesh densities in finite
elements analysis (FEA). Finally, it may come from
the availability of approximate empirical models such
as neural networks or response surfaces.

The term ‘multilevel optimization” (MLO) is used
here to denote the process of optimizing such a multi-
plicity of models, where each level is essentially one of
these models.

In contrast to the static optimization problem

fix)—opt, (xe M),
the multilevel optimization problem may be stated as
fix)—opt, (xe M),

where f(x) 1s the most accurate function and there
exist many fr(x) models where k = 1,...,L. The levels
are such that fi(x) is more accurate and computation-
ally expensive than fj(x) for i <j. During the optimiz-
ation, it is usually the case that the computationally
expensive function levels cannot be used often. There
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are many possible ways in which such approximate
and accurate representations can be integrated. In this
paper, three strategies are attempted: sequential multi-
level optimization, gradually mixed multilevel optimiz-
ation, and totally mixed multilevel optimization. These
integration methods are explained in subsequent sec-
tions. The main aim has been to see how different op-
timization methods work, using these strategies,
paying particular attention to genetic algorithms
(GAs).

In Holland’s (1975) introduction to genetic algor-
ithms as a means to design and implement robust
adaptive systems, he emphasized that these systems
should be able to handle uncertainty and change in the
environments in which they operate, and should be
able to self-adapt over time. Even so, most work with
GAs has been carried out using time-invariant environ-
ments rather than the dynamic ones described in
Holland’s original works (Lund, 1994). Moreover, the
details of how the GA goes about searching a given
landscape are not well understood. Mitchel et al.
(1991) state:

...there is no firm theoretical grounding for what is
perhaps the most prevalent ‘folk theorem’ about
GAs — that they will outperform hillclimbers and
other common search and optimization techniques
on a wide spectrum of difficult problems, because
crossover allows the powerful combination of par-
tial solutions.

The position is even more obscure when the environ-
ment may suddenly change, as is the case in multi-level
optimization. Nonetheless, it is hoped that by using
suitable strategies, the notion of a ‘combination of par-
tial solutions’ can transcend the boundaries of different
levels.

This paper is arranged as follows. The next section
briefly overviews previous work related to multilevel
optimization using traditional as well as evolutionary
approaches. Section 3 describes the multilevel optimiz-
ation test function proposed here. Sections 4-6
describe the Sequential, Gradually Mixed, and Totally
Mixed Multilevel optimization strategies tested.
Section 7 details the optimization methods used in this
study. Section 8 gives an overview of niching as used
in GA and its intuitive advantages for this type of pro-
blem. Section 9 details the experimental results
obtained, and Section 10 highlights the main findings.
The paper closes with a brief conclusion and a discus-
sion of future work.

2. Previous work related to multilevel optimization

Multilevel optimization can be regarded as an

instance of searching in a dynamic environment. In
such environments, the objective function value for a
given x does not remain constant with time. Although
the nature of the changes that occur when one model
is substituted for another are not strictly stochastic,
this process is akin to dealing with a noisy function.

A number of workers have studied the optimization
of noisy functions over the years. In these studies, the
objective function value is presumed to be governed by
a certain stochastic distribution for any given problem
parameter vector x. One classical approach that has
been attempted for dealing with such functions is that
based on the simplex method of Nelder and Mead
(NM) (Nelder and Meade, 1965). This is a strategy for
unconstrained optimization using local exploration. It
was shown that in the optimization of noisy functions
that this was unable to cope with very simple problems
with high dimensions (Elster and Neumaier, 1995).
However, more elaborate methods have been proposed
by Elster and Neumaier (1993), using quadratic models
and a restriction of the evaluation points to succes-
sively refined grids. This method works well for low-
dimensional, bound-constrained problems. Extensive
tests have shown the algorithm to be of comparable
performance with the quasi-Newton method in the
noiseless case, and much more robust than NM, in the
noisy case.

Another approach for dealing with noisy data is
based on multi-point approximations, which have been
used for the optimization of noisy finite element pro-
blems. This approach works by successively fitting a
surface in the problem space to approximate function
evaluations (Van Keulen et al., 1995, Wang and
Grandhi, 1995). It is akin to fitting a curve through a
series of experimental data that are subject to random
errors, so as to observe the underlying trend in the
readings. In most of this work, traditional gradient-
based optimizers were then used on the approximate
surface, which was generally smoother than the under-
lying function. A thorough survey of related approxi-
mation  concepts used in  Multi-Disciplinary
Optimization (MDO) can be found in Sobieszczanski-
Sobieski and Haftka’s (1996) survey.

Dunham et al. (1963) appear to be the first to have
addressed the problem of multilevel optimization
within an evolutionary optimization context. They
worked with a two-level problem. In their study, they
used an approximate model most of the time, using
the accurate/computationally expensive model only at
the final stages of refinement.

Using GAs, Grefenstette and Fitzpatrick (1985)
tried to answer the question: ‘Given a fixed amount of
computation, is it better to devote substantial effort to
seeking highly accurate evaluations or to obtain quick,
rough evaluations and run the GA for many more gen-
erations?” Using statistical sampling theory, the
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Fig. 1. A contour map and a 3D plot of bump for n = 2.

authors showed that the optimization process would
proceed more quickly if less time was spent on individ-
ual accurate evaluations, and instead the number of
generations performed was increased.

A method based on model selection was proposed
for hillclimbing search by Ellman et al. (1993). This
method works by generating error estimates for differ-
ent models (different levels of accuracy) of a yacht

hull. Based on the estimates, it decides which model
(level) to choose from.

Miller and Goldberg (1995a,b) constructed a model
on how selection schemes in genetic algorithms
respond to the varying effect of noise in the onemax
domain. Aizawa and Wah (1993) presented an algor-
ithm for adjusting the configuration parameters of gen-
etic algorithms that operate in noisy environments.
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Fig. 2. A contour map and a 3D plot of the modified 2D bump (n = 2,2 = 1.1, = 0).

Perhaps the most promising GA work in this area is
based on the concept of an Injection Island architec-
ture (iiGA) (Eby et al., 1998; Parmee and Vekeria,
1997). The iiGA works by using a series of subpopu-
lations representing different levels of representations,
and evolving them upon separate islands. Exchange of
chromosomes between the low- and high-accuracy
islands occurs at set numbers of evaluations. The best

individuals from the less accurate island migrate, and
replace the worst individuals in the more accurate
island.

Angeline (1997) presented the case for tracking
extrema in dynamic environments using evolutionary
programming. Béck (1998) presented a similar study
using evolutionary strategies. Most recently, Nissen
and Propach (1998) executed a comparative study on
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the robustness of population- and point-based search
heuristics in the presence of noise.

None of the work cited has compared a wide range
of different optimization techniques within the context
of multilevel optimization.

3. A multilevel optimization test function

In order to study how the different optimisers work
in a multilevel environment, it is first necessary to con-
struct a suitable test function. This test function should
have parameters that allow the variation of the local
optima positions and properties from one level to the
next to be controlled. While no claim to completeness
is made, the test function presented here is easy to
evaluate but hard to optimize, while having many
local optima and arbitrary dimensions. It is based on
the ‘bump’ function which has been fairly widely used
in the genetic algorithms literature for comparative
studies.

3.1. The bump problem

The ‘bump’ problem, introduced by Keane (1994), is
very hard for most optimizers to deal with. It is quite
smooth but contains many peaks, all of similar
heights. Moreover, like many problems in engineering,
its optimal value is defined by the presence of a con-
straint boundary.

The problem is defined as

abs( cos*(x;) — ZHcosz(xl-)>
= i=I

i

maximize = (1)
| ix?
fa

for
0<x; <10 i=1,...,n 2
subject to

n n

[[xi>075 and ) x; < 15n/2 (3)
i=1 i=1

starting from
X,’—‘——S, l=1,,l’l

Fig. 1 shows a contour map and a 3D plot of bump
for n=2. An interesting feature of this function is
that the surface is nearly but not quite symmetrical in
X1 = X3, so that the peaks always occur in pairs, but
with one always bigger than its sibling. The global op-
timum is defined by the product constraint. When the

problem is generalized for n greater than two, it
becomes even more demanding with families of similar
peaks occurring within a highly complex constraint
surface. These properties of the bump problem have
made it suitable for the study of GA performance and
optimising GA control parameters (Keane, 1995a;
Michalewicz, 1996), as well as the control parameters
of other evolutionary optimization methods (Keane,
1995b).

3.2. The extended bump

The bump function has been extended for multilevel
optimization by the introduction of two distortion par-
ameters. Different degrees of distortions are used to
simulate different levels of accuracy. Eq. (1) was gener-
alized to have a frequency shift parameter o and a
spatial shift parameter f3:

abs(icos“(oc(xi +B) - Zﬁcosz(a(xi + /3)))
pau =1

IS it +
i=1
(4)

The o frequency shift parameter distorts the bump,
spreading out the peaks (x < 1) or making them closer
(o« > 1). The spatial shift parameter § just shifts the
peaks of bump in x;. Hence, the undistorted bump
becomes one in which « =1 and f = 0. Fig. 2 shows a
distorted bump function for « = 1.1 and f =0; the
number of peaks is clearly greater than in Fig. 1.

maximize

4. Sequential multilevel optimization

Perhaps the most obvious strategy to adopt when
dealing with multilevel optimization is to use the
increasingly accurate function in a simple sequential
manner. In this approach, the optimization is started
using the least accurate level of representation. Then,
after a certain set number of function evaluations, the
optimization on this level is stopped, and the results
are used as starting points for the next, more accurate
level. (In the case of population-based methods, the
final population is used and re-evaluated using the
more accurate function, becoming the initial popu-
lation for the next level.) This process is carried on
sequentially, and the number of function evaluations is
decreased” from one level to the next until the most
accurate level is reached, where fewest function evalu-
ations are carried out. The number of function evalu-
ations carried out at each level would ordinarily be
chosen to roughly equalize the computational effort
expended at each level. For the bump problem con-
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Table 1
Number of evaluations at each level and corresponding distortion
parameters

Optimization level 1 2 3
Number of evaluations 12,500 2500 500
o 1.5 1.1 1
B 0.5 0.1 0

sidered here, the first, least accurate level corresponds
to maximum distortion (high values of o and/or f).
The optimization then proceeds through an intermedi-
ate level (¢—1 and —0), after which the final accu-
rate representation is reached (¢ = 1 and § = 0).

As has also already been mentioned, the number of
function evaluations per level decreases from the least
accurate level to the most accurate one. This reduction
mimics the situation where more refined models
become more computationally expensive, and hence,
only a limited number of evaluations would be

afforded. Details of the number of generations used
here for each level are shown in Table 1. Assuming
that an equal amount of effort were expended at each
level, this supposes that the true function evaluation is
25 times more expensive than that for o« = 1.5 and/or
p=0.5, and five times more expensive than for o =
1.1 and/or § =0.1.

5. Gradually mixed multilevel optimization

In the next strategy, the optimization procedure is
carried out with the three levels stochastically mixed
throughout the optimization process. The probability
of using a particular level varies with the number of
function evaluations as shown in Fig. 3.

Using this scheme, the first 10,200 evaluations are
carried out using the first level. During the next 4600
evaluations, the first and second levels are mixed
gradually. This is followed by 400 evaluations, where
the second and third levels are mixed until finally, the

0.8
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Fig. 3. Probability of selecting a level after a given number of function evaluations. The first level is solid, the second dashed, and the third

dotted.
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Fig. 4. Probability of selecting a level after a given number function evaluations. The first level is solid, the second dashed, and the third dotted.

last 300 evaluations are carried out solely at the third
and most accurate level. The scheme is constructed
such that the average overall computational cost is
equal to that in the sequential mixing scheme.

6. Totally mixed multilevel optimization

The last strategy tested here is based on a totally
mixed multilevel approach, where the probability of
using a particular level is constant, throughout most of
the optimization process. However, to ensure stability
in the results towards the very end of the optimization,
only the most accurate level is used. In this case, the
first level has a probability of 82.2%., the second has a
probability of 16.5%, and the third and most accurate
level has a probability of 1.3%. In the last 300 evalu-
ations, the third level probability becomes 100%, see
Fig. 4. This scheme is set up such that the compu-
tational cost on average is the same as in the previous
two schemes.

7. The optimization methods

A primary aim of this study was to consider the uti-
lity of a wide range of search methods for multilevel
problems. Consequently, a rather large number of op-
timization methods have been used in these tests.
Almost all the methods used are available in a single
design-exploration system developed by Keane (1995c),
called OPTIONS. Among the different methods in
OPTIONS, some are from standard libraries (e.g.,
Schwefel, 1995; Siddall, 1982), while others have been
specially developed for the suite, based on ideas culled
from the literature. OPTIONS currently contains the
following methods:

e A genetic algorithm based on clustering and sharing
(GACS) (Yin and Germay, 1993);

e Adaptive random search (Adrans) (Siddall, 1982);

e The Davidon—Fletcher—Powell strategy (David)

(Siddall, 1982);

Fletcher’s 1972 method (Fletch) (Siddall, 1982);

Powell direct search method (PDS) (Siddall, 1982);
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e Hooke and Jeeves direct search as implemented by
Siddall (Seek) (Siddall, 1982);

e The simplex strategy of Nelder and Meade (1965) as
implemented by Siddall (Simplx) (Siddall, 1982);

e The method of successive linear approximation
(Approx) (Siddall, 1982);

e Random exploration with shrinkage (Random)
(Siddall, 1982);

e NAg routine EO4UCF, a sequential quadratic pro-
gramming method (NAg) (NAg E04UCF, 1990);

e A bit climbing algorithm (BClimb) (Davis, 1991);

e A dynamic hill-climbing algorithm (DHClimb)
(Yuret and de la Maza, 1993);

® A population-based incremental learning algorithm
(PBIL) (Baluja, 1994);

e The Powell routine as implemented in the
Numerical Recipes cookbook (Num Rcp) (Press et
al., 1986);

e Repeated application of a one-dimensional
Fibonacci search (FIBO) (Schwefel, 1995);

e Repeated application of a one-dimensional Golden
section search (Golden) (Schwefel, 1995);

e Repeated application of a one-dimensional
Lagrangian interpolation search (LAGR) (Schwefel,
1995);

e Hooke and Jeeves direct search as implemented by
Schwefel (HandJ) (Schwefel, 1995);

e Rosenbrock’s rotating co-ordinated search (ROSE)
(Rosenbrock, 1960);

e The strategy of Davis, Swan and Campey, with
Gram—Schmidt orthogonalization (DSCG)
(Schwefel, 1995);

e The strategy of Davis, Swan, and Campey with
Palmer orthogonalization (DSCP) (Schwefel, 1995);

e Powell’s strategy of conjugate directions (Powell)
(Schwefel, 1995);

e The Davidon-Fletcher-Powell
(Schwefel, 1995);

e The simplex strategy of Nelder and Meade (1965) as
implemented by Schwefel (Simplex) (Schwefel,
1995);

e The complex strategy of Box (1965) (Complex)
(Schwefel, 1995);

e Schwefel’s two-membered evolution strategy (2MES)
(Schwefel, 1995);

e Schwefel’s multi-membered
(MMES) (Schwefel, 1995);

e Simulated annealing (SA) (Kirkpatrick et al., 1983);

e Evolutionary programming (EP) (Fogel, 1993);

e An evolution strategy based on the earlier work of
Béck et al. (1991) (ES).

In addition, two more GAs were used outside
OPTIONS:

e A simple haploid GA (Goldberg, 1989) (SGA) ;

strategy  (DFPS)

evolution  strategy

e A niching GA using phenotypic sharing (Deb and
Goldberg, 1989; Deb, 1989) (NGA).

8. The advantages of niching and clustering

In natural terms, a niche is viewed as an organism’s
environment, while a species is a collection of organ-
isms with similar features. The subdivision of an en-
vironment based on an organism’s role reduces
interspecies competition for environmental resources,
and this reduction in competition helps stable sub-
populations to form around different niches in the en-
vironment (Deb and Goldberg, 1989). This division
into several sub-populations/species may be useful
when there is sudden environmental change, as one of
the species may be very successful in the new environ-
ment, while others may perish. Of course, in GA/op-
timization terms, the organism is analogous to an
individual function evaluation, while the environment
is analogous to the function being optimized.

Now, for many optimization problems there exist
multiple peaks within the parameter search space: the
bump function is an example of such a problem. A
simple GA cannot readily maintain stable populations
at the different optima of such functions. On the other
hand, a GA with niching can force the population to
be distributed over many peaks in the parameter
space.

The use of niching therefore seems to be intuitively
advantageous when the optimization is carried out
over several levels in a sequential manner. In the more
approximate/distorted/cheaper function representation,
the GA with niching distributes the population over
‘promising’ areas of the (distorted) search space. When
this population is placed in the more accurate/expens-
ive function/environment, there is then a higher chance
of some of the groupings of the population being
nearer to the truly good areas of the space, than if
only one such area is passed on to the next level of
representation.

To induce niche-like behaviour in genetic search,
sharing functions are normally used. Sharing functions
degrade an individual’s fitness proportional to the

-number of other members in its neighbourhood. The

amount of sharing contributed by each individual to
its neighbour depends on the proximity of the two, so
that the closer the individuals are, the more degra-
dation there is.

The shared fitness of an individual i is given by

True fitness

ZS (dy) ¥

Shared fitness =
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Table 2
Sequential multilevel optimization of a 2D bump

647

Alpha (1) Beta (2) Alpha and beta (3) Average Average no. of steps
NGA 0.3055 0.3008 0.2890 0.2984 15500
GACS 0.2767 0.2739 0.3082 0.2863 15500
SA 0.2907 0.2852 0.2736 0.2832 15500
SGA 0.2697 0.2819 0.2862 0.2793 15500
DHClimb 0.2980 0.2674 0.2722 0.2792 15526
MM_ES 0.2805 0.2775 0.2726 0.2768 5166
EP 0.2839 0.2615 0.2745 0.2733 15500
Belimb 0.2626 0.2432 0.2679 0.2579 15500
PBIL 0.1756 0.1916 0.3464 0.2379 15500
2MES 0.2051 0.2175 0.2322 0.2183 325
ES 0.2206 0.2005 0.2179 0.2130 15500
FIBO 0.3229 0.1337 0.1551 0.2039 311
Golden 0.3228 0.1337 0.1551 0.2038 315
Complex 0.1031 0.2022 0.2145 0.1733 656
HandJ 0.0868 0.2629 0.1034 0.1510 392
DSCG 0.0708 0.1094 0.2629 0.1477 131
DSCP 0.0708 0.1094 0.2629 0.1477 133
yLAGR 0.0708 0.2629 0.1034 0.1457 174
Adrans 0.0014 0.0951 0.3352 0.1439 15959
Random 0.1425 0.1425 0.1425 0.1425 922
The sharing function s(dj) may be defined as Another  niche-forming method based on

if dy’ << Oghare
otherwise

s(dy) = {cl) () ©)
The distance metric dj; indicates the proximity of two
individuals. Using phenotypic sharing (Deb and
Goldberg, 1989) in a problem with p-dimensional
space and ¢ assumed peaks, the equivalent normalized
distance measure d; between the ith and jth individuals
is such as (Deb, 1989)
>2

Xi; = kth parameter of individual i

P

2

k=1

Xki— Xk,

dy = @)

Xje,max — Xk min

where

Xk, = kth parameter of individual j
Xk,max = Maximum allowable value for kth parameter

Xf,min = minimum allowable value for kth parameter.

The limiting distance between individuals to partake
in sharing is given as oy = 0.5¢"1/7),

This method has been applied with good results in
several applications (e.g., KrishnaKumar et al., 1994).
A difficulty of the method is that for good results,
prior knowledge is required of the number of peaks in
the solution space. In most applications, this infor-
mation is not readily available.

MacQueen’s adaptive KMEAN clustering algorithms
can be effective at revealing unknown multimodal
function structures, and is able to maintain subpopu-
lation diversity (Yin and Germay, 1993). This method
established analogies between clusters and niches in
the following way: the GA population is divided, using
the KMEAN algorithm, into clusters that have similar
properties. The members of each cluster are then pena-
lised according to the number of members each cluster
has, and how far it lies from the cluster centre. Using
this approach, it is also possible to restrict the cross-
over process that forms the heart of the GA, so that
large successful clusters mix mainly with themselves.
This speeds up convergence, since radical new ideas
are prevented from contaminating such sub-pools
(Keane, 1995b). Following this approach, the number
of clusters is not fixed a priori, but is determined by
the algorithm itself during processing. It is, however,
quite computationally expensive for large population
sizes (> 200).

Experiments have been performed for both the 2D
and 20D bump functions. The optimization was car-
ried out for (1) varying «; (2) varying f3; (3) varying
both « and f, all using the values and limits on func-
tion evaluations for the levels shown in Table 1. For
the stochastic techniques BClimb, PBIL, SGA, NGA,
GACS, SA, EP, ES, DHClimb, 2MES and MMES,
the results were averaged over 30 optimization runs.
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Table 3
Sequential multilevel optimization of a 20D bump

Alpha (1) Beta (2) Alpha and beta (3) Average Average no. of steps
GACS 0.5227 0.5951 0.5306 0.5495 15500
DHClimb 0.5379 0.4968 0.5468 0.5272 15933
PBIL 0.4417 0.5601 0.4416 0.4811 15500
EP 0.4222 0.4820 0.4209 0.4417 15500
SA 0.4004 0.4081 0.3880 0.3988 15500
Bclimb 0.4502 0.3343 0.3759 0.3868 15425
2MES 0.2850 0.2549 0.2784 0.2728 3238
MM_ES 0.2936 0.2132 0.2683 0.2584 11913
NGA 0.2346 0.2460 ©0.2481 0.2429 15500
Adrans 0.2542 0.3123 0.1610 0.2425 15870
SGA 0.2441 0.2329 0.2354 0.2375 15500
ES 0.1721 0.1866 0.1660 0.1749 15500
Simplex 0.0193 0.0468 0.0860 0.0507 15513
Powel 0.0154 0.0154 0.0154 0.0154 18
DSCG 0.0078 0.0078 0.0078 0.0078 15514
DSCP 0.0070 0.0070 0.0070 0.0070 15504
Complex 0.0032 0.0029 0.0028 0.0029 3
PDS 0.0019 0.0019 0.0019 0.0019 18
Jo 0.0019 0.0019 0.0019 0.0019 66
Simplx 0.0018 0.0018 0.0018 0.0018 66
SEEK 0.0018 0.0018 0.0018 0.0018 1269

0 1 L | [ |
Time .

Fig. 5. Best of generation versus time using GACS for a 20D bump averaged over 30 runs. The solid line is for varying «, the dotted is for f,
and the dashed is for varying candp.
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Table 4
Gradually mixed multilevel optimization of a 2D bump

649

Alpha Beta Alpha and Beta Average Average no. of trials
GACS 0.2807 0.2525 0.3251 0.2861 15,500
SA 0.2572 0.2892 0.2032 0.2498 15,500
PBIL 0.1492 0.1301 0.3413 0.2069 15,500
DHClimb 0.0018 0.1211 0.3296 0.1508 15,526
EP 0.0015 0.0668 0.3359 0.1348 15,500
ES 0.1304 0.1191 0.1332 0.1276 15,500
BClimb 0.0076 0.1259 0.2019 0.1118 15,500

In some methods the number of evaluations could
not be exactly controlled. If a method converged
before the specified number of evaluations for a certain
level was reached, the optimization procedure was
restarted on the next level with the converged values.
Hence, the average number of steps is also shown in
the tables below.

For the stochastic methods, the initial populations
were randomly selected, but contained the point x; =5
for i = 1,...,n For all the other methods, the optimiz-
ation process was carried out starting from x; =5 for
i=1,....,n

9.1. Sequential multilevel optimization results

For the case of the 2D bump, the results in descend-
ing order of performance are as shown in Table 2

It is clear from Table 2 that the GAs having a nich-
ing mechanism, i.e., NGA and GACS, showed su-
perior performance. NGA’s performance may be
explained in part by the fact that a good estimate of
the number of peaks in the search space was readily
available. This can be easily obtained from the plot of
the 2D bump. This is, of course, not possible in gen-
eral. Note that most of the stochastic methods, on
average, converged to similar peaks, regardless of the
distortion sequence they have gone through. Also, the
stochastic methods clearly outperformed traditional
hill-climbing methods.

Table 3 shows the results for the 20-dimensional
function, and it is clear that the NGA’s relative per-
formance is diminished. This is largely due to the esti-

Table 5
Gradually mixed multilevel optimization of a 20D bump

mate for the number of peaks here, not being
accurate. In general, it is not obvious for any given
problem how the number of peaks can be estimated a
priori. In this test, the dynamic hill-climbing
(DHClimb) algorithm’s performance is comparable to
that of the GACS, and it performs better in two dis-
tortion sequences. The performance of the stochastic
methods contrasts even more sharply with the other
methods, and even ADRANS is now markedly
improved as compared to the 2D bump. The tra-
ditional hill-climbing methods clearly fall short on the
more difficult 20D bump.

Fig. 5 illustrates the search behaviour using GACS,
averaged over 30 runs. It is clear that the objective
function values can drop significantly at the point
where the switch from one level to the next occurs, but
the method then recovers quite quickly afterwards.

Based on the results obtained in Tables 2 and 3,
further comparisons are restricted to the top seven sto-
chastic methods (GACS, SA, PBIL, DHClimb, EP,
ES, and BClimb).

9.2. Gradually mixed results

For the mixed strategies, elitism was disabled in all
methods to prevent an individual with a high objective
function in the distorted representation from dominat-
ing and influencing the optimization in the latter
stages, where the more accurate representations are
used. During these stages, such an individual might
have a reduced objective function value. This contrasts
with the sequential case, where the optimization is car-

Alpha Beta Alpha and beta Average Average no. of trials
GACS 0.4788 0.5853 0.4765 0.5135 15,500
SA 0.3995 0.4509 0.4023 0.4176 15,500
PBIL 0.3367 0.5580 0.2732 0.3893 15,500
DHClimb 0.2402 0.4313 0.1731 0.2815 15,777
EP 0.2883 0.4292 0.0833 0.2669 15,500
BClimb 0.2553 0.2972 0.0808 0.2111 15,425
ES 0.1374 0.1377 0.1342 0.1364 15,500
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Fig. 6. Best of generation versus time using GACS for a 20D bump, averaged over 30 runs. The solid line is for varying «, the dotted is for f,

and the dashed is for varying o and $.

ried over three distinct stages and hence, elitism can be
used at each stage.

As in the previous section, three distortion sequences
were carried out. Results were again averaged over 30
runs, see Tables 4 and 5.

Table 4 shows that, on average, GACS outperforms
all the other methods on the 2D problem. Note that in
the 2D case, most methods do particularly well in the
distortion sequence where o and f are being varied
simultaneously, but they perform poorly on the other
distortion sequences.

Table 6
Totally mixed multilevel optimization of a 2D bump

It is also clear from the tables that many of the
methods tried performed relatively better on the 20D
problem than for the 2D case. This would appear,
because the changes in function value between levels
are then less dramatic, due to the increased complexity
of the function.

Fig. 6 illustrates the search behaviour using GACS
averaged over 30 runs for sequential mixing. The
search is divided into four phases. In phase I only the
first level is used. In phase II the first and second levels
are gradually mixed; it is characterised by a Gumpy’

Alpha Beta Alpha and beta Average Average no. of trials
GACS 0.1996 0.2070 0.3026 0.2364 15,500
PBIL 0.1178 0.1261 0.3376 0.1938 15,500
DHClimb 0.0016 0.1190 0.3284 0.1496 15,535
EP 0.0017 0.1018 0.3342 0.1459 15,500
ES 0.1335 0.1444 0.1187 0.1322 15,500
BClimb 0.0659 0.1337 0.1899 0.1298 15,500
SA 0.0017 0.0802 0.1237 15,500
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Table 7
Totally mixed multilevel optimization of a 20D bump
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Alpha Beta Alpha and beta Average Averaeg no. of trials
PBIL 0.3838 0.5711 0.4822 0.4791 15,500
GACS 0.3526 0.5440 0.2953 0.3973 15,500
BClimb 0.3332 0.2854 0.3273 0.3153 15,981
EP 0.3055 0.4365 0.1079 0.2833 15,500
DHClimb 0.2738 0.3796 0.1788 0.2774 15,425
SA 0.2634 0.3771 0.1569 0.2658 15,500
ES 0.1390 0.1365 0.1376 0.1377 15,500

behaviour (this is evident in the graphs even though
the results are averaged over 30 runs). During phase
II1, the second and third levels are mixed, and finally
in phase IV, only the last level is used.

9.3. Totally mixed results

As in the previous section, elitism was again dis-
abled, and three distortion sequences were carried out.
The results were averaged over thirty runs, and are as
shown in Tables 6 and 7.

Again, GACS performed better than the other
methods on average for the 2D case. And again, all
the other methods performed poorly on the o and S
only distortion sequences.

As in the gradual mixed case, the relative perform-
ance of the other methods improves for the 20D case.
Here, PBIL has overtaken GACS, although the latter
is no longer performing as well as in the previous two
strategies.

Fig. 7 illustrates the search behaviour using GACS
averaged over 30 runs for total mixing. In phase I of
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Fig. 7. Best of generation versus time using GACS for a 20D bump averaged over 30 runs. The solid line is for varying «, the dotted is for o,

and the dashed is for varying « and B.
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Table 8
Results for a single-level optimization using the accurate bump
2D Average 20D Average 2D BST 20D BST

GACS 0.3118 0.4727 0.3638 0.5974
DHClimb  0.2812 0.3968 0.3576 0.5888
PBIL 0.2931 0.2243 0.3584 0.2962
EP 0.3111 0.3106 0.3630 0.3969
SA 0.3007 0.3935 0.3638 0.4821
BClimb 0.2623 0.4508 0.3626 0.5908
ES 0.2734 0.1833 0.3576 0.2110

the search, all three levels are mixed. The many fluctu-
ations seen here are due to the mixing (they are too
random to be smoothed out, even after averaging over
30 runs). There is then a sharp dip after the optimiz-
ation moves into phase I, where only the most accu-
rate representation is used and earlier, misleading
results are discarded.

10. Discussion

To gain a basis of comparison for these various
results, it is useful to consider the case where the entire
computational effort is dedicated to using the most
accurate level (i.e., 1500 such evaluations, assuming
the ratios between the number of evaluations given in
Table 1). Using this approach, the performance of the
stochastic optimizers is as in Table 8. Shown are the
averaged (AVG) and best ever obtained results (BST)
over 30 runs for each optimizer.

The comparative improvement of each method using
any of the three proposed strategies may then be calcu-
lated, see Table 9. Here the results are normalised by
dividing the average performance of each method in
Tables 2-7 by the values in Table 8. The results may
also be normalised by dividing by the best ever results
obtained for the accurate function evaluation (0.365!
and 0.8035% respectively, for the 2D and 20D cases),
see Table 10.

It clear from the tables that:

e Sequential Mixing is the best strategy when aver-
aged across all methods.

e None of the three proposed strategies provided any
improvement for the 2D case.

e For the 20D case, only GACS, PBIL, and EP were
in general improved by adopting the mixing strat-
egies proposed.

e The overall best approach for the 20D case was to
use GACS with the sequential strategy. This gives
an average final objective function on the three tests
(o only,  only, o plus f) of 0.5495, see Table 3.
However, this final value is only 16% better than a
straight-forward use of GACS on the accurate func-
tion for 1500 steps.

e Although PBIL and EP showed improvements in
the mixed methods (with a factor of 2 for PBIL and
1.0645 for EP), their objective function values were
generally lower than GACS (the exception being
PBIL on the 20D totally mixed case); also, their per-
formance was rather erratic between runs.

These observations lead to the conclusion that to
work well in these mixed-method environments, an
optimizer must be specifically designed to cope with
this kind of domain. In the case of GA, this may per-
haps point to the need for a diploid scheme as a
means for coping with this kind of environment, or
perhaps a modified injection island scheme.

11. Conclusion and future work

A distorted bump function has been presented here
as being representative of a multimodal, objective
function that may be used as a tool for understanding
how different optimizers behave in multilevel environ-
ments. Multilevel optimization is characterized by the
cost of evaluating the function being directly related to
its accuracy. Hence, precise evaluations must be used
sparingly for an efficient search. Different multilevel

Table 9
Comparative improvements using the three mixing strategies

Sequential mixing Gradual mixing Total mixing Average

2D 20D 2D 20D 2D 20D 2D 20D
GACS 0.9182 1.1624 0.9176 1.0864 0.7582 0.8405 0.8647 1.0298
DHClim b 0.9930 1.3286 0.5364 0.7095 0.5322 0.6991 0.6872 0.9124
PBIL 0.8116 2.1450 0.7058 1.7357 0.6613 2.1358 0.7262 2.0055
EP 0.8785 1.4221 0.4331 0.8594 0.4690 0.9121 0.5935 1.0645
SA 0.9417 1.0136 0.8308 1.0611 0.4113 0.6755 0.7279 0.9167
Bclimb 0.9831 0.8580 0.4262 0.4682 0.4950 0.6994 0.6348 0.6752
ES 0.7791 0.9541 0.4666 0.7443 0.4836 0.7513 0.5764 0.8165
Average 0.9007 1.2691 0.6167 0.9521 0.5444 0.9591 0.6872 1.0601
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Table 10
Absolute performance using the three mixing strategies

Sequential mixing Gradual mixing Total mixing Average

2D 20D 2D 20D 2D 20D 2D 20D
GACS 0.7844 0.6838 0.7838 0.6391 0.6477 0.4944 0.7386 0.6058
DHClimb 0.7650 0.6561 0.4132 0.3504 0.4100 0.3452 0.5294 0.4505
PBIL 0.6517 0.5987 0.5668 0.4845 0.5311 0.5962 0.5832 0.5598
EP 0.7487 0.5497 0.3692 0.3322 0.3997 0.3526 0.5059 0.4115
SA 0.7758 0.4963 0.6845 0.5196 0.3389 0.3308 0.5997 0.4489
Bclimb 0.7065 0.4813 0.3063 0.2627 0.3557 0.3924 0.4562 0.3788
ES 0.5836 0.2176 0.3495 0.1698 0.3622 0.1714 0.4318 0.1863
Average 0.7165 0.5262 0.4962 0.3940 0.4350 0.3833 0.5492 0.4345

strategies and optimization methods have been used to
study this process. The use of a GA based on cluster-
ing and sharing (GACS), which distributes the popu-
lation over many peaks in a changing fitness
landscape, has been shown to give improved results
using most of the different strategies. Though a num-
ber of methods came close to the GACS on some
tests, none was as robust under all the different distor-
tion sequences and different multilevel integration
strategies. Overall, a sequential strategy using cheap
but inaccurate solutions first, followed by a lesser
number of intermediate solutions before finally using a
few calls to the fully accurate but most expensive func-
tion, proved to be the most effective approach. It was,
however, only 16% more efficient than a simple use of
only the most accurate function over an equivalent,
but limited, number of trials.

Future work will be directed towards more efficient
mixing strategies, as well as more specialized optimiz-
ation techniques, specifically designed to be able to
handle this kind of problem.
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