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Boundary layer flow on a long thin cylinder
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The development of the boundary layer along a long thin cylinder aligned with the flow is
considered. Numerical solutions are presented and compared with previous asymptotic results. Very
near the leading edge the flow is given by the Blasius solution for a flat plate. However, there is soon
a significant deviation from Blasius flow, with a thinner boundary layer and higher wall shear stress.
Linear normal mode stability of the flow is investigated. It is found that for Reynolds numbers less
than a critical value of 1060 the flow is unconditionally stable. Also, axisymmetric modes are only
the fourth least stable modes for this problem, with the first three three-dimensional modes all
having a lower critical Reynolds number. Further, for Reynolds numbers above the critical value, the
flow is unstable only for a finite distance, and returns to stability sufficiently far downstream.
© 2002 American Institute of Physic§DOI: 10.1063/1.1427921

I. INTRODUCTION usually found. Glauert and LightHtliconsidered the flow
along the entire cylinder. They developed a series solution
In a classical analysis of the flow in an external bound-similar to that of Stewartson for the flow far downstream.
ary layer the pressure gradient is obtained from the inviscidhlso, they developed an approximate solution for flow near
(potentia) solution for flow past the body. The simplest ex- the leading edge based on a Pohlhausen method with a loga-
ample is Blasius flow past a flat plate aligned with the flowrithmic profile, and have shown that this solution produces
in which the pressure gradient is zero. Consider the case of @asonable agreement with different series solutions valid
circular cylinder with the external flow aligned along the near the leading edge and far downstream. Using these solu-
cylinders axis. If the cylinder is solid, then the flow will tions they produced a set of recommended curves for quan-
adjust to the presence of the cylinder, generating a nonzengties such as the displacement area and the skin friction.
pressure gradient near the nose of the cylinder. However the Here a full numerical solution of the boundary layer
pressure gradient will decay asymptotically along the cylin-problem will be presented and compared with previous re-
der. Alternatively, if fluid is being sucked into the cylinder at sults. In addition, the stability of the flow to linear normal
the free stream velocity, the pressure gradient will zero frommodes will be considered. Since three-dimensional distur-
the leading edge. bances in cylindrical coordinates cannot be reduced to an
Apart from its intrinsic interest, the flow along a long equivalent axisymmetric disturbance by a transformation of
cylinder could be regarded as an idealized model of the flowBquire’s type, it is necessary to consider three-dimensional as
along a thread. However, our interest arose from a differenjvell as axisymmetric modes.
problem, that of flow along towed sonar arrays which are
used for underwater sensing. The;e devices are cylindrical inw_ FORMULATION
shape and can have nondimensional length©(i0®) or
greater. Assuming zero pressure gradient, the boundary layer
The problem of flow developing along a circular cylin- equations in polar coordinates, (), nondimensionalized on
der with zero pressure gradient will be considered herethe cylinder radius, are
There is little reported in the literature on this problem. Se- 9
. . . . . v v
ban and Bontigive the first three terms in a series solution —+ —+—=0, 1)
valid near the leading edge of the cylinder, giving in particu- gx . or
lar expressions for the shear stress on the surface and the au 1 /d%u 14u
displacement area. Keflypresents different values for some Ux +v a R_e( arZ + T 5) ,
of the coefficients in the Seban and Bond solution. In con-
trast, Stewartsohgives a series solution for very large dis- Where (1,v) are the stream wise and radial velocity compo-
tances along the cylinder. In Ref. 3 it is shown that suffi-nents, nondimensionalized on the free stream velddity
ciently far along the cylinder, the wall shear stress decayfRe=U..a/v is the Reynolds number whene is the kine-

logarithmically with distance, rather than algebraically as ismatic viscosity.
Introducing the transformation

@

dElectronic mail: ort@soton.ac.uk y=(r—1)Re'?, v—Re Y%, 3

1070-6631/2002/14(2)/628/10/$19.00 628 © 2002 American Institute of Physics

Downloaded 05 Mar 2010 to 152.78.62.127. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 2, February 2002 Boundary layer flow on a long thin cylinder 629

which incorporates the usual RE? scaling, produces For ¢<1 take
ou dv  vRe 12 f=fo(n)+&f1(m)+--- (13
—+ —+ PE—y =0, (4)
X dy 1+Re % which produces
ou  du J*u Re 2 4u fo +3fofo=0, (14
Xty Trre Ty ®
1+Re ™y £+ fof [ — 3o+ fofy +2pf g +2f5=0. (15)
with boundary conditions The boundary conditions are
—v=0 aty=0, 6 , ,
u=v aty © fo(0)=f4(0)=0 and fo—1 asy—ex, (16
u—1 asy—o. (7)
f1(0)=f1(0)=0 and f;—0 as p—oe. a7

In addition a suitable initial condition must be specified. This
will be considered below. Equation(14) is the Blasius equation. The problems de-
fined by (14)—(17) are easily solved numerically. The solu-

tion gives the dimensionless skin frictian= (du/dy),-o as
Ill. THEORETICAL RESULTS

=0.33% Y2+ 0.694Re Y2+ - 18
From (4)—(7) it may appear that the leading term in the 7 (18

boundary layer solution will be flat plate Blasius flow, with This is essentially the same expression given by Seban and
an O(Re 2) perturbation. While this is true near the lead- Bond/Kelly? but with a small difference in the second co-
ing edge of the cylinder, further downstream this approxima-efficient, due presumably to the increased accuracy of the
tion beaks down. With the Blasius solutionscales axt/2. calculations performed here. Equatic8) has the skin fric-
Hence the ratio of the terms on the right-hand sidé5pfis  tion tending to a constant for largelt is however valid only

for x<Re. In fact, by the point/Re=1/4 the second term in

Re 12 ﬁu/ a%u o
1+Re Y2y ay/ dy*

Re™ l/2Xl/2 .
®) (18) is the larger.
14+ Re™ L/2¢12]° The asymptotic series produced by Glauert and
. . Lighthill for | i

Hence wherx=O(Re) the terms of the right-hand side are 'ghtihillTor fargex gives
of similar magnitude due to the growth in the boundary layer, 2 2y 2y2-ix’—4In2
and Blasius flow will not be the leading term in the solution T= 5+ 32—+
when the boundary layer thickness becomes comparable with &

the cylinder radius. Further, at this stage it is also necessaRyherey=0.5772 is Euler’s constant anit In(4x/Re). This
to include the additional term in the continuity equation atformyla hasr decaying asx increases, albeit slowly, in-
leading order. versely with Inx. Stewartsofproduced a similar expression,

Here the extra term will be included from the leading but usedd=In(4x/ReC) in place ofs, where InC=7. Stew-
edge by adopting the boundary layer equations in the fomértson’s formula is ' '

(4)—(7). These equations will be solved numerically, using
the method outlined below. First, however, the first two 2 im?+4In2 Re7
terms in the series solution for the flow near the leading 7==———-7——+---+ 5:+--- . (20)
edge, valid in the region €x<Re, will be presented. Fol- 9 & g
lowing Seban and Bontlfake Equation(19) can be derived from Stewartson’s expression
p=Re"’>x " Y2(r2-1)12, £=Re Y2, (99 by writing 6= 6— y and expanding the first two terms (20)
for largex. The Glauert and Lighthill expression feris used
here as it gives a better comparison with the numerical solu-
y=Re VY2t (¢ 7). (10)  tions presented below than Stewartson’s formula.
Another of quantity of interest is the “displacement

+0(6™%), (19

and

This gives area,” which represents the amount by which the fluid in the
1oy of main stream is displaced by the action the viscous effects in
U=vrar™ an’ the boundary layer. In two-dimensional flow the displace-
12 ment thickness gives the distance which the streamlines in

S E ’9_¢ __ Re "X { e+ i(gf)} (11) the far field are displaced from those of the inviscid flow past

r ox r adn  9¢ ' the body. However, in cylindrical coordinates, the displace-

ment of the streamlines away from the surface decays in-

The governing equation fdris . o ;
g ged versely withr due to the expansion in area with Hence

9 142 <9_zf . lfﬁ'f' 1 ﬂﬁ_zf there is no single displacement thickness, while there is a
an (1+2¢m) an?| * an? % aE an? specific displacement area. In nondimensional form
of  o°f j *
— = A=2 1—-u)rdr 21
* 37 970 0. (12) 1=2 ] ) (21)
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gives the displacement area relative to the cross-sectionz 005 — - - T Numeroal
area of the cylinder. The displacement of the streamlines in o045 | } ) Blasius -------- -
. . . i Blasius+Perturbation -------

the far field is given by ooa| |

s 1 AM? A A2 - 0.035 |

S T TR T A 22 5 oml
°

where the inviscid streamline is atand the equivalent vis- & 0025
cous streamline at+ §;. % o002t

Substituting the Blasius profile directly int@1) pro- 0.015 |
duces oot L

A;=Re Y2x12[3.442+ 4.37 Re Y/?x1/?]. (23 0.005 |

1 _ 1 0 1 1 1 1

The solution to(14)—(17) gives o 200 200 500 00 7000

A,=Re Y2x12[3.442+0.143Re Y212+ ...]. (249 x

Equation(24) is valid only for 0<x<Re. For largex Glauert ~ FIG. 1. Dimensionless skin friction near the leading edge of the cylinder for
and Lighthill give Re=10"

4x|1 1+vy+2In2
“Rels TJF"' : (25 grid is used inz. Since the Keller box method involves val-

_ ) ~ues only at the present and previous grid points in the
Stewartson states tha}t the boundary layer thickness is ulti-streamwise direction, the grid stepsircan be changed with
mately of order x/Red)*’?, consistent with(25). Hence the  no further complications to the method. The streamwise grid
boundary layer grows at a factor ¢4 /> more slowly than step is scaled witx!/? in accordance with the expected de-
for the flat plate. velopment of the boundary layer, so thit=x/2A.

The initial condition was obtained from calculating
from (10), (13), and the solution t614)—(17), and then using
(28) and (30) to estimateW and 7. Typically the far field

In the original polar coordinates the velocity can be ob-conditions were enforced at,,,=30 with 3000 points irg,
tained from the stream functio(x,r) through A=0.01, andky=0.01. Note that the large number of points

in zwere required by the stability calculation, not that for the

Ay

IV. NUMERICAL METHOD

u= t a_‘ﬁ v=— L ‘9_‘# (26)  flow field where an order of magnitude fewer points could
roor roox have been used.
In boundary layer coordinates write
J=Re 2w (x.2). (27) V. RESULTS

For reference consider a flow with R&.0*, correspond-
ting, e.g., to a cylinder with diameter 1 cm in water with a
free stream velocity of 1 m/s. Figure 1 shows the dimension-
less skin friction near the leading edge of the cylinder where
X~ 12 FA the Blasius solution should be valid at leading order. Figure 1
(28)  showsr(x,0) from the numerical solution, the Blasius values
and Blasius plus th®(Re™*/?) perturbation. Clearly, even at

where z=Re"?x~'?(r —1). The boundary layer equations
(4) and (5) can now be written as a system of coupled firs
order differential equations:

u=———— ——,
1+Re Y2x12z oz

au this stage the perturbation is significant, and the Blasius so-
=X 1/2_ " (29) . . . .
9z’ lution alone does not give an accurate estimate of the skin
friction.
au 1 A Figure 2 shows the skin friction much further down-

U&‘ —1+Re‘ 112,112, ox T stream. For very large, the Blasius values are much too

small while the addition of th©(Re */?) term gives values

o7 Re™ 112 that are too large. For sufficiently largethe Glauert and
=X 1’2(9—+ " (30 Lighthill formula (19) gives a good estimate of the skin fric-
Z 1+Re x4z tion
The boundary conditions are The displacement area is shown in Fig. 3. This figure

displaysA calculated directly from the numerical solution,
Y(x0=u(x0=0 and u—1 aszy—e. (31 using the Blasius solutiori23), the expansion valid for 0
The Keller box method is used to solvé28)—(31). The <x<Re (24), and Glauert and Lighthill's expression for
Keller box method is a Crank—Nicolson finite difference largex (25). As expected\, is smaller than that given using
method, which is second order accurate. Newton’s method ithe Blasius profile, and24) is valid only near the leading
used to solve the nonlinear set of algebraic equations whickdge of the cylinder. Glauert and Lighthill's formua5) is
result once the equations have been discretized. A uniforrtending slowly towards the numerical values for very laxge

Downloaded 05 Mar 2010 to 152.78.62.127. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 2, February 2002 Boundary layer flow on a long thin cylinder 631
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FIG. 2. Dimensionless skin friction for Rel0". FIG. 4. Dimensionless boundary layer thickness for-Ré&".

Perhaps of more interest than the displacement areand hence since the magnitude &f/ 9z increases continu-
which does not give a direct measure of the displacement afusly with x, the change in the velocity near the surface
the streamlines, is the boundary layer thickness. This i®ecomes more and more nonlinearxaacreases, consistent
shown in Fig. 4, along with the Blasius values. The boundarywith Fig. 6.
layer thickness has been defined as the valug-ok‘/?z The radial velocity scaled bw'?Re"%, is plotted
whereu/U,,=0.99. The boundary layer is significantly thin- againstz in Fig. 7. At x=0.01, v increases to a maximum
ner than for the flat plate case, with the difference increasinggearz=5 with a slight decrease for greateas far asz,,,y
with x. This is consistent with the higher shear stress in the=20. Further downstream there is a peak inmear the wall
cylindrical case. with a more noticeable decay further away from the wall. In

The streamwise velocity profiles with R&l0* for x  fact, this decay is to be expected; from the continuity equa-
=0.01 tox= 10° in evenly spaced intervals af’? are shown tion (1), it is clear thatv must eventually decay inversely
in Fig. 5. The velocity is plotted againaso the figure shows proportionally tor. This will occur at any value ok if r is
the change in shape of the velocity profile as the radial efsufficiently large. The apparent near constant value &r
fects become more important. This can also be seen in Fig. largez seen in Fig. 6 fox=0.01 is consistent with the flow
which shows the scaled shear stréasiz versusz. Near the  being close to Blasius flow amg,,,—1 being smal(0.02 at
leading edge, where the flow is close to Blasius flow, thethis point.
shear near the surface is approximately constant, but further
downstream, the velocity near the surface changes nonlin-
early. In fact, this can be deduced frd80) and which gives V1. STABILITY: AXISYMMETRIC MODES

— 12 —1/2 — H . .
d7ldz=—x"*Re “r at z=0. Far downstream, witii19), Flat plate boundary layer flow is one of the cases in
this gives which linear stability theory based on a normal mode ap-

or (4x/Re)12 t 0 @ proach assuming locally parallel flow produces a reasonable
_———_— + “ee a 7=
Jz In(4x/Re)
1.2 . : : .
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FIG. 5. Streamwise velocity for x=0.01 (lowest curvéto x= 10" (highest

FIG. 3. Displacement area for Rel0". curve plotted against. Re=10".
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FIG. 6. Scaled shear strega/dz for x=0.01 (lowest value az=0) to x FIG. 7. Radial velocityx*?Re*?y for x=0.01(top curvé to x= 10> (bot-
=10 (highest az=0) plotted against. Re=10". tom curve plotted against. Re= 10

comparison with experimental results. Hence, for very high R R

values of Re where the flow near the leading edge of théions for ¢ take the form oK (ar) andK,(ay), whereK,
cylinder is given by Blasius flow, linear theory should indi- is the modified Bessel function of order one aad-[a?
cate where the flow first becomes unstable in this case asia(u—c)Re]¥2 For large argument, K (z)~z *?
well. For lower Re or further down the cylinder, the higher X exp(~2). For the modes of intere$k(a)>a, and hence
values of the wall shear stress and lower values of the boungne sjowest decaying disturbance in the far field has the form
ary layer thickness suggest that the flow will be more Stabl%fvrl’zexp(—ar). This behavior can be used to derive Neu-

for the cylinder than the flat plate. However, the governingmann conditions which can be appliedatr .. In particu-
equation for the disturbance is not the same, so this prediqyy, assuming thatr is large, we can use

tion must be treated with caution.
The disturbance to the flow is given by

= d(exii(ax—ot)], @ %9
where i, is the disturbance stream functiog(r) its com-
plex amplitude, andx and o the wave number and fre-
quency of the disturbance. Substituti(®@B) in the Navier—
Stokes equations and linearizing produces

A nontrivial solution was forced by setting to a (arbi-
trary) small value in the far field. The position of the far field
boundary was varied to ensure that the results were not af-
fected by the value used fop,,y.

The code used to obtaith and c was adapted from a
u'\’ 1 - standard Orr—Sommerfeld solver in Cartesian coordinates
T ¢= i a Re(D_a )¢, (349 which has been thoroughly checked against results from the

literature, such as those for Blasius flow, plane Poiseuille

(U—C)(D—a2)¢—f(

where flow, and a flat plate boundary layer with surface suction. In
addition, the results obtained using a perturbation stream
#? 19 function agree with those using a velocity-pressure formula-

D= 2T ar (35 tion (details are given in the next sectjor very large num-

ber of points(up to 64x 10°) was used to check the accuracy

andc=w/a=c,+ic; is the complex wave speed. Equation of the results, particularly for the critical Reynolds numbers,
(34) is the axisymmetric equivalent of the more familiar \yhich are believed to be accurate to the figures quoted. Note
Orr—Sommerfeld equation found for two-dimensional flow. that it would have been possible to use less points by chang-
The boundary conditions fap are the usual zero veloc- jng the numerical method, e.g., by stretching the grid or us-
ity condition at the wall ¢p=d¢/dr =0 atr=1) and for the jng a spectral method, but since the calculations can be per-
disturbance to vanish in the far field. formed on a standard desktop machine there was no point in

Equation(34) was solved using a standard second ordeydopting a more complicated/sophisticated method.
finite difference method with a uniform grid. A Newton Adopting the boundary layer scaling

method was used to solve the discrete equations at each it-

eration. The only problem that arises in using this method is

in specifying a form for the outer boundary conditions. Con- =1+ Re 12y, a=Re'?g, (37)
sider (34) in the far field whereau is asymptotically close to

one. Taking¢=rff> it can be shown that the decaying solu- Eq. (34) becomes
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((92(1) Re 12 5¢ , ) g 112 0.001
u—C)l = — —— —u"¢+ u’
(U=0)| Gz = = gy B Ut e .
1| 2Ré“2ﬁ¢+3Rélf¢
CiRBLayT R 2 Y T
312 2 - 1/2 T 0.0005
_3Re?i¢ 2(%_Re ﬁ)+ﬁ4¢' E
r3 ay ay r ay 0001 |
(38)
— 12 . . -0.0015
whereR,=Re"?, and the prime om in (38) refers tod/ dy.
From (39) it is clear that for large Re the stability char- 0.002
acteristics near the leading edge of the cylinder should be '
similar to those for the flat plate. Drazin and Regive the x
critical values of FIG. 8. The maximum value of; for axisymmetric modes versus Re
Rp: 519, = 0.304, Crp: 0.3966 (39) =12 000(bottom), Re=12 439(middle), and Re=13 000(top).

based on the displacement thickness as the characteristic

length. In nondimensional terms the displacement thicknesg); sTABILITY: THREE-DIMENSIONAL MODES

for Blasius flow is given by

For parallel flow, normal mode stability in Cartesian co-

01=1.72"?Re 12, (40) ordinates it is usual to consider only two-dimensional distur-
Hence in the scalings used here bances as Squires theorahows that the minimum critical
Reynolds number arises with two-dimensional modes. How-
R, 2 apRe”2 ever, in cylindrical polar coordinates, three-dimensional dis-
Xe™= (1_72) Re and He= ] o2 (4D turbances cannot be reduced by a transformation of Squire’s
e type to an equivalent axisymmetric disturbance, so that
wherex, is the point the flow first becomes unstable. Squire’s theorem cannot be invoked. Hence it is necessary to
Calculations were performed for a range of Reynoldsconsider full three-dimensional disturbances.
numbers. For Re 10°, when (41) gives x,=0.91 anda, Let the disturbance have the form
=58.5, the critical point was found to be at~0.99 with (0,0,W,p)(r)exdi(ax+no—ot)], (42)

a.~56.0. As expected, this is further downstream than for
Blasius flow. For Re5x10% (41) givesx,=1.82 anda,  where {(1,0,w) give the velocity components in polar coor-

=29.3, while for the cylinderx,~2.18 with a;~26.7. dinates &.r,6), p the pressure perturbation, ands an in-

_The gap between the predicted and calculated values @éger. Then, assuming parallel flow, the governing equations
X, increases as Re decreases. ForR& 10 (41) givesX.  gre

=4.55 anda.=11.7, while the values from the numerical
solution are x,~8.02 and «,~8.73. However, for Re .~ 19 . in.
<12439 no unstable modes were found. Note that at this ' @UT 1 gy (rv)+w=0, (43
point the eigenvalue is consistent with the values for higher
Re, which indicates that the solution 88) has not jumped . ~ du. . 1
to another branch, i.e., is still obtaining the least stable solu- ia(U—=c)u+ v —lap+ Re
tion. At the critical point with Re=12439, ¢,=0.317 and
a=2.73.

Figure 8 shows; againsix for Reynolds numbers at and -
near the critical Reynolds number. Clearly for these Rey-
nolds numbers there is a point along the cylinder at which ~
the flow is maximally unstable, with the flow becoming ia(u—c){;=—a—p+i
monotonically more stable further downstream. This pattern ar  Re
was found for all Reynolds numbers investigated, with the
flow unstable only for a finite section of the cylinder if at all. 1. 2in.
That is, if the flow is unstable theg,>0 only for x,<x T
<Xs, Wherex, depends on Re. For R&x 10%, x,~4.2
X 107, for Re=5Xx10%, xs~4.1x 10°, and for Re=10°, x4 . in. 1
~2.2x10% In all cases investigated the change back to  Ta(U=C)W=—-—p+ =
stable flow is still in the region in which the series with
Blasius flow as the leading term might be expected to be 2in. 1.
valid. + r—zl) - r_2W

#u 140

4+ -
(9|'2 r or

2
e ’:—2) a], (44)

o 1o

gre roar
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where agairc=w/a. TABLE I. Critical Reynolds numbers for different modes=0 is the axi-

The boundary conditions are again zero velocity at thesymmetric disturbancee, andx. give the approximate value of the wave

. e . : speed and position of the neutral disturbance at the critical Reynolds num-
surface and the disturbance vanishing in the far field. Byt)er, Ry, is the Reynolds number based on the boundary layer thickness at

assuming thatu=1, applying the divergence operator to this point,R,=R.x, is the Reynolds based on the distance from the leading
(44)—(46), and using43), we see that the pressure in the far edge, ang3.= «R; *2.

field behaves a&,(ar), whereK,, is the modified Bessel
function of ordem. The behavior of the velocity components :
is then obtained by assuming a balance between the conve@- 12439 47.0 273 00245 0317 3591 58B°
tive and pressure terms {#4)—(46). We can then use Neu- 1 1060 543 0125 000385 0.552 3008 578

o 2 6070 911 0.775 0.00995 0.422 3383 &553°
mann conditions of the typé36) for the pressure and the 3 10102 434 160 00159 0403 3101 42Dy

velocity components provided,,, is such thatar,,is 4 13735 268 254 00217 0398 2885 3600
greater than 1. Two different ways of normalizing the prob-s 17199 19.0 3.53 0.0269  0.396 2733 3B°
lem were used; setting the streamwise component of the wallo 33855 7.4 858 00466  0.396 2429 2510°
shear to one and setting the far field value of the pressure to
a small arbitrary constant. In test cases both produced the
same results. The former was used for the results presented
below. a¢, this pattern of variation in the wave number holds. This

Again a standard finite difference method with a Newtonreflects the change in the boundary layer thickness with dis-
iteration scheme was used. An axisymmetric version of theance downstream, and hence the implicit change in the scal-
solver was produced and the results compared with thosiag for the stability problem.
generated using the stream functi¢ras the dependent vari- Apart from the axisymmetric mode, the wave speed at
able. There was no significant difference between the resultshe critical point(Table |) decreases with, and appears to be
In particular, both methods produced the same critical Reytending to a constant value asncreases. This value is es-
nolds number. Also, for large Re, near the upstream end dentially the same as that given in Ref. 6 for Blasius flow.
the cylinder, at leading order the stability equations will re-This is as expected since as Re increases the flow and its
duce to those for the analogous three-dimensional problem istability characteristics should approach those for Blasius
Cartesian coordinategcf. (38)], and hence Squires flow. Hence from Squires transformation the valuecpfat
transformatiofl should apply. Solutions were generated forthe critical point should be the same for all modes. Table |
Re=10° andn=5. The results were compared with thosealso gives Reynolds numberdRy) calculated using the
found with n=0 with the lower Reynolds number obtained boundary layer thickness at the critical point as the charac-
from Squires transformation, which for viscous problemsiteristic length and Reynolds numbers based on the distance
gives a change in the Reynolds number as well as the refrom the leading edgeR,=R:X;). The values ofR,, are
evant wave number when mapping a three-dimensional dignore consistent thaR;, and for highern decrease rather
turbance to a two-dimensional one with the same value of than increase witin. Note that all theR,, in Table | are
Note, however, that in this case when the appropriate boundarger than the corresponding flat plate value of 1481. The
ary layer scalings are adopted, i,8= « Re” ¥ for the wave  values ofR, at the critical point decrease with but all those
number and R& for the Reynolds number, as i88), given in Table | are well above the value for Blasius flow of
Squires transformation implies that the basic wave number 91x 10°. Also, although the values d®. for n=0 andn
is the same for the two- and three-dimensional disturbances 1 are an order of magnitude different, the valuefRgfat
while R,=[ a?/(a?+n?)]R; whereR, andR; are the two-  the critical point for these two modes are similar due to an
and three-dimensional Reynolds numbers, respectively. Thalmost equivalent but opposing change in the valug_.of
level of agreement between the numerical and predicted re- For any particular value afi=1, for Reynolds numbers
sults for the two-dimensional disturbance was as expectedbove its critical value, the mode shows similar behavior
i.e., consistent with the difference found above between thavith x to that for the axisymmetric mode. That is, it is un-
results from the axisymmetric calculations and the predicstable for only a finite distance along the cylinder, with the
tions from Blasius flow. flow returning to stability further downstream.

Table | gives critical ReynoldsR.) numbers fom=1 to Figure 9 shows the maximum value @fversusx for the
5,n=10 and the axisymmetric mode{ 0) and, for eaclm,  unstable modes for Rel5 000, withx on a log scale for
a number of values obtained at the critical poirt)(where clarity. For the three-dimensional modes there is a common
the flow first becomes unstable. Unlike for problems in Car-pattern; a1 and the critical Reynolds number increases, the
tesian coordinates, the two-dimensional disturbance is nqgteak value ofc; decreases as does the size of the region in
the least stable in the sense of having the lowest criticalvhich the flow is unstable. The behavior of the axisymmetric
Reynolds number; it is only the fourth least stable mode withmode is different; althoughR. is lower for n=0 thann
n=1, 2, and 3 all having lower critical values. =3, n=0 has the larger region of instability. Also, for

The value ofx, varies inversely withR, moving up- =0, ¢; has, in as far as is shown in Fig. 9, stopped decaying.
stream asR. increases. In contrast, apart from the axisym-  The wave speed, corresponding to the values af
metric mode, the value ak at the critical points varies di- shown in Fig. 9 is plotted againstin Fig. 10. Again, the
rectly with R; and inversely withx.. Even when including pattern for the three-dimensional modes is different than that
the basic Re? boundary layer scaling, producing. from  for the axisymmetric mode. Far>0 there is a clear mini-

Re Xc Ac Be Cr Ry Ry
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FIG. 9. The maximum value af; versusx for Re=15 000. In descending FIG. 11. The wave numbew corresponding to the maximum value of
order of their maximum value the curves are for 1, 2, 3, 0, and 4. ¢; versusx for Re=15 000. From the top the curves are for0, 1, 2, 3,
and 4.

mum in the value ot , with the minimum value increasing results are shown in Fig. 12. From this figure it is seen that
and moving upstream as increases. In contrast, the wave fq, n=1, the maximum value of; does not give the most
speed forn=0 decreases monotonically over the regionynstaple mode over most of the region in which this mode is
shown. Fom=1, 2, and 3 the minimum ie, occurs in the  ypstaple. Also, far downstream, the growth rate appears to be
unstable region, while fon=4 it is very close to the up- tending to zero in Fig. 12 because of the very small values of
stream neutral point. _ a in this region. For the other modes, asincreases, the
__The wave numbex corresponding to the values shown giference between the maximum growth rate and that found
in Figs. 9 and 10 is plotted againsin Fig. 11. In all cases  jth the maximum value of; decreases. On the scale shown
decreases withx. However, rather than tending to zero, j, Fig. 12 there is no difference between the two sets of
which appears to be happening for-0 in the region shown,  growth rates fom=0 and 4. Figure 12 also shows that for
for n=0, as withc; (Fig. 10, a appears to have leveled out. thjs Reynolds number, the least stable mode, in terms of the
Above, the maximum value of; has been plotted qrowth rate, isn=2, with n=0 only the fourth least stable
againstx in Fig. 9. However, since the wave number alsomgde, behinch=2, 3 and 1.
varies withx (Fig. 11), the maximum value of; may not The neutral stability curves for Rel5 000 are shown in
correspond to the fastest growing mode. Further, the fact thqiig. 13. For clarity, only the upstream portion of the curve is
easily the largest values af are forn=1 does not neces- gnown forn=1, although this curve does close far down-

sarily imply thatn=1 is the most dangerous mode as itSgiream atx~1.15x< 10, as indicated in Fig. 9. As can be
peak values o€; are downstream where is small. A set of

calculations was performed for Re5000 tracking the

maximum growth rate rather the maximum valuecpf The 0016 b ' ' ' ]

0.014 |

0.012

0.008

growth rate

0.006

0.004

Re(c)

0.002

02 | _ 1 10 1000 10000

0.1 ) , , , FIG. 12. Maximum growth ratexc; versusx for Re=15000. The two
1 10 100 1000 10000 curves extending downstream are for=1, with the top one giving the
X maximum growth rate and the bottom the growth rate corresponding to the
maximum value ofc; . The other curves, in terms of descending peak val-
FIG. 10. The wave speed, corresponding to the maximum value of ues, are fom=2 (maximum growth ratg n=2 (maximum value ofc;),
versusx for Re=15 000. From the bottom the curves are fot0, 1, 2, 3, n=3 (maximum growth rate n=3 (maximum value ofc;), and n=0
and 4. and 4.
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6 - normal mode disturbances. Further, unlike flows in Cartesian
coordinates, two-dimensional disturbances are not the least
stable in terms of having the lowest critical Reynolds num-
ber, with then=1 mode having a critical Reynolds number
an order of magnitude less than the axisymmetrie=0Q)
mode.

The standard physical explanation for the existence of
unstable normal modes in viscous flows that do not have an
inflexion point in their velocity profile is that a phase differ-
ence in the transverse direction between the velocity compo-
nents gives rise to a Reynolds stress which is sufficiently
large to overcome the stabilizing dissipative effects of the
viscosity (see, e.g., Ref. 7, p. 2R0The equation governing
the rate of change of the kinetic energy of the perturbations
from a two-dimensional disturbance to a two-dimensional

FIG. 13. Neutral curves for Re15 000. The solid curve which is open at flow (Refs. 6 and Yis
the right is forn=1. The other curves in terms of their maximum down-

stream extent are far=2, 0, 3 and 4. dK °°
_:fo u’(y) rxydy— = J w dy, (47

10 100 1000

dt

seen, there are significant differences not only in the regiong/hereK is the total kinetic energy of the disturbanes, is
in which the various modes are unstable, but also in the wavthe Reynolds stress, andis the vorticity of the disturbance.
numbers. For example, far=4 there is no overlap witm  All of these quantities have been averaged over a wave-
=0 or 1 in the range of unstable wave numbers. Also, it isength. Writing the perturbation velocity components as in
clear that in the upstream region=2 has the largest range (42) with n=0, the Reynolds stress is given by
of unstable wave numbers, which supports the idea that this — . R
would be the most dangerous mode for this Reynolds num-  Txy= —Uv=— 1/2[u(y)[[v(y)|cod 8,(y) — HU(Y)]eZ;)
ber.

As the Reynolds number increases the three dimensionafhere the overline denotes the averaging iand
modes show a similar pattern to that found for the axisym- . A _ - - _
metric modes, with the region of instability increasing but u(y)=lu(y)[e'®, v(y)=|o(y)|e'"¥. (49)
still finite. For example, for Re 10° then=1 mode is un- | (47),

stable fromx,~0.99 toxs~7.7x 10%. )
~ R ~ Jdu

0?’=1/2|o(y)|?> where o(y)=iav——. (50)
VIII. DISCUSSION ady

Calculations have been performed for the boundary layefor the axisymmetric case the energy equation is
on a long thin cylinder, including effects which come from dK o 1 (=
the radial nature of the problem. Near the leading edge of the at f (r) 7y dr —f ordr
cylinder a solution for the flow can be written as a series, as
in (99—(17). This series has Blasius flow as its leading term,with y in (48)—(50) replaced byr.
and is formally valid forx<Re. However, in practice the If 6,(y)—6,(y)# = /2 then it is possible that the pro-
second term in the series, which relative to the leading ternduction term in(47) or (51) (the first term on the right-hand
is of order (/Re)"?, plays a significant role much closer to side may outweigh the dissipatione( the second term on
the leading edge. In the expression for the skin friclid®), the righy and lead to growth in the energy of the disturbance.
the ratio of the second term to the leading term isThe growth rate of the kinetic energy normalized by the dis-
2.09(x/Re)"?, which equals 0.66 whex'Re=1/10, and 0.21  sipation @K/dt/|e|) is shown in Fig. 14 for both the two-
whenx/Re=1/100. Hence, except very close to the leadingdimensional and axisymmetric cases with=Rk5 000. For
edge, 7 is significantly different from that for Blasius flow. the axisymmetric problerdK/dt is positive only for a small
This can be seen clearly in Fig. 1 which shows the skinregion matching that witle;>0 as shown in Figs. 9 and 12.
friction near the leading edge for ReL0". In contrast, for Blasius flow the normalized kinetic energy
Further down the cylinder, whexs>Re, the series solu- growth rate increases monotonically over the region shown.
tion given by Glauert and Lighthfligives excellent results Examination of the two terms that make dg/dt shows
for the skin friction (Fig. 2), but worse agreement for the that there is relatively little change in the dissipation, and
displacement aregFig. 3). that the difference in behavior is almost entirely due to the
The boundary layer thickness is lower and the skin fric-change in the rate of production of kinetic energy, i.e., in the
tion is higher in the cylinder flow than those for Blasius flow. first term on the right-hand side ¢47) and(51). Comparing
In general this would suggest that the flow is more stablethe two cases at a point where both are unstéblg., atx
This prediction has been borne out. In fact, for flow with =50) shows that the main reason for the difference in the
Re<1060 or less the flow is unconditionally stable to linearproduction term is that, for disturbances of the same size, the

(51
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4 - - - - - - - - - Physically the flow would still be expected to become
unstable then turbulent along the cylinder as the boundary

35 1
T layer grows in thickness. However, at Reynolds numbers of
. ° T ] 0O(10% or less there will be no simple, two-dimensional,
5 257 1 Tollmein—Schlichting-type wave growth/transition scenario,
Y - | and for Reynolds numbers betwe{10®) andO(10% any
3 . linear, normal mode growth of the type considered here is
5 °f ] necessarily three dimensional. Further, instability when it oc-
2 tf 1 curs is further downstream than for Blasius flow, and for the

Reynolds numbers investigated in detail, occurs only for a

finite length of the cylinder, with the flow becoming stable

1 again wherx is still well short of Re. This does not of course

i . imply that the flow will be laminar far downstream. How-

0 50 100 150 200 Zio 300 350 400 450 500 ayer with a carefully designed experiment it may be that
laminar flow can be maintained much further downstream

FIG. 14. Disturbance energy growth rate normalized by the dissipatiorthan with a flat plateécf. Poiseuille flow in a pipe as opposed

dK/dt/||. The lower curve is for the axisymmetric case and the upper forig a channel

Blasius flow. L. . -

Unconditional normal mode linear stability has of course
been found with other basic flows. In particular, no unstable
modes have been found for Poiseuille flow in a pipe, al-

Reynolds stress is significantly lower in the axisymmetricthough this flow is well known to be unstable at sufficiently
case than the two-dimensional flat plate case. That is, theigh Reynolds number.
primary reason for the enhanced stability characteristics in
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