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Boundary layer flow on a long thin cylinder
O. R. Tuttya) and W. G. Price
School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

A. T. Parsons
QinetiQ, Winfrith Technology Centre, Dorset DT2 8XJ, United Kingdom

~Received 20 March 2001; accepted 18 October 2001!

The development of the boundary layer along a long thin cylinder aligned with the flow is
considered. Numerical solutions are presented and compared with previous asymptotic results. Very
near the leading edge the flow is given by the Blasius solution for a flat plate. However, there is soon
a significant deviation from Blasius flow, with a thinner boundary layer and higher wall shear stress.
Linear normal mode stability of the flow is investigated. It is found that for Reynolds numbers less
than a critical value of 1060 the flow is unconditionally stable. Also, axisymmetric modes are only
the fourth least stable modes for this problem, with the first three three-dimensional modes all
having a lower critical Reynolds number. Further, for Reynolds numbers above the critical value, the
flow is unstable only for a finite distance, and returns to stability sufficiently far downstream.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1427921#
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I. INTRODUCTION

In a classical analysis of the flow in an external boun
ary layer the pressure gradient is obtained from the invis
~potential! solution for flow past the body. The simplest e
ample is Blasius flow past a flat plate aligned with the flo
in which the pressure gradient is zero. Consider the case
circular cylinder with the external flow aligned along th
cylinders axis. If the cylinder is solid, then the flow wi
adjust to the presence of the cylinder, generating a non
pressure gradient near the nose of the cylinder. However
pressure gradient will decay asymptotically along the cy
der. Alternatively, if fluid is being sucked into the cylinder
the free stream velocity, the pressure gradient will zero fr
the leading edge.

Apart from its intrinsic interest, the flow along a lon
cylinder could be regarded as an idealized model of the fl
along a thread. However, our interest arose from a differ
problem, that of flow along towed sonar arrays which a
used for underwater sensing. These devices are cylindric
shape and can have nondimensional lengths ofO(105) or
greater.

The problem of flow developing along a circular cylin
der with zero pressure gradient will be considered he
There is little reported in the literature on this problem. S
ban and Bond1 give the first three terms in a series soluti
valid near the leading edge of the cylinder, giving in partic
lar expressions for the shear stress on the surface and
displacement area. Kelly2 presents different values for som
of the coefficients in the Seban and Bond solution. In c
trast, Stewartson3 gives a series solution for very large di
tances along the cylinder. In Ref. 3 it is shown that su
ciently far along the cylinder, the wall shear stress dec
logarithmically with distance, rather than algebraically as

a!Electronic mail: ort@soton.ac.uk
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usually found. Glauert and Lighthill4 considered the flow
along the entire cylinder. They developed a series solu
similar to that of Stewartson for the flow far downstrea
Also, they developed an approximate solution for flow ne
the leading edge based on a Pohlhausen method with a l
rithmic profile, and have shown that this solution produc
reasonable agreement with different series solutions v
near the leading edge and far downstream. Using these s
tions they produced a set of recommended curves for qu
tities such as the displacement area and the skin friction

Here a full numerical solution of the boundary lay
problem will be presented and compared with previous
sults. In addition, the stability of the flow to linear norm
modes will be considered. Since three-dimensional dis
bances in cylindrical coordinates cannot be reduced to
equivalent axisymmetric disturbance by a transformation
Squire’s type, it is necessary to consider three-dimensiona
well as axisymmetric modes.

II. FORMULATION

Assuming zero pressure gradient, the boundary la
equations in polar coordinates (x,r ), nondimensionalized on
the cylinder radius, are

]u

]x
1

]v
]r

1
v
r

50, ~1!

u
]u

]x
1v

]u

]r
5

1

ReS ]2u

]r 2 1
1

r

]u

]r D , ~2!

where (u,v) are the stream wise and radial velocity comp
nents, nondimensionalized on the free stream velocityU` .
Re5U`a/n is the Reynolds number wheren is the kine-
matic viscosity.

Introducing the transformation

y5~r 21!Re1/2, v→Re2 1/2v, ~3!
© 2002 American Institute of Physics
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which incorporates the usual Re21/2 scaling, produces

]u

]x
1

]v
]y

1
vRe2 1/2

11Re2 1/2y
50, ~4!

u
]u

]x
1v

]u

]y
5

]2u

]y2 1
Re2 1/2

11Re2 1/2y

]u

]y
, ~5!

with boundary conditions

u5v50 at y50, ~6!

u→1 as y→`. ~7!

In addition a suitable initial condition must be specified. Th
will be considered below.

III. THEORETICAL RESULTS

From ~4!–~7! it may appear that the leading term in th
boundary layer solution will be flat plate Blasius flow, wi
an O(Re21/2) perturbation. While this is true near the lea
ing edge of the cylinder, further downstream this approxim
tion beaks down. With the Blasius solution,y scales asx1/2.
Hence the ratio of the terms on the right-hand side of~5! is

Re2 1/2

11Re2 1/2y

]u

]yY ]2u

]y2 5OS Re2 1/2x1/2

11Re2 1/2x1/2D . ~8!

Hence whenx5O(Re) the terms of the right-hand side a
of similar magnitude due to the growth in the boundary lay
and Blasius flow will not be the leading term in the soluti
when the boundary layer thickness becomes comparable
the cylinder radius. Further, at this stage it is also neces
to include the additional term in the continuity equation
leading order.

Here the extra term will be included from the leadin
edge by adopting the boundary layer equations in the fo
~4!–~7!. These equations will be solved numerically, usi
the method outlined below. First, however, the first tw
terms in the series solution for the flow near the lead
edge, valid in the region 0,x!Re, will be presented. Fol
lowing Seban and Bond,1 take

h5Re1/2x21/2~r 221!/2, j5Re21/2x1/2, ~9!

and

c5Re21/2x1/2f ~j,h!. ~10!

This gives

u5
1

r

]c

]r
5

] f

]h
,

v52
1

r

]c

]x
52

Re2 1/2x2 1/2

r F2h
] f

]h
1

]

]j
~j f !G . ~11!

The governing equation forf is

]

]h F ~112jh!
]2f

]h2G1 1
2 f

]2f

]h2 1 1
2jS ] f

]j

]2f

]h2

1
] f

]h

]2f

]h]j D50. ~12!
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For j!1 take

f 5 f 0~h!1j f 1~h!1••• ~13!

which produces

f 0-1 1
2 f 0f 0950, ~14!

f 1-1 1
2 f 0f 192 1

2 f 08 f 181 f 09 f 112h f 0-12 f 0950. ~15!

The boundary conditions are

f 0~0!5 f 08~0!50 and f 08→1 as h→`, ~16!

f 1~0!5 f 18~0!50 and f 18→0 as h→`. ~17!

Equation~14! is the Blasius equation. The problems d
fined by ~14!–~17! are easily solved numerically. The solu
tion gives the dimensionless skin frictiont5(]u/]y)y50 as

t50.332x2 1/210.694 Re2 1/21••• . ~18!

This is essentially the same expression given by Seban
Bond/Kelly,1,2 but with a small difference in the second c
efficient, due presumably to the increased accuracy of
calculations performed here. Equation~18! has the skin fric-
tion tending to a constant for largex. It is however valid only
for x!Re. In fact, by the pointx/Re51/4 the second term in
~18! is the larger.

The asymptotic series produced by Glauert a
Lighthill 4 for largex gives

t5
2

d
1

2g

d2 1
2g22 1

2p
224 ln 2

d3
1O~d24!, ~19!

whereg50.5772 is Euler’s constant andd5 ln(4x/Re). This
formula hast decaying asx increases, albeit slowly, in
versely with lnx. Stewartson3 produced a similar expression
but usedd̂5 ln(4x/ReC) in place ofd, where lnC5g. Stew-
artson’s formula is

t5
2

d̂
2

1
2p

214 ln 2

d̂3
1•••1

Re

2x

7

d̂
1••• . ~20!

Equation~19! can be derived from Stewartson’s expressi
by writing d̂5d2g and expanding the first two terms in~20!
for largex. The Glauert and Lighthill expression fort is used
here as it gives a better comparison with the numerical s
tions presented below than Stewartson’s formula.

Another of quantity of interest is the ‘‘displaceme
area,’’ which represents the amount by which the fluid in t
main stream is displaced by the action the viscous effect
the boundary layer. In two-dimensional flow the displac
ment thickness gives the distance which the streamline
the far field are displaced from those of the inviscid flow p
the body. However, in cylindrical coordinates, the displac
ment of the streamlines away from the surface decays
versely with r due to the expansion in area withr. Hence
there is no single displacement thickness, while there i
specific displacement area. In nondimensional form

D152E
1

`

~12u!r dr ~21!
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gives the displacement area relative to the cross-secti
area of the cylinder. The displacement of the streamline
the far field is given by

d15r F11
D

r 2G1/2

2r 5
D

2r
2

D2

8r 3 1••• , ~22!

where the inviscid streamline is atr and the equivalent vis
cous streamline atr 1d1.

Substituting the Blasius profile directly into~21! pro-
duces

D15Re2 1/2x1/2@3.44214.37 Re2 1/2x1/2#. ~23!

The solution to~14!–~17! gives

D15Re2 1/2x1/2@3.44210.143 Re2 1/2x1/21•••#. ~24!

Equation~24! is valid only for 0,x!Re. For largex Glauert
and Lighthill give

D15
4x

ReF1

d
1

11g12 ln 2

d2 1•••G . ~25!

Stewartson3 states that the boundary layer thickness is u
mately of order (x/Red̂)1/2, consistent with~25!. Hence the
boundary layer grows at a factor (lnx)21/2 more slowly than
for the flat plate.

IV. NUMERICAL METHOD

In the original polar coordinates the velocity can be o
tained from the stream functionc(x,r ) through

u5
1

r

]c

]r
, v52

1

r

]c

]x
. ~26!

In boundary layer coordinates write

c5Re2 1/2C~x,z!, ~27!

where z5Re1/2x21/2(r 21). The boundary layer equation
~4! and ~5! can now be written as a system of coupled fi
order differential equations:

u5
x2 1/2

11Re2 1/2x1/2z

]C

]z
, ~28!

t5x2 1/2
]u

]z
, ~29!

u
]u

]x
2

1

11Re2 1/2x1/2z

]C

]x
t

5x2 1/2
]t

]z
1

Re2 1/2

11Re2 1/2x1/2z
t. ~30!

The boundary conditions are

C~x,0!5u~x,0!50 and u→1 as h→`. ~31!

The Keller box5 method is used to solve~28!–~31!. The
Keller box method is a Crank–Nicolson finite differen
method, which is second order accurate. Newton’s metho
used to solve the nonlinear set of algebraic equations w
result once the equations have been discretized. A unif
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grid is used inz. Since the Keller box method involves va
ues only at the present and previous grid points in
streamwise direction, the grid step inx can be changed with
no further complications to the method. The streamwise g
step is scaled withx1/2 in accordance with the expected d
velopment of the boundary layer, so thatDx5x1/2D.

The initial condition was obtained from calculatingu
from ~10!, ~13!, and the solution to~14!–~17!, and then using
~28! and ~30! to estimateC and t. Typically the far field
conditions were enforced atzmax530 with 3000 points inz,
D50.01, andx050.01. Note that the large number of poin
in z were required by the stability calculation, not that for t
flow field where an order of magnitude fewer points cou
have been used.

V. RESULTS

For reference consider a flow with Re5104, correspond-
ing, e.g., to a cylinder with diameter 1 cm in water with
free stream velocity of 1 m/s. Figure 1 shows the dimensi
less skin friction near the leading edge of the cylinder wh
the Blasius solution should be valid at leading order. Figur
showst(x,0) from the numerical solution, the Blasius valu
and Blasius plus theO(Re21/2) perturbation. Clearly, even a
this stage the perturbation is significant, and the Blasius
lution alone does not give an accurate estimate of the s
friction.

Figure 2 shows the skin friction much further dow
stream. For very largex, the Blasius values are much to
small while the addition of theO(Re21/2) term gives values
that are too large. For sufficiently largex the Glauert and
Lighthill formula ~19! gives a good estimate of the skin fric
tion.

The displacement area is shown in Fig. 3. This figu
displaysD1 calculated directly from the numerical solution
using the Blasius solution~23!, the expansion valid for 0
,x!Re ~24!, and Glauert and Lighthill’s expression fo
largex ~25!. As expectedD1 is smaller than that given usin
the Blasius profile, and~24! is valid only near the leading
edge of the cylinder. Glauert and Lighthill’s formula~25! is
tending slowly towards the numerical values for very largex.

FIG. 1. Dimensionless skin friction near the leading edge of the cylinder
Re5104.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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631Phys. Fluids, Vol. 14, No. 2, February 2002 Boundary layer flow on a long thin cylinder
Perhaps of more interest than the displacement a
which does not give a direct measure of the displacemen
the streamlines, is the boundary layer thickness. This
shown in Fig. 4, along with the Blasius values. The bound
layer thickness has been defined as the value ofy5x1/2z
whereu/U`50.99. The boundary layer is significantly thin
ner than for the flat plate case, with the difference increas
with x. This is consistent with the higher shear stress in
cylindrical case.

The streamwise velocity profiles with Re5104 for x
50.01 tox5105 in evenly spaced intervals ofx1/2 are shown
in Fig. 5. The velocity is plotted againstz so the figure shows
the change in shape of the velocity profile as the radial
fects become more important. This can also be seen in F
which shows the scaled shear stress]u/]z versusz. Near the
leading edge, where the flow is close to Blasius flow,
shear near the surface is approximately constant, but fur
downstream, the velocity near the surface changes non
early. In fact, this can be deduced from~30! and which gives
]t/]z52x1/2Re21/2t at z50. Far downstream, with~19!,
this gives

]t

]z
52

~4x/Re!1/2

ln~4x/Re!
1••• at z50 ~32!

FIG. 2. Dimensionless skin friction for Re5104.

FIG. 3. Displacement area for Re5104.
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and hence since the magnitude of]t/]z increases continu-
ously with x, the change in the velocity near the surfa
becomes more and more nonlinear asx increases, consisten
with Fig. 6.

The radial velocity scaled byx1/2Re1/2v, is plotted
againstz in Fig. 7. At x50.01, v increases to a maximum
nearz55 with a slight decrease for greaterz as far aszmax

520. Further downstream there is a peak inv near the wall
with a more noticeable decay further away from the wall.
fact, this decay is to be expected; from the continuity eq
tion ~1!, it is clear thatv must eventually decay inversel
proportionally tor. This will occur at any value ofx if r is
sufficiently large. The apparent near constant value ofv for
largez seen in Fig. 6 forx50.01 is consistent with the flow
being close to Blasius flow andr max21 being small~0.02! at
this point.

VI. STABILITY: AXISYMMETRIC MODES

Flat plate boundary layer flow is one of the cases
which linear stability theory based on a normal mode a
proach assuming locally parallel flow produces a reasona

FIG. 4. Dimensionless boundary layer thickness for Re5104.

FIG. 5. Streamwise velocityu for x50.01~lowest curve! to x5105 ~highest
curve! plotted againstz. Re5104.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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comparison with experimental results. Hence, for very h
values of Re where the flow near the leading edge of
cylinder is given by Blasius flow, linear theory should ind
cate where the flow first becomes unstable in this case
well. For lower Re or further down the cylinder, the high
values of the wall shear stress and lower values of the bou
ary layer thickness suggest that the flow will be more sta
for the cylinder than the flat plate. However, the govern
equation for the disturbance is not the same, so this pre
tion must be treated with caution.

The disturbance to the flow is given by

c15f~r !exp@ i ~ax2vt !#, ~33!

wherec1 is the disturbance stream function,f(r ) its com-
plex amplitude, anda and v the wave number and fre
quency of the disturbance. Substituting~33! in the Navier–
Stokes equations and linearizing produces

~u2c!~D2a2!f2r S u8

r D 8
f5

1

ia Re
~D2a2!2f, ~34!

where

D[
]2

]r 2 2
1

r

]

]r
~35!

andc5v/a5cr1 ic i is the complex wave speed. Equatio
~34! is the axisymmetric equivalent of the more famili
Orr–Sommerfeld equation found for two-dimensional flow

The boundary conditions forf are the usual zero veloc
ity condition at the wall (f5]f/]r 50 at r 51) and for the
disturbance to vanish in the far field.

Equation~34! was solved using a standard second or
finite difference method with a uniform grid. A Newto
method was used to solve the discrete equations at eac
eration. The only problem that arises in using this metho
in specifying a form for the outer boundary conditions. Co
sider ~34! in the far field whereu is asymptotically close to
one. Takingf5r f̂ it can be shown that the decaying sol

FIG. 6. Scaled shear stress]u/]z for x50.01 ~lowest value atz50) to x
5105 ~highest atz50) plotted againstz. Re5104.
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tions for f̂ take the form ofK1(ar ) andK1(ây), whereK1

is the modified Bessel function of order one andâ5@a2

1 ia(u2c)Re#1/2. For large argument, K1(z);z21/2

3exp(2z). For the modes of interestR(â).a, and hence
the slowest decaying disturbance in the far field has the fo
f;r 1/2exp(2ar). This behavior can be used to derive Ne
mann conditions which can be applied atr 5r max. In particu-
lar, assuming thatar is large, we can use

]f

]r
52af. ~36!

A nontrivial solution was forced by settingf to a ~arbi-
trary! small value in the far field. The position of the far fie
boundary was varied to ensure that the results were no
fected by the value used forr max.

The code used to obtainf and c was adapted from a
standard Orr–Sommerfeld solver in Cartesian coordina
which has been thoroughly checked against results from
literature, such as those for Blasius flow, plane Poiseu
flow, and a flat plate boundary layer with surface suction.
addition, the results obtained using a perturbation stre
function agree with those using a velocity-pressure formu
tion ~details are given in the next section!. A very large num-
ber of points~up to 643103) was used to check the accurac
of the results, particularly for the critical Reynolds numbe
which are believed to be accurate to the figures quoted. N
that it would have been possible to use less points by cha
ing the numerical method, e.g., by stretching the grid or
ing a spectral method, but since the calculations can be
formed on a standard desktop machine there was no poin
adopting a more complicated/sophisticated method.

Adopting the boundary layer scaling

r 511Re2 1/2y, a5Re1/2b, ~37!

Eq. ~34! becomes

FIG. 7. Radial velocityx1/2 Re1/2 v for x50.01 ~top curve! to x5105 ~bot-
tom curve! plotted againstz. Re5104.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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~u2c!S ]2f

]y2 2
Re2 1/2

r

]f

]y
2b2f D2u9f1

Re2 1/2

r
u8f

5
1

iRlb
F ]4f

]y4 2
2 Re2 1/2

r

]3f

]y3 1
3 Re21

r 2

]2f

]y2

2
3 Re23/2

r 3

]f

]y
22b2S ]2f

]y2 2
Re2 1/2

r

]f

]y D1b4fG ,

~38!

whereRl5Re1/2, and the prime onu in ~38! refers to]/]y.
From ~38! it is clear that for large Re the stability cha

acteristics near the leading edge of the cylinder should
similar to those for the flat plate. Drazin and Reid6 give the
critical values of

Rp5519, ap50.304, cr p
50.3966 ~39!

based on the displacement thickness as the characte
length. In nondimensional terms the displacement thickn
for Blasius flow is given by

d151.72x1/2Re2 1/2. ~40!

Hence in the scalings used here

xc5S Rp

1.72D
2Y Re and ac5

apRe1/2

1.72xc
1/2

, ~41!

wherexc is the point the flow first becomes unstable.
Calculations were performed for a range of Reyno

numbers. For Re5105, when ~41! gives xc50.91 andac

558.5, the critical point was found to be atxc'0.99 with
ac'56.0. As expected, this is further downstream than
Blasius flow. For Re553104, ~41! gives xc51.82 andac

529.3, while for the cylinder,xc'2.18 withac'26.7.
The gap between the predicted and calculated value

xc increases as Re decreases. For Re523104 ~41! givesxc

54.55 andac511.7, while the values from the numeric
solution are xc'8.02 and ac'8.73. However, for Re
,12 439 no unstable modes were found. Note that at
point the eigenvaluec is consistent with the values for highe
Re, which indicates that the solution to~38! has not jumped
to another branch, i.e., is still obtaining the least stable s
tion. At the critical point with Re512 439, cr50.317 and
a52.73.

Figure 8 showsci againstx for Reynolds numbers at an
near the critical Reynolds number. Clearly for these R
nolds numbers there is a point along the cylinder at wh
the flow is maximally unstable, with the flow becomin
monotonically more stable further downstream. This patt
was found for all Reynolds numbers investigated, with
flow unstable only for a finite section of the cylinder if at a
That is, if the flow is unstable thenci.0 only for xc,x
,xs , where xs depends on Re. For Re523104, xs'4.2
3102, for Re553104, xs'4.13103, and for Re5105, xs

'2.23104. In all cases investigated the change back
stable flow is still in the region in which the series wi
Blasius flow as the leading term might be expected to
valid.
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VII. STABILITY: THREE-DIMENSIONAL MODES

For parallel flow, normal mode stability in Cartesian c
ordinates it is usual to consider only two-dimensional dist
bances as Squires theorem6 shows that the minimum critica
Reynolds number arises with two-dimensional modes. Ho
ever, in cylindrical polar coordinates, three-dimensional d
turbances cannot be reduced by a transformation of Squ
type to an equivalent axisymmetric disturbance, so t
Squire’s theorem cannot be invoked. Hence it is necessar
consider full three-dimensional disturbances.

Let the disturbance have the form

~ û,v̂,ŵ,p̂!~r !exp@ i ~ax1nu2vt !#, ~42!

where (û,v̂,ŵ) give the velocity components in polar coo
dinates (x,r ,u), p̂ the pressure perturbation, andn is an in-
teger. Then, assuming parallel flow, the governing equati
are

iaû1
1

r

]

]r
~r v̂ !1

in

r
ŵ50, ~43!

ia~u2c!û1
]u

]r
v̂52 ia p̂1

1

ReF ]2û

]r 2
1

1

r

]û

]r

2S a21
n2

r 2 D ûG , ~44!

ia~u2c!v̂52
] p̂

]r
1

1
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FIG. 8. The maximum value ofci for axisymmetric modes versusx. Re
512 000~bottom!, Re512 439~middle!, and Re513 000~top!.
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where againc5v/a.
The boundary conditions are again zero velocity at

surface and the disturbance vanishing in the far field.
assuming thatu[1, applying the divergence operator
~44!–~46!, and using~43!, we see that the pressure in the f
field behaves asKn(ar ), whereKn is the modified Besse
function of ordern. The behavior of the velocity componen
is then obtained by assuming a balance between the con
tive and pressure terms in~44!–~46!. We can then use Neu
mann conditions of the type~36! for the pressure and th
velocity components providedr max is such thatar max is
greater than 1. Two different ways of normalizing the pro
lem were used; setting the streamwise component of the
shear to one and setting the far field value of the pressur
a small arbitrary constant. In test cases both produced
same results. The former was used for the results prese
below.

Again a standard finite difference method with a Newt
iteration scheme was used. An axisymmetric version of
solver was produced and the results compared with th
generated using the stream functionf as the dependent var
able. There was no significant difference between the res
In particular, both methods produced the same critical R
nolds number. Also, for large Re, near the upstream en
the cylinder, at leading order the stability equations will r
duce to those for the analogous three-dimensional proble
Cartesian coordinates@cf. ~38!#, and hence Squire
transformation6 should apply. Solutions were generated f
Re5105 and n55. The results were compared with tho
found with n50 with the lower Reynolds number obtaine
from Squires transformation, which for viscous problem
gives a change in the Reynolds number as well as the
evant wave number when mapping a three-dimensional
turbance to a two-dimensional one with the same value oc.
Note, however, that in this case when the appropriate bou
ary layer scalings are adopted, i.e.,b5a Re21/2 for the wave
number and Re1/2 for the Reynolds number, as in~38!,
Squires transformation implies that the basic wave numbea
is the same for the two- and three-dimensional disturban
while R25@a2/(a21n2)# R3 whereR2 andR3 are the two-
and three-dimensional Reynolds numbers, respectively.
level of agreement between the numerical and predicted
sults for the two-dimensional disturbance was as expec
i.e., consistent with the difference found above between
results from the axisymmetric calculations and the pred
tions from Blasius flow.

Table I gives critical Reynolds (Rc) numbers forn51 to
5, n510 and the axisymmetric mode (n50) and, for eachn,
a number of values obtained at the critical point (xc) where
the flow first becomes unstable. Unlike for problems in C
tesian coordinates, the two-dimensional disturbance is
the least stable in the sense of having the lowest crit
Reynolds number; it is only the fourth least stable mode w
n51, 2, and 3 all having lower critical values.

The value ofxc varies inversely withRc moving up-
stream asRc increases. In contrast, apart from the axisy
metric mode, the value ofa at the critical points varies di
rectly with Rc and inversely withxc . Even when including
the basic Re21/2 boundary layer scaling, producingbc from
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ac , this pattern of variation in the wave number holds. Th
reflects the change in the boundary layer thickness with
tance downstream, and hence the implicit change in the s
ing for the stability problem.

Apart from the axisymmetric mode, the wave speed
the critical point~Table I! decreases withn, and appears to be
tending to a constant value asn increases. This value is es
sentially the same as that given in Ref. 6 for Blasius flo
This is as expected since as Re increases the flow an
stability characteristics should approach those for Blas
flow. Hence from Squires transformation the value ofcr at
the critical point should be the same for all modes. Tabl
also gives Reynolds numbers (Rbl) calculated using the
boundary layer thickness at the critical point as the char
teristic length and Reynolds numbers based on the dista
from the leading edge (Rx5Rcxc). The values ofRbl are
more consistent thanRc , and for highern decrease rathe
than increase withn. Note that all theRbl in Table I are
larger than the corresponding flat plate value of 1481. T
values ofRx at the critical point decrease withn, but all those
given in Table I are well above the value for Blasius flow
913103. Also, although the values ofRc for n50 and n
51 are an order of magnitude different, the values ofRx at
the critical point for these two modes are similar due to
almost equivalent but opposing change in the value ofxc .

For any particular value ofn>1, for Reynolds numbers
above its critical value, the mode shows similar behav
with x to that for the axisymmetric mode. That is, it is u
stable for only a finite distance along the cylinder, with t
flow returning to stability further downstream.

Figure 9 shows the maximum value ofci versusx for the
unstable modes for Re515 000, withx on a log scale for
clarity. For the three-dimensional modes there is a comm
pattern; asn and the critical Reynolds number increases,
peak value ofci decreases as does the size of the region
which the flow is unstable. The behavior of the axisymmet
mode is different; althoughRc is lower for n50 than n
53, n50 has the larger region of instability. Also, forn
50, ci has, in as far as is shown in Fig. 9, stopped decay

The wave speedcr corresponding to the values ofci

shown in Fig. 9 is plotted againstx in Fig. 10. Again, the
pattern for the three-dimensional modes is different than
for the axisymmetric mode. Forn.0 there is a clear mini-

TABLE I. Critical Reynolds numbers for different modes.n50 is the axi-
symmetric disturbance.cr and xc give the approximate value of the wav
speed and position of the neutral disturbance at the critical Reynolds n
ber, Rbl is the Reynolds number based on the boundary layer thicknes
this point,Rx5Rcxc is the Reynolds based on the distance from the lead
edge, andbc5acRc

21/2 .

n Rc xc ac bc cr Rbl Rx

0 12 439 47.0 2.73 0.0245 0.317 3591 5853103

1 1060 543 0.125 0.003 85 0.552 3008 5763103

2 6070 91.1 0.775 0.009 95 0.422 3383 5533103

3 10 102 43.4 1.60 0.0159 0.403 3101 4393103

4 13 735 26.8 2.54 0.0217 0.398 2885 3693103

5 17 199 19.0 3.53 0.0269 0.396 2733 3263103

10 33 855 7.4 8.58 0.0466 0.396 2429 2513103
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mum in the value ofcr , with the minimum value increasing
and moving upstream asn increases. In contrast, the wav
speed forn50 decreases monotonically over the regi
shown. Forn51, 2, and 3 the minimum incr occurs in the
unstable region, while forn54 it is very close to the up-
stream neutral point.

The wave numbera corresponding to the values show
in Figs. 9 and 10 is plotted againstx in Fig. 11. In all casesa
decreases withx. However, rather than tending to zer
which appears to be happening forn.0 in the region shown,
for n50, as withci ~Fig. 10!, a appears to have leveled ou

Above, the maximum value ofci has been plotted
againstx in Fig. 9. However, since the wave number al
varies withx ~Fig. 11!, the maximum value ofci may not
correspond to the fastest growing mode. Further, the fact
easily the largest values ofci are for n51 does not neces
sarily imply that n51 is the most dangerous mode as
peak values ofci are downstream wherea is small. A set of
calculations was performed for Re515 000 tracking the
maximum growth rate rather the maximum value ofci . The

FIG. 9. The maximum value ofci versusx for Re515 000. In descending
order of their maximum value the curves are forn51, 2, 3, 0, and 4.

FIG. 10. The wave speedcr corresponding to the maximum value ofci

versusx for Re515 000. From the bottom the curves are forn50, 1, 2, 3,
and 4.
Downloaded 05 Mar 2010 to 152.78.62.127. Redistribution subject to AIP
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results are shown in Fig. 12. From this figure it is seen t
for n51, the maximum value ofci does not give the mos
unstable mode over most of the region in which this mode
unstable. Also, far downstream, the growth rate appears t
tending to zero in Fig. 12 because of the very small value
a in this region. For the other modes, asn increases, the
difference between the maximum growth rate and that fou
with the maximum value ofci decreases. On the scale show
in Fig. 12 there is no difference between the two sets
growth rates forn50 and 4. Figure 12 also shows that fo
this Reynolds number, the least stable mode, in terms of
growth rate, isn52, with n50 only the fourth least stable
mode, behindn52, 3 and 1.

The neutral stability curves for Re515 000 are shown in
Fig. 13. For clarity, only the upstream portion of the curve
shown for n51, although this curve does close far dow
stream atx'1.153104, as indicated in Fig. 9. As can b

FIG. 11. The wave numbera corresponding to the maximum value o
ci versusx for Re515 000. From the top the curves are forn50, 1, 2, 3,
and 4.

FIG. 12. Maximum growth rateaci versusx for Re515 000. The two
curves extending downstream are forn51, with the top one giving the
maximum growth rate and the bottom the growth rate corresponding to
maximum value ofci . The other curves, in terms of descending peak v
ues, are forn52 ~maximum growth rate!, n52 ~maximum value ofci),
n53 ~maximum growth rate!, n53 ~maximum value ofci), and n50
and 4.
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seen, there are significant differences not only in the regi
in which the various modes are unstable, but also in the w
numbers. For example, forn54 there is no overlap withn
50 or 1 in the range of unstable wave numbers. Also, i
clear that in the upstream regionn52 has the largest rang
of unstable wave numbers, which supports the idea that
would be the most dangerous mode for this Reynolds n
ber.

As the Reynolds number increases the three dimensi
modes show a similar pattern to that found for the axisy
metric modes, with the region of instability increasing b
still finite. For example, for Re5105 the n51 mode is un-
stable fromxc'0.99 toxs'7.73104.

VIII. DISCUSSION

Calculations have been performed for the boundary la
on a long thin cylinder, including effects which come fro
the radial nature of the problem. Near the leading edge of
cylinder a solution for the flow can be written as a series
in ~9!–~17!. This series has Blasius flow as its leading ter
and is formally valid forx!Re. However, in practice the
second term in the series, which relative to the leading te
is of order (x/Re)1/2, plays a significant role much closer t
the leading edge. In the expression for the skin friction~18!,
the ratio of the second term to the leading term
2.09(x/Re)1/2, which equals 0.66 whenx/Re51/10, and 0.21
whenx/Re51/100. Hence, except very close to the lead
edge,t is significantly different from that for Blasius flow
This can be seen clearly in Fig. 1 which shows the s
friction near the leading edge for Re5104.

Further down the cylinder, whenx@Re, the series solu
tion given by Glauert and Lighthill4 gives excellent results
for the skin friction ~Fig. 2!, but worse agreement for th
displacement area~Fig. 3!.

The boundary layer thickness is lower and the skin fr
tion is higher in the cylinder flow than those for Blasius flo
In general this would suggest that the flow is more stab
This prediction has been borne out. In fact, for flow w
Re,1060 or less the flow is unconditionally stable to line

FIG. 13. Neutral curves for Re515 000. The solid curve which is open a
the right is forn51. The other curves in terms of their maximum dow
stream extent are forn52, 0, 3 and 4.
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normal mode disturbances. Further, unlike flows in Cartes
coordinates, two-dimensional disturbances are not the l
stable in terms of having the lowest critical Reynolds nu
ber, with then51 mode having a critical Reynolds numb
an order of magnitude less than the axisymmetric (n50)
mode.

The standard physical explanation for the existence
unstable normal modes in viscous flows that do not have
inflexion point in their velocity profile is that a phase diffe
ence in the transverse direction between the velocity com
nents gives rise to a Reynolds stress which is sufficien
large to overcome the stabilizing dissipative effects of
viscosity ~see, e.g., Ref. 7, p. 230!. The equation governing
the rate of change of the kinetic energy of the perturbati
from a two-dimensional disturbance to a two-dimensio
flow ~Refs. 6 and 7! is

dK

dt
5E

0

`

u8~y!txy dy2
1

ReE0

`

v2 dy, ~47!

whereK is the total kinetic energy of the disturbance,txy is
the Reynolds stress, andv is the vorticity of the disturbance
All of these quantities have been averaged over a wa
length. Writing the perturbation velocity components as
~42! with n50, the Reynolds stress is given by

txy52ûv̂52 1/2uû~y!uuv̂~y!ucos@uu~y!2uv~y!#e2ci t,
~48!

where the overline denotes the averaging inx and

û~y!5uû~y!ueiuu(y), v̂~y!5uv̂~y!ueiuv(y). ~49!

In ~47!,

v251/2 uv̂~y!u2 where v̂~y!5 ia v̂2
]û

]y
. ~50!

For the axisymmetric case the energy equation is

dK

dt
5E

1

`

u8~r !txrr dr 2
1

ReE1

`

v2r dr ~51!

with y in ~48!–~50! replaced byr.
If uu(y)2uv(y)Þ6p/2 then it is possible that the pro

duction term in~47! or ~51! ~the first term on the right-hand
side! may outweigh the dissipation (e, the second term on
the right! and lead to growth in the energy of the disturban
The growth rate of the kinetic energy normalized by the d
sipation (dK/dt/ueu) is shown in Fig. 14 for both the two
dimensional and axisymmetric cases with Re515 000. For
the axisymmetric problemdK/dt is positive only for a small
region matching that withci.0 as shown in Figs. 9 and 12
In contrast, for Blasius flow the normalized kinetic ener
growth rate increases monotonically over the region sho
Examination of the two terms that make updK/dt shows
that there is relatively little change in the dissipation, a
that the difference in behavior is almost entirely due to
change in the rate of production of kinetic energy, i.e., in
first term on the right-hand side of~47! and~51!. Comparing
the two cases at a point where both are unstable~e.g., atx
550) shows that the main reason for the difference in
production term is that, for disturbances of the same size,
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Reynolds stress is significantly lower in the axisymmet
case than the two-dimensional flat plate case. That is,
primary reason for the enhanced stability characteristics
the axisymmetric case is that the disturbances are such
they generate lower levels of Reynolds stress, with a~rela-
tive! peak production rate near the leading edge, decrea
further downstream as the flow deviates further from Blas
flow. It follows that the growth rate of the total kinetic en
ergy of the disturbance is lower than that for Blasius flo
and positive for only a finite length of the cylinder.

Both the change in shape of the velocity profile and
change in the governing equation for the disturbance pla
role in generating the change in the disturbance and the
bility of the flow. For Re515 000 using either the axisym
metric stability solver with the Blasius profile or the two
dimensional Orr–Sommerfeld solver with the axisymmet
flow profile gives stability results which lie between tho
for the two cases. Further, for Re5104, both the Orr–
Sommerfeld solver with the cylindrical velocity and the Bl
sius profile with the axisymmetric stability solver give u
stable modes, although unconditional stability has b
found for n50 at this Reynolds number.

FIG. 14. Disturbance energy growth rate normalized by the dissipa
dK/dt/ueu. The lower curve is for the axisymmetric case and the upper
Blasius flow.
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Physically the flow would still be expected to becom
unstable then turbulent along the cylinder as the bound
layer grows in thickness. However, at Reynolds numbers
O(104) or less there will be no simple, two-dimensiona
Tollmein–Schlichting-type wave growth/transition scenar
and for Reynolds numbers betweenO(103) andO(104) any
linear, normal mode growth of the type considered here
necessarily three dimensional. Further, instability when it
curs is further downstream than for Blasius flow, and for t
Reynolds numbers investigated in detail, occurs only fo
finite length of the cylinder, with the flow becoming stab
again whenx is still well short of Re. This does not of cours
imply that the flow will be laminar far downstream. How
ever, with a carefully designed experiment it may be th
laminar flow can be maintained much further downstre
than with a flat plate~cf. Poiseuille flow in a pipe as oppose
to a channel!.

Unconditional normal mode linear stability has of cour
been found with other basic flows. In particular, no unsta
modes have been found for Poiseuille flow in a pipe,
though this flow is well known to be unstable at sufficien
high Reynolds number.
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