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Summary. The design of a satellite boom using passive vibration control by Keane
[J. of Sound and Vibration, 1995, 185(3), 441-453] has previously been carried out
using an energy function of the design geometry aimed at minimising mechanical
noise and vibrations. To minimise this cost function, a Genetic Algorithm (GA) was :
used, enabling modification of the initial geometry for a better design. To improve
efficiency, it is proposed to couple the GA with a local search method involving the ‘
gradient of the cost function. In this paper, we detail the generation of an adjoint
solver by automatic differentiation via ADIFOR 3.0. This has resulted in a gradient
code that runs in 7.4 times the time of the function evaluation. This should reduce
the rather time-consuming process (over 10 CPU days by using parallel processing)
of the GA optimiser for this problem. ‘
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1 Introduction

In space missions, lightweight cantilever structures are often used to suspend scien-
tific instruments, such as antenna, a few metres away from the satellite. An example
of this kind of structure is the satellite boom shown in Fig. 1. Vibrations can be
transmitted through the structure from satellite to the instrument. Such vibrations
can damage the boom structure or prevent it from being used for its intended pur-
pose. To ensure correct functioning of the instrument, the vibrations or mechanical
noise through the structure must be kept at tolerable levels. Typically, the structure
is excited by a point transverse force near an end beam, and the energy level is mea-
sured at the opposite end beam. To minimise vibrations and noise, the geometry of
the structure is modified to reduce the frequency average response of the satellite
boom. This is known as passive vibration control [296].
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Fig. 1.' Initial geometry of the satellite boom.

In this paper, we consider the satellite boom of Fig. 1 described in Sect. 2.1 and
previously studied in [298, 384]. The structural dynamics of the three-dimensional
satellite boom are modelled by a Fortran computer code named BEAM3D [476,477]
using receptance theory, whereby the behaviour of the global structure is predicted
from the Green functions of the individual components, evaluated as summations
over their mode shapes.

In previous work [298,384], the minimisation of the frequency average response
(in the range 150-250 Hz) at the end beam was carried out to find a superior
design or geometry. For that purpose, a Genetic Algorithm (GA) was used. GAs
are known to work for fairly large cost with a good chance of finding the global
minimum. Generally, GAs do not require the gradient of the cost function. However,
the application of GAs in large scale industrial applications is limited due to the

large number of expensive evaluations of the cost function. For our application, the .

first 10 generations for a population size of 100 took over 10 days to complete using
parallel processing [298].

Attention has now shifted to a hybrid genetic algorithm-local search approach
combining Darwinian and Lamarckian evolution models. Darwinian evolution, based
on “natural selection” considers that the most fit individuals are likely to survive.
Lamarckian evolution takes the view that individuals may improve within their envi-
ronment as they become adapted to it and that the resulting changes are inheritable.
Consequently, the genotype of an improved individual is forced to reflect the result
of such an improvement by replacing the individual into the population for reproduc-
tion [417]. In our application, the local search is carried out using a gradient method,
which requires the calculation of the gradient of a cost function F : R% — R. Here,
the 90 inputs are the coordinates of the joint positions in the design geometry and
represent the independent variables. The computation of transmitted power F(x)
involves complex variable calculations, which are handled by ApIFor 3.0 [96] since
the dependents and independents are real values [445].

In theory, the gradient VF of such a function is cheaply calculated using the
reverse mode since the cost of the gradient is independent of the number of the
independents and is bounded above by a small factor of the cost of evaluating
the function [225]. In practice, large memory requirement may prohibit use of the
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adjoint code (reverse AD generated code). This paper details the differentiation of

the BEAM3D code by the ADIFOR, the successor of the AD tool ApIFOR 2.0 [57].

ADIFOR employed in reverse mode produces an adjoint code which, after being tuned .
manually for performance enhancement, calculated the function and its gradient in

7.4 times the CPU time required for its function evaluation. Moreover, the adjoint

code runs 12.6 times faster than one-sided finite-differencing (FD) on a Sun Blade

1000 machine with 1200 MHz CPU, 8 MB external cache and 2 GB RAM.

2 Optimisation of the Boom Structure

We aim at minimising vibrations through the structure represented in Fig. 1. There
are at least three ways to achieve this: increasing the mass of elements or coating
elements with damping material, using active anti-vibration to cancel unwanted
vibrations; and as considered here, modifying the geometry of the structure to filter
and reflect the vibrations.

2.1 The Initial Geometry

The initial boom 'structure to be optimised is three-dimensional and composed of
90 Euler-Bernouilli beams each having the same properties per unit length. Because
the structure is used to mount a scientific instrument away from a space satellite,
the length of the boom structure must be chosen within reasonable limits. Typical
values of the aluminium were used for the physical properties of the beams. The bay
length is 45 cm, and the overall length of the boom structure is 4.5 m.

The beams were arranged in a regular manner along the XYZ axes so that the
YZ cross-section of the boom structure formed an equilateral triangle. The three
joints at the left hand end of the structure were fixed, i.e., they were clamped to
prevent motion. The beams were connected together with 30 free joints. Geometric
constraints were used to avoid beams overlapping or becoming extremely long. The
free joints were kept within fixed distances of their original positions. The connec-
tivity of the diagonal beams was chosen so that a maximum of six beams met at
any one joint.

Typically, the structure is excited by a point transverse force applied to a left
hand end beam of the structure. The vibrational energy level is calculated at a right
hand end beam using receptance methods [296]. The optimisation aims at minimising
the vibrations by minimising the frequency averaged response in the range 150 — 250
Hz. For that purpose, the optimiser is allowed to modify the geometry. of the satellite
boom by changing the coordinates of the 30 free joints in the structure.

2.2 An Optimised Geometry

A GA from the optimisation software package [297] was used to generate an opti-
mised boom geometry by improving the frequency response curve. The principles of

a GA can be found in [217]. In short, GAs work on the premise that a population
of competing individuals can be combined to produce improved individuals. They

mimic “natural” selection, or Darwinian evolution. The number of generations and

their population size are usually chosen in advance. Common operations are:
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o selection: whereby the fittest individuals are chosen to “inter-breed” and pass
their attributes to their offspring.

e crossover: where random portions of two of the most fit individuals are combined
to form a new individual.

e mutation: where small changes are introduced to one individual at a time.

As reported in [384], an optimised design geometry was obtained using an ob-
jective function F set to be the square root of the sum of velocity squared in the
X,Y, Z directions for the end three joints labelled 31,32 and 33,

33
F=/freqz Vat VetV

j=31

A run of the GA for 10 generations and a population size of 300, gave the novel design
geometry of the boom structure shown in Fig. 2. However, GAs applied to large-
scale optimisation problems can take CPU days even using parallel processing [298].
To enhance their performance, they may be combined with local search methods.

Fig. 2. An optimised geometry of the satellite boom.

2.3 Coupling GAs and Local Search Methods

For optimizing the design of the satellite boom of Fig. 1, a GA coupled with a local
search method based on gradient descent should outperform a stand-alone GA. We
aim to make them efficient by taking advantage of the accuracy and efficiency of
gradient calculation by reverse mode AD.

In essence, the hybridised GA-Local Search method performs similar steps to
that of the GA except that each individual of the population is locally improved
using a local search method, here steepest descents, following the meta-Lamarkian
learning approach as shown in Fig. 3 and detailed in [417]. In Fig. 3, the while loop
is executed until either ¢ exceeds some maximum number of generations tmaez OF
convergence is detected. We now detail the differentiation of the BEAMS3D code to
enable the gradient descent method of the hybrid algorithm.
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t=20
Initialise a GA population P(t) = {x1,x2,...,x™}
While ( EndCondition is not satisfied )
Evaluate Fitness(P(t)) giving F(x1), F(x2),..., F(x™)
For each individual x' € P(t)
Improve x' using the Gradient Descent method GD(x*)
Replace X' by the improved Xi., = GD(x’) in P(t)
EndFor
Generate P(¢{+ 1) from the x),, by using standard
GA operations (Selection, Mutation, or Crossover).
t=1+1 f
EndDo ‘

Fig. 3. Hybrid GA-Gradient Descent Method.

3 Differentiation of the BEAMS3D Code

The BEAMS3D code, as sketched in Fig. 4, starts by reading in data from files
representing the boom geometry and certain properties of each beam. Given extra
information such as the range of frequencies over which to solve, the number of data
points within the specified frequency range, the joint numbers at which to calculate
the energies, and the number of axial[torsional] and transverse modes in the modal
summations for the Green functions; the program builds up a linear complex system
Af = b for nodal forces f and solves it for each frequency. An averaged energy
function is calculated at the specified end beam.

Read in:
No. of beams, beam properties, and list .of connections
Frequency range [Wmin,Wmaz, N] (N = No. of frequencies) ;
Coordinates of beam ends x,;

Calculate some geometric information

Initialise F'=0 (integral of power)

Aw = (Wmaz — Wmin) /(N — 1)

For k=1,N
W= Wmin + (b~ 1) x Aw
Assemble:

Green Function Matrix A(x,iw)
r.h.s. forcing b(x,iw)
Solve A(x,iw)f = b(x,iw) (LAPACK) - 50% of CPU time
Obtain displacement D, ; at ends of beam n
Obtain power P = 1Re(f; - D, ;)
Update integral F = F + P2x Aw
End For

Fig. 4. Schematic of the BEAM3D code.




314 Mohamed Tadjouddine et al.

We aim to calculate the sensitivities of the energy function with respect to the
coordinates of the free joints. This represents a gradient calculation with 90 indepen-
dent variables. Prior to differentiation, the code was restructured so all reading of
data is done outside the subroutines to be differentiated. Furthermore, to allow the
code to be processed by ADIFOR, the code was rewritten according to the Fortran 77
standard. Actually, the original code contained (non-standard) language extensions
in the form of structures defined as follows:

STRUCTURE /PROPERTY/
INTEGER ID
CHARACTER*6 ENDCON
DOUBLE PRECISION ANGLE(3,3)
DOUBLE PRECISION LENG
COMPLEX *16 FM2

END STRUCTURE

RECORD /PROPERTY/ BEAM(150)

This structure is replaced using arrays corresponding to the components of the
structure. The restructured code contains the following array declarations:

INTEGER BEAM_ID(150)

CHARACTER*6 BEAM_ENDCON(150)

DOUBLE PRECISION BEAM_ANGLE(3,3,150)
DOUBLE PRECISION BEAM_LENG(150)

COMPLEX*16 BEAM_FM2(150)

A sed [153] script was written to replace any instance BEAM(I) .X(X,J), where
X represents any component of the structure, by the array element BEAM X (K, J,I).
If X is a scalar variable, obviously no indices are used. The resulting computer code
is differentiated using FD, and AD via ADIFOR.

3.1 Initial Differentiation

We first computed a single directional derivative y = V F(x)x for a random direction
X, by using one sided FD, AD in forward mode, and a single adjoint X = VF(x)TSf
for ¥ = 1 via reverse mode AD. By definition of the adjoint operator, we have
¥y = xx, which allows us to validate the results of the differentiation. The initial
ADIFOR generated codes gave incorrect results inconsistent with those from FD,
caused partly by non-differentiable statements in the code for the function F.

3.2 Dealing With Non-Differentiability

A major assumption in AD is that the function F' to be differentiated is com-
posed of elemental functions ¢ that are continuously differentiable on their open
domains [225]. At a point on the boundary of an open domain, F is continuous,
but VF may jump to a finite value or even infinity. This is important when the
computer code that represents the function contains branches, some kink functions

o
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(e.g., abs), or inverse functions (e.g., sqrt, arctan, or arccos). To compute reliable
derivatives, such pathological cases must be handled correctly. It is known that these
cases can be tackled by calculating derivatives in a given direction [225]. Insights or
knowledge of the computer code can also be exploited. The BEAMS3D code contains
at least two types of non-differentiability.

12 = datan2(xdiff,zdiff)
m2 = dsqrt(xdiff*xdiff+zdiff*zdiff) /beam_leng(i)

sgnl = -1.0d0
sgn2 = -1,0d0
sgn3 = -1.0d0
if (xdiff.1t.0.0d0) sgnl = -sgni
if (ydiff.gt.0.0d0) sgn2 = -sgn2

if (zdiff.1t.0.0d0) sgn3 = -sgn3

yor(1,i) = sgni*dabs(dsin(dacos(m2))*dsin(12))
yor(2,i) = sgn2*dabs(m2) '
yor(3,i) = sgn3+dabs(dsin(dacos(m2))*dcos(12))

Fig. 5. A code fragment that is non-differentiable.

The first type of non-differentiability is due to the presence of the functions
arccos and abs. ADIFOR allows us to locate possible non-differentiable points by
generating the derivative code with the Ezception Handling enabled [96]. On running
this code, warnings were raised concerning the functions arccos and abs. The part
of the code, containing such anomalies is shown in Fig. 5. We then used algebra
and trigonometric formula to rewrite some of the algebraic expressions containing
(arccos, abs, sin and tan) as in Fig. 6.

This transformation resulted in equivalent expressions calculating the same val-
ues but differentiable in the vicinity of their arguments.

mytl = ydiff/beam_leng(i)
myt2 = dsqrt(xdiff*xdiff+zdiff+zdiff)

sgnl = -1.040
sgn2 = -1.040
sgn3 = -1.0d0

if (xdiff.1t.0.0d0) sgnl = -sgni
if (ydiff.gt.0.0d0) sgn2 = -sgn2
if (zdiff.1t.0.0d0) sgn3 = -sgn3
yor(1,i) = sgnismytl*xdiff/myt2
yor(2,i) = sgn2+myt2/beam_leng(i)
yor(3,i) = sgn3*mytl*zdiff/myt2

Fig. 8. An equivalent but differentiable version of the code fragment of Fig. 5.
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The second type of non-

differentiability encountered in if (xdiff.eq.0.0 .and. ydiff.eq.0.0)
BEAMS3D was due to a branching then

construct illustrated by the code yor(1,i) = zdiff/beam_leng(i)
fragment of Fig. 7. As xdiff and yor(2,i) = 0.0

ydiff are active variables, the dif- yor(3,i) = 0.0

ferentiation of this code fragment else ....

gave point-valued derivatives that

prevented the function F from be- Fig. 7. A code fragment testing whether an
ing differentiable. Such branches active variable is zero.

represent constraints on the de-

sign geometry and, in our case, may be safely removed.

Finally, the complex linear solver Af=Db employs the LAPACK routine zgesv [7].
Differentiating the LAPACK source code routines for zgesv using an AD tool without
taking account insights into the nature of the linear solver would give inefficient code.
Mechanical generation of the zgesv derivative by ADIFOR gave not only inefficient
code but also results inconsistent with FD. Therefore, we hand-coded its derivative
as described in Sect. 3.3.

3.3 Complex Linear Solver

Instead of using ADIFOR to differentiate the complex linear solve,
Af=b, (1)

of the LAPACK routine zgesv, we instead use hand-coding for both forward and
reverse mode. Differentiating Af = b, using the matrix-equivalent of the product
rule for a single directional derlvatlve we obtain Af + Af = b, and giving the
derivatives f by the solution of

Af =b-—Af. ' (2)
In the forward mode, we may re-use the LU-decomposition of A to solve efficiently
for the derivatives f. The following procedure is used:

1. Perform an LU decomposition of the matrix A
2. Solve Af=Db

3. Form bne, = b — Af

4. Re-use LU-decomposition to solve Af = bpew

A and b are calculated by applying ADIFOR to the Assemble procedure in Fig. 4.
For the reverse mode, denvmg the adjoint update corresponding to (1) is more
problematic. Defining C = A™!, we may write

f=Cbhb - CAFf.

Then f;, the i** element of f, is given by

i= Zcijbg - Zcijzdjkfk )
Y J k
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where c;;, aji, bj, and fi are the elements of C, A, B, and f, respectively. Now
we use the identity yy = Xx for the system y = F(x) [225, Equation (3.7)]. In the
context of the vector and matrix arguments of the system (1), this identity gives

Zﬁﬁ =ZEibi+ZZaﬁaﬁ. (4)

From (3), we obtain z 1 o

IETEDSFD DI oF 5 3 LI
by reordering sumzmations, S -

Zfiﬂ = Zi?j Zcijf_i - szjkfk Z%’ﬁ ;
and by swapping ;ndices i, ; k) tol (k. i, ), n z

Sk =Sk et~ ¥ Nty S

: i i

Comparing with (4), we see that

= cifi,

7

giving b = CTf = A~7TF , or that b is the solution of

Similarly,
@i = ~f; Y ckif = —f;bi , or
k

A= -bf". G
The adjoint b is updated by solving the linear system (5), while A is updated by
adding the right hand side of the equation (6). Adjoint formulae (5) and (6) are
equivalent to those given in [520].
Using (5) and (6), we obtain the following procedure for the adjoint of the linear
solve:
1. In the forward sweep,
a) Perform an LU decomposition of the matrix A,
b) Store L and U and the pivot sequence IPIV,
c) Solve Af =bh.
2. In the reverse sweep,
a) Load L and U and the pivot sequence IPIV,
b) Solve ATh =T for b,
c) Update A = A — bfT,
Since both A and b depend on the beam endpoint location x (see Fig. 4), the
adjoined linear solver must modify their adjoints A and b. The adjoint for A is the
usual incremens, while for b it is an assignment because the LAPACK routine zgesv
overwrites b with f. Here, the memory storage is dramatically reduced compared
with black-box application of ADIFOR. If A is an N x N matrix, we store only N2
complex coefficients instead of O(N3) when ADIFOR tapes all variables on the left
of assignment statements in the LU decomposition.
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3.4 Initial Results and Validation

After implementing the procedures described in Sect. 3.2 and 3.3 on the ADIFOR
generated code, we obtained tangent and adjoint derivative codes that calculate
directional derivatives consistent with one-sided FD. The obtained codes were com-
piled with maximum compile optimisations and run on a Sun Blade 1000 machine.
Table 1 shows the results and timings of forward mode AD, reverse mode AD, and
one-sided FD for that calculation. These results showed that forward and reverse
AD gave the same directional derivative value within roundoff, while the maximum
difference with the FD result is around 107°. This difference is of the order of the
square root of the machine relative precision. This validates the AD results as being
in agreement with the one-sided FD result.

Table 1. Results for a single directional derivative, timings are in CPU seconds.

Method X% vy CPU(F,VF)
FD (1-sided) 0.124578003587  48.7
ADpIFOR(fwd) 0.124571139127 54.0
ADIFOR(rev) |0.124571139130 : 311.5

From Table 1, we see that while the AD reverse mode calculates the gradient in
around -5 minutes, one-sided FD and forward AD requires 91 function evaluations
and 90 directional derivatives respectively and consequently run times of over 35
minutes. We see that using reverse mode AD can speed up the gradient calculation
by a factor of around 7 over FD while giving accurate derivatives. However, the core
of the calculation (building the linear system, solving it, and calculating the local
energy contribution for each frequency) of the BEAM3D code is an independent
loop and therefore can be differentiated in parallel as we now describe.

4 Performance Issues

Usually, after checking that the AD forward and reverse modes agreed with the finite
differences, we seek to improve efficiency of the automatically generated code. As
shown by the results of Table 1, the reverse mode is superior to the finite differences
and forward mode, but it requires a very large amount of memory to run because
the tape required 12 GB. By hand coding the adjoint of the linear solver, we reduced
the size of the tape to around 6 GB.

Furthermore, the core of the calculation of the BEAMS3D code is carried out in a
parallel loop, which is the loop over k in Fig. 4. Because the iterations of such a loop
are independent, we can run the loop body taping all the required information in just
one iteration, then immediately adjoin the body of the loop [254]. This reduced the
tape size of the adjoint code to around 0.3 GB. This represents a memory reduction
by a factor of 20, the number of extra iterations performed by the parallel loop.

" The second row of Table 2 shows that after this optimisation, the ratio between
the gradient calculation and the function is 7.4. It also shows a speed up factor of
12.6 over the popular one-sided FD method.
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Table 2. CPU Timings (in Seconds) on a SUN Blade 1000, UltraSparcIII.

Method CPU(F,VF) CPU(F,VF)/CPU(F)
ADIFOR(rev.) 311.5 13.3
ADIFOR(rev.,par.) 174.7 7.4
FD (1-sided) 2215.9 93.1

5 Conclusions

ADIFOR allowed us to build an adjoint for a code that makes extensive use of com-
plex variable arithmetic to accurately calculate the gradient of a cost function. The
adjoint code requires only 7.4 times the CPU time of the original function code,
and the memory requirement for taping is a modest 0.3 GB. It also runs 12.6 times
faster than calculating the gradient using one-sided finite differencing.

. Future work is planned to compare the performance of gradient calculation using
both ADIFOR [96] and TAF [163] capabilities. The design optimisation of the light-
weight cantilever structure will be carried out using the meta-Lamarckian learning
strategy [417], which efficiently combines GAs with local search methods. The re-
duction in computational time of the gradient calculation will be of great benefit in
allowing the meta-Lamarckian algorithm to be used to optimise the design of boom
structures.
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